organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Thienylmethyl­ene­amino)benzoic acid

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bCollege of Materials Science and Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: taoxuquan@lcu.edu.cn

(Received 15 September 2009; accepted 27 September 2009; online 3 October 2009)

In the title mol­ecule, C12H9NO2S, the dihedral angle between benzene and thio­phene rings is 41.91 (8)°. The crystal packing exhibits short inter­molecular O—H⋯O and C—H⋯O hydrogen-bonding contacts.

Related literature

For the synthesis of substituted thio­phenes, see: Koike et al. (1999[Koike, K., Jia, Z., Nikaib, T., Liu, Y. & Guo, D. (1999). Org. Lett. 1, 197-198.]). For the anti­cancer activity of Schiff bases, see: Chakraborty & Patel (1996[Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195.]). For a related structure, see: Hu et al. (2008[Hu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO2S

  • Mr = 231.26

  • Monoclinic, P 21 /c

  • a = 3.8801 (3) Å

  • b = 10.0849 (11) Å

  • c = 27.380 (3) Å

  • β = 93.185 (1)°

  • V = 1069.74 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.43 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.967

  • 5213 measured reflections

  • 1887 independent reflections

  • 1496 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.140

  • S = 1.09

  • 1887 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.641 (3) 172
C3—H3⋯O2ii 0.93 2.52 3.441 (4) 169
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x-1, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of substituted thiophenes has attracted a great deal of interest over the years due to their presence in natural products (Koike, et al., 1999). Moreover, Schiff bases derived from a large number of carbonyl compounds and amines. It has been shown that Schiff base compounds have strong anticancer activity (Chakraborty et al., 1996).

Here, we report the synthesis and crystal structure of a new flexible Schiff-base compound 4-aminobenzoic acid thiophene-2-carbaldehyde schiff base, (I). The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu et al., 2008). The C(1)=N(1) bond length of 1.277 (4) Å, conform to the usual value for a C=N double bond. Each half of the molecule displays a trans configuration across the C=N double bond.

In the crystal structure, the dihedral angle between the benzene ring and the thiophene ring is 41.91 (8)°. Moreover, the two-dimensional network structures were formed by the intermolecular O—H···O and C-H···O H-bond interactions (Figure 2 and Table 1).

Related literature top

For the synthesis of substituted thiophenes, see: Koike et al. (1999). For the anticancer activity of Schiff bases, see: Chakraborty et al. (1996). For a related structure, see: Hu et al. (2008).

Experimental top

4-Aminobenzoic acid (10 mmol), thiophene-2-carbaldehyde (10 mmol) and 20 ml ethanol were mixed in 50 ml flask. After stirring 3 h at 303 K, the resulting mixture was recrystalized from ethanol, affording the title compound as a red crystalline solid. Elemental analysis: calculated for C12H9N2OS: C 62.32, H 3.92, N 6.06%; found: C 62.38, H 4.14, N 6.17%.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H distances are 0.93 Å, O—H distance is 0.82 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C, O).

Structure description top

The synthesis of substituted thiophenes has attracted a great deal of interest over the years due to their presence in natural products (Koike, et al., 1999). Moreover, Schiff bases derived from a large number of carbonyl compounds and amines. It has been shown that Schiff base compounds have strong anticancer activity (Chakraborty et al., 1996).

Here, we report the synthesis and crystal structure of a new flexible Schiff-base compound 4-aminobenzoic acid thiophene-2-carbaldehyde schiff base, (I). The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu et al., 2008). The C(1)=N(1) bond length of 1.277 (4) Å, conform to the usual value for a C=N double bond. Each half of the molecule displays a trans configuration across the C=N double bond.

In the crystal structure, the dihedral angle between the benzene ring and the thiophene ring is 41.91 (8)°. Moreover, the two-dimensional network structures were formed by the intermolecular O—H···O and C-H···O H-bond interactions (Figure 2 and Table 1).

For the synthesis of substituted thiophenes, see: Koike et al. (1999). For the anticancer activity of Schiff bases, see: Chakraborty et al. (1996). For a related structure, see: Hu et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I)
4-(2-Thienylmethyleneamino)benzoic acid top
Crystal data top
C12H9NO2SF(000) = 480
Mr = 231.26Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1697 reflections
a = 3.8801 (3) Åθ = 3.0–24.6°
b = 10.0849 (11) ŵ = 0.28 mm1
c = 27.380 (3) ÅT = 298 K
β = 93.185 (1)°Block, red
V = 1069.74 (18) Å30.43 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1887 independent reflections
Radiation source: fine-focus sealed tube1496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.888, Tmax = 0.967k = 129
5213 measured reflectionsl = 2932
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4613P]
where P = (Fo2 + 2Fc2)/3
1887 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H9NO2SV = 1069.74 (18) Å3
Mr = 231.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8801 (3) ŵ = 0.28 mm1
b = 10.0849 (11) ÅT = 298 K
c = 27.380 (3) Å0.43 × 0.20 × 0.12 mm
β = 93.185 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1496 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.967Rint = 0.044
5213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
1887 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4137 (7)0.4083 (2)0.34590 (9)0.0410 (6)
O10.9679 (7)0.8245 (2)0.50746 (8)0.0580 (7)
H11.03830.89430.51970.087*
O20.7517 (7)0.9632 (2)0.45013 (7)0.0543 (6)
S10.3211 (2)0.18720 (8)0.26947 (3)0.0476 (3)
C10.2843 (8)0.3008 (3)0.36133 (11)0.0438 (8)
H1A0.22970.29540.39390.053*
C20.2192 (8)0.1869 (3)0.32997 (10)0.0389 (7)
C30.0828 (9)0.0673 (3)0.34261 (11)0.0472 (8)
H30.01140.04830.37370.057*
C40.0618 (9)0.0239 (3)0.30361 (12)0.0506 (9)
H40.02520.10940.30610.061*
C50.1821 (9)0.0267 (3)0.26221 (12)0.0515 (9)
H50.18880.02020.23300.062*
C60.8065 (8)0.8483 (3)0.46603 (10)0.0397 (7)
C70.6845 (7)0.7322 (3)0.43688 (9)0.0354 (7)
C80.7347 (8)0.6033 (3)0.45455 (10)0.0403 (7)
H80.83200.59020.48600.048*
C90.6413 (8)0.4952 (3)0.42586 (10)0.0419 (8)
H90.67740.40980.43790.050*
C100.4922 (7)0.5141 (3)0.37856 (10)0.0358 (7)
C110.4398 (8)0.6428 (3)0.36128 (10)0.0407 (7)
H110.34130.65610.32990.049*
C120.5320 (8)0.7508 (3)0.39001 (10)0.0395 (7)
H120.49240.83620.37810.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0479 (16)0.0341 (14)0.0407 (14)0.0028 (12)0.0002 (11)0.0039 (11)
O10.0861 (18)0.0389 (13)0.0463 (13)0.0045 (12)0.0194 (12)0.0047 (10)
O20.0839 (18)0.0321 (12)0.0455 (12)0.0027 (12)0.0094 (11)0.0006 (10)
S10.0579 (6)0.0426 (5)0.0424 (5)0.0005 (4)0.0042 (4)0.0011 (3)
C10.0488 (19)0.0427 (18)0.0404 (16)0.0005 (15)0.0060 (14)0.0051 (14)
C20.0392 (17)0.0358 (16)0.0414 (16)0.0019 (14)0.0008 (13)0.0027 (13)
C30.055 (2)0.0433 (19)0.0432 (17)0.0036 (16)0.0038 (15)0.0041 (14)
C40.055 (2)0.0341 (17)0.062 (2)0.0043 (15)0.0028 (17)0.0020 (15)
C50.057 (2)0.0443 (19)0.052 (2)0.0033 (17)0.0097 (16)0.0126 (16)
C60.0469 (19)0.0373 (17)0.0349 (15)0.0007 (14)0.0025 (13)0.0004 (13)
C70.0389 (17)0.0316 (15)0.0356 (15)0.0002 (13)0.0011 (12)0.0021 (12)
C80.0497 (19)0.0375 (16)0.0327 (15)0.0014 (14)0.0056 (13)0.0000 (13)
C90.052 (2)0.0308 (16)0.0426 (17)0.0016 (14)0.0003 (14)0.0016 (13)
C100.0376 (17)0.0364 (16)0.0335 (15)0.0015 (13)0.0025 (12)0.0049 (12)
C110.0470 (19)0.0400 (17)0.0341 (15)0.0011 (15)0.0058 (13)0.0013 (13)
C120.0477 (18)0.0302 (15)0.0403 (16)0.0011 (14)0.0005 (13)0.0020 (13)
Geometric parameters (Å, º) top
N1—C11.277 (4)C4—H40.9300
N1—C101.414 (3)C5—H50.9300
O1—C61.287 (3)C6—C71.480 (4)
O1—H10.8200C7—C121.396 (4)
O2—C61.252 (3)C7—C81.397 (4)
S1—C51.714 (3)C8—C91.380 (4)
S1—C21.724 (3)C8—H80.9300
C1—C21.448 (4)C9—C101.402 (4)
C1—H1A0.9300C9—H90.9300
C2—C31.369 (4)C10—C111.392 (4)
C3—C41.408 (4)C11—C121.379 (4)
C3—H30.9300C11—H110.9300
C4—C51.350 (4)C12—H120.9300
C1—N1—C10120.4 (3)O1—C6—C7116.9 (3)
C6—O1—H1109.5C12—C7—C8119.2 (3)
C5—S1—C291.28 (15)C12—C7—C6119.8 (3)
N1—C1—C2122.4 (3)C8—C7—C6121.0 (2)
N1—C1—H1A118.8C9—C8—C7120.7 (3)
C2—C1—H1A118.8C9—C8—H8119.6
C3—C2—C1127.3 (3)C7—C8—H8119.6
C3—C2—S1110.9 (2)C8—C9—C10120.0 (3)
C1—C2—S1121.8 (2)C8—C9—H9120.0
C2—C3—C4113.0 (3)C10—C9—H9120.0
C2—C3—H3123.5C11—C10—C9119.0 (3)
C4—C3—H3123.5C11—C10—N1117.8 (2)
C5—C4—C3112.4 (3)C9—C10—N1123.0 (3)
C5—C4—H4123.8C12—C11—C10120.9 (3)
C3—C4—H4123.8C12—C11—H11119.5
C4—C5—S1112.4 (2)C10—C11—H11119.5
C4—C5—H5123.8C11—C12—C7120.1 (3)
S1—C5—H5123.8C11—C12—H12120.0
O2—C6—O1123.0 (3)C7—C12—H12120.0
O2—C6—C7120.1 (3)
C10—N1—C1—C2176.1 (3)O1—C6—C7—C81.8 (4)
N1—C1—C2—C3179.9 (3)C12—C7—C8—C91.2 (5)
N1—C1—C2—S11.4 (4)C6—C7—C8—C9175.6 (3)
C5—S1—C2—C30.4 (3)C7—C8—C9—C100.4 (5)
C5—S1—C2—C1178.3 (3)C8—C9—C10—C110.1 (4)
C1—C2—C3—C4178.4 (3)C8—C9—C10—N1175.2 (3)
S1—C2—C3—C40.2 (4)C1—N1—C10—C11143.8 (3)
C2—C3—C4—C50.2 (4)C1—N1—C10—C940.8 (4)
C3—C4—C5—S10.5 (4)C9—C10—C11—C120.1 (5)
C2—S1—C5—C40.5 (3)N1—C10—C11—C12175.7 (3)
O2—C6—C7—C124.9 (4)C10—C11—C12—C70.9 (5)
O1—C6—C7—C12175.0 (3)C8—C7—C12—C111.5 (5)
O2—C6—C7—C8178.2 (3)C6—C7—C12—C11175.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.641 (3)172
C3—H3···O2ii0.932.523.441 (4)169
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC12H9NO2S
Mr231.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)3.8801 (3), 10.0849 (11), 27.380 (3)
β (°) 93.185 (1)
V3)1069.74 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.43 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
5213, 1887, 1496
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.09
No. of reflections1887
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.641 (3)172.0
C3—H3···O2ii0.932.523.441 (4)169.3
Symmetry codes: (i) x+2, y+2, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors acknowledge financial support by Liaocheng University (X20090101).

References

First citationChakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191–195.  CAS Google Scholar
First citationHu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoike, K., Jia, Z., Nikaib, T., Liu, Y. & Guo, D. (1999). Org. Lett. 1, 197–198.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds