metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[1-hy­droxy-2-(imidazol-3-ium-1-yl)-1,1′-ethyl­idenediphophonato-κ2O,O′]zinc(II)

aGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and, Escuela de Ciencia y Tecnología, Universidad Nacional General San Martín, Buenos Aires, Argentina
*Correspondence e-mail: freire@tandar.cnea.gov.ar

(Received 5 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title complex, [Zn(C5H9NO7P2)2(H2O)2], the zinc atom is coordinated by two bidentate zoledronate [zoledronate = (2-(1-imidazole)-1-hydr­oxy-1,1′-ethyl­idenediphophonate)] ligands and two water mol­ecules. The coordination number is 6. There is one half-mol­ecule in the asymmetric unit with the zinc atom located on a crystallographic inversion centre. The anion exists as a zwitterion with an overall charge of −1; the protonated nitro­gen in the ring has a positive charge and the two phospho­nates groups each have a single negative charge. There are two intra­molecular O—H⋯O hydrogen bonds. The mol­ecules are linked into a chain by inter­molecular O—H⋯O hydrogen bonds. Adjacent chains are further linked by O—H⋯O hydrogen bonds involving the aqua ligands. An N—H⋯O inter­action is also observed.

Related literature

For general background to bis­phospho­nates, see: Fleisch et al. (1968[Fleisch, H., Russell, R. G. G., Bisaz, S., Termine, J. D. & Posner, A. S. (1968). Calcif. Tissue Res. 2, 49-59.]); Green et al. (1994[Green, J. R., Mueller, K. & Jaeggi, K. A. (1994). J. Bone Miner. Res. 9, 745-751.]); Fleisch (2000[Fleisch, H. (2000). Bisphosphonates in Bone Disease. From the Laboratory to the Patient, 4th ed. New York: Academic Press.]); Ross et al. (2004[Ross, J. R., Saunders, Y., Edmonds, P. M., Wonderling, D., Normand, C. & Broadley, K. (2004). Health Technol. Assess. 8, 1-176.]); Smith (2005[Smith, M. R. (2005). Cancer Treat. Rev. 31 (Suppl 3), 19-25.]); Ralston et al. (1989[Ralston, S. H., Patel, U., Fraser, W. D., Gallacher, S. J., Dryburgh, F. J., Cowan, R. A. & Boyle, I. T. (1989). Lancet, 334, 1180-1182.]); Reid et al. (2005[Reid, I. R., Miller, P., Lyles, K., Fraser, W., Brown, J. P., Saidi, Y., Mesenbrink, P., Su, G., Pak, J., Zelenakas, K., Luchi, M., Richardson, P. & Hosking, D. (2005). N. Engl. J. Med. 353, 898-908.]); Rauch & Glorieux (2005[Rauch, F. & Glorieux, F. H. (2005). Am. J. Med. Genet. C. Semin. Med. Genet. 139, 31-37.]); Chesnut et al. (2004[Chesnut, C. H. III, Skag, A., Christiansen, C., Recker, R., Stakkestad, J. A., Hoiseth, A., Felsenberg, D., Huss, H., Gilbride, J., Schimmer, R. C. & Delmas, P. D. (2004). J. Bone Miner. Res. 19, 1241-1249.]). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007, 2008). For metal complexes of other bis­phospho­nates (Etidronate and Pamidronate), see: Fernández et al. (2002[Fernández, D., Vega, D. & Goeta, A. (2002). Acta Cryst. C58, m494-m497.]); Li et al. (2008[Li, G., Fan, Y., Zhang, T., Ge, T. & Hou, H. (2008). J. Coord. Chem. 61, 540-549.]); Chen et al. (2008[Chen, H., Sun, Z., Dong, D., Meng, L., Zheng, X., Zhu, Y., Zha, Y. & Zhang, J. (2008). J. Coord. Chem. 61, 1316-1324.]); Uchtman (1972[Uchtman, V. A. (1972). J. Phys. Chem. 76, 1298-1304.]). For a penta­coordinated zinc(II)–zoledronate complex, see: Freire & Vega (2009[Freire, E. & Vega, D. R. (2009). Acta Cryst. E65, m1430-m1431.]). For bond distances and angles in related structures, see: Coiro & Lamba (1989[Coiro, V. M. & Lamba, D. (1989). Acta Cryst. C45, 446-448.]); Vega et al. (1996[Vega, D., Baggio, R. & Garland, M. T. (1996). Acta Cryst. C52, 2198-2201.], 1998[Vega, D., Baggio, R. & Piro, O. (1998). Acta Cryst. C54, 324-327.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H9N2O7P2)2(H2O)2]

  • Mr = 643.57

  • Triclinic, [P \overline 1]

  • a = 7.457 (1) Å

  • b = 8.408 (2) Å

  • c = 9.843 (2) Å

  • α = 105.06 (3)°

  • β = 112.23 (3)°

  • γ = 97.05 (3)°

  • V = 534.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.18 × 0.11 × 0.05 mm

Data collection
  • Rigaku AFC6 diffractometer diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.82, Tmax = 0.92

  • 2426 measured reflections

  • 1990 independent reflections

  • 1236 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 150 reflections intensity decay: <3%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.152

  • S = 1.04

  • 1990 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O11 2.042 (4)
Zn1—O21 2.079 (4)
Zn1—O1W 2.096 (4)
O11—Zn1—O21 90.65 (16)
O11—Zn1—O1W 86.18 (18)
O21—Zn1—O1W 92.63 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯O23i 0.82 1.90 2.676 (6) 159
O12—H12⋯O13ii 0.82 1.79 2.607 (6) 176
O1—H1⋯O23i 0.82 2.28 2.910 (6) 134
O1W—H1WA⋯O12 0.82 2.43 3.078 (6) 137
O1W—H1WB⋯O13iii 0.82 1.94 2.745 (6) 167
N2—H2⋯O21iv 0.86 1.90 2.740 (7) 164
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+2, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+2.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The present work is part of a project directed to the preparation and characterization of coordination complexes obtained by the interaction among metals and organic molecules of relevant pharmacological interest like bisphosphonates. Bisphosphonate compounds, which are characterized by a P—C—P backbone, are analogues of naturally occurring pyrophosphates. As effective inhibitors of bone resoption, bisphosphonates are used in the treatment of various bone diseases and disorders of calcium metabolism, osteolityc tumor bone disease, non tumor induced hypercalcemia, Paget and osteoporosis (Fleisch, 2000; Ross et al., 2004; Smith, 2005; Ralston et al., 1989; Reid et al., 2005; Rauch et al., 2005 and Chesnut et al., 2004). The P—C—P base structure allows the bisphosphonates to bind to many metallic cations in particular divalent metal ions and as a result bisphosphonates may stick bone surfaces in vivo (Fleisch et al., 1968). Third generation bisphosphonates, like zoledronate, are characterized by having a cyclic side chain and belong to the nitrogen containing bisphosphonate group which are the most effective for medical treatment (Green et al., 1994). A large number of metal derivatives of other bisphosphonates, like Etidronate and Pamidronate are known where the bisphosphonate ligand displays a variety of coordination modes (Ferńandez, 2002; Li et al., 2008; Chen et al., 2008; Uchtman, 1972). In contrast, few metal derivatives of Zoledronic acid have been reported in CSD (Allen, 2002). The present compound is isostructural with two Co and Ni complexes (Cao et al., 2007).

So, we present herein the crystal structure of a Zinc-Zoledronate complex: monozinc dizoledronate dihydrate, (I), Zn.2(P2O7N2C5H9).2(H2O). We also synthesized a pentacoordinated complex of zinc (II), (Freire & Vega, 2009). The zoledronate anion exists as a zwitterion with an overall charge of -1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge.

The ZnO6 coordination sphere (Fig. 1) is defined by O11, O21, O1W and and their (1 - x, 1 - y, 1 - z) counterparts generated by the inversion center on Zn1. Zn – O distances range from 2.041 (4) to 2.095 (4) Å, and octahedral angles between 86.2 (2) and 92.7 (2)°. The O11—Zn1—O21 zoledronate bite angle is 90.6 (2)° and the angle between two oxygen atoms of different zoledronates is O11A Zn1 O21 89.4 (2)°.

Each phosphonate has one protonated O atom, the extra electronic charge being shared by the remaining two non protonated O atoms. This fact define two distinct types of P—O bonds, as shown by the mean value in the following values of bond distances and angles: P—OH 1,572 (8), P - O 1.503 (5) Å, O—P—OH 109.45 (13), O—P—O 115.60 (14) °, this measure is in agreement with the results found for related molecules (Coiro et al., 1989; Vega et al., 1996; Vega et al., 1998). The phosphonates groups have slighty "staggered" conformations sight in the P1···P2 direction. When this staggering is observed the non bonded torsion angle O13—P1··· P2—O23 is 4.1 °. The imidazol ring is plane, maximum deviation from the L.S. mean plane is 0.0058 Å for C5. The ring and C2 are not coplanar, the angle determined between the plane of the ring and the bond N1—C2 is 3.2 ° and C2 is 0.0861 Å far from the plane of the ring. The torsion angle C1—C2—N1—C3 is of 104.1 (8) ° and it is possible to describe it like + Anti-Clinal (+ac).

In this compound there are two intramolecular hydrogen bonds O1W—H1WA···. O12 and the one generated by the center of symmetry (Fig. 1). These molecules form a chain by means of hydrogen bonds provided by O22—H22··· O23 (-x + 2,-y + 2,-z + 2) and O1—H1··· O23 (-x + 2,-y + 2,-z + 2) (Fig. 2). This chain joins other neighboring and similar chains by means of the hydrogen bonds O1W—H1WB··· O13 (x - 1, y, z), O12—H12··· O13 (-x + 2,-y + 2,-z + 1), and N2—H2··· O21 (-x + 2,-y + 1,-z + 2) (see Table 2), determining a three-dimensional net. In all this hydrogen-bonding network the presence of two homodromic rings (Bernstein et al., 1995) is observed: P2—O22—H22··· O23 (-x + 2,-y + 2,-z + 2) ···H1—O1—C1—P2 (R21(7)), P1—O12—H12··· O13—P1—O12—H12 (-x + 2,-y + 2,-z + 1)··· O13—P1 (R22(8)).

Related literature top

For general background to bisphosphonates, see: Fleisch et al. (1968); Green et al. (1994); Fleisch (2000); Ross et al. (2004); Smith (2005); Ralston et al. (1989); Reid et al. (2005); Rauch et al. (2005); Chesnut et al. (2004). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007, 2008). For metal complexes of other bisphosphonates (Etidronate and Pamidronate), see: Fernández et al. (2002); Li et al. (2008); Chen et al. (2008); Uchtman (1972). For a pentacoordinated zinc(II)–zoledronate complex, see: Freire & Vega (2009). For bond distances and angles in related structures, see: Coiro & Lamba (1989); Vega et al. (1996, 1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Zoledronic Acid was obtained from Gador S. A. laboratory. The present compound was obtained as subproduct in a Zoledronate recrystallization process.

Refinement top

The H atoms attached to O were found in a difference Fourier map, further idealized (O—H: 0.82 Å - 0.90 Å) and finally allowed to ride. Those attached to C and N were placed at calculated positions (C—H: 0.93 Å; C—H2: 0.97 Å; N—H2: 0.90 Å) and allowed to ride. Displacement factors were taken as U(H)isot = x.U(host), x: 1.2 (C—H); 1.5 (C—H2, N—H2, O—H).

Structure description top

The present work is part of a project directed to the preparation and characterization of coordination complexes obtained by the interaction among metals and organic molecules of relevant pharmacological interest like bisphosphonates. Bisphosphonate compounds, which are characterized by a P—C—P backbone, are analogues of naturally occurring pyrophosphates. As effective inhibitors of bone resoption, bisphosphonates are used in the treatment of various bone diseases and disorders of calcium metabolism, osteolityc tumor bone disease, non tumor induced hypercalcemia, Paget and osteoporosis (Fleisch, 2000; Ross et al., 2004; Smith, 2005; Ralston et al., 1989; Reid et al., 2005; Rauch et al., 2005 and Chesnut et al., 2004). The P—C—P base structure allows the bisphosphonates to bind to many metallic cations in particular divalent metal ions and as a result bisphosphonates may stick bone surfaces in vivo (Fleisch et al., 1968). Third generation bisphosphonates, like zoledronate, are characterized by having a cyclic side chain and belong to the nitrogen containing bisphosphonate group which are the most effective for medical treatment (Green et al., 1994). A large number of metal derivatives of other bisphosphonates, like Etidronate and Pamidronate are known where the bisphosphonate ligand displays a variety of coordination modes (Ferńandez, 2002; Li et al., 2008; Chen et al., 2008; Uchtman, 1972). In contrast, few metal derivatives of Zoledronic acid have been reported in CSD (Allen, 2002). The present compound is isostructural with two Co and Ni complexes (Cao et al., 2007).

So, we present herein the crystal structure of a Zinc-Zoledronate complex: monozinc dizoledronate dihydrate, (I), Zn.2(P2O7N2C5H9).2(H2O). We also synthesized a pentacoordinated complex of zinc (II), (Freire & Vega, 2009). The zoledronate anion exists as a zwitterion with an overall charge of -1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge.

The ZnO6 coordination sphere (Fig. 1) is defined by O11, O21, O1W and and their (1 - x, 1 - y, 1 - z) counterparts generated by the inversion center on Zn1. Zn – O distances range from 2.041 (4) to 2.095 (4) Å, and octahedral angles between 86.2 (2) and 92.7 (2)°. The O11—Zn1—O21 zoledronate bite angle is 90.6 (2)° and the angle between two oxygen atoms of different zoledronates is O11A Zn1 O21 89.4 (2)°.

Each phosphonate has one protonated O atom, the extra electronic charge being shared by the remaining two non protonated O atoms. This fact define two distinct types of P—O bonds, as shown by the mean value in the following values of bond distances and angles: P—OH 1,572 (8), P - O 1.503 (5) Å, O—P—OH 109.45 (13), O—P—O 115.60 (14) °, this measure is in agreement with the results found for related molecules (Coiro et al., 1989; Vega et al., 1996; Vega et al., 1998). The phosphonates groups have slighty "staggered" conformations sight in the P1···P2 direction. When this staggering is observed the non bonded torsion angle O13—P1··· P2—O23 is 4.1 °. The imidazol ring is plane, maximum deviation from the L.S. mean plane is 0.0058 Å for C5. The ring and C2 are not coplanar, the angle determined between the plane of the ring and the bond N1—C2 is 3.2 ° and C2 is 0.0861 Å far from the plane of the ring. The torsion angle C1—C2—N1—C3 is of 104.1 (8) ° and it is possible to describe it like + Anti-Clinal (+ac).

In this compound there are two intramolecular hydrogen bonds O1W—H1WA···. O12 and the one generated by the center of symmetry (Fig. 1). These molecules form a chain by means of hydrogen bonds provided by O22—H22··· O23 (-x + 2,-y + 2,-z + 2) and O1—H1··· O23 (-x + 2,-y + 2,-z + 2) (Fig. 2). This chain joins other neighboring and similar chains by means of the hydrogen bonds O1W—H1WB··· O13 (x - 1, y, z), O12—H12··· O13 (-x + 2,-y + 2,-z + 1), and N2—H2··· O21 (-x + 2,-y + 1,-z + 2) (see Table 2), determining a three-dimensional net. In all this hydrogen-bonding network the presence of two homodromic rings (Bernstein et al., 1995) is observed: P2—O22—H22··· O23 (-x + 2,-y + 2,-z + 2) ···H1—O1—C1—P2 (R21(7)), P1—O12—H12··· O13—P1—O12—H12 (-x + 2,-y + 2,-z + 1)··· O13—P1 (R22(8)).

For general background to bisphosphonates, see: Fleisch et al. (1968); Green et al. (1994); Fleisch (2000); Ross et al. (2004); Smith (2005); Ralston et al. (1989); Reid et al. (2005); Rauch et al. (2005); Chesnut et al. (2004). For structures of transition metal (Ni, Co and Cu) complexes with the zoledronate anion, see: Cao et al. (2007, 2008). For metal complexes of other bisphosphonates (Etidronate and Pamidronate), see: Fernández et al. (2002); Li et al. (2008); Chen et al. (2008); Uchtman (1972). For a pentacoordinated zinc(II)–zoledronate complex, see: Freire & Vega (2009). For bond distances and angles in related structures, see: Coiro & Lamba (1989); Vega et al. (1996, 1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); data reduction: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular view of (I), showing the labeling scheme used. Hydrogen bonding is shown in dashed lines.
[Figure 2] Fig. 2. : View of the intra chain H-bonds in (I).
Diaquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1'-ethylidenediphophonato- κ2O,O']zinc(II) top
Crystal data top
[Zn(C5H9N2O7P2)2(H2O)2]Z = 1
Mr = 643.57F(000) = 328
Triclinic, P1Dx = 1.999 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.457 (1) ÅCell parameters from 42 reflections
b = 8.408 (2) Åθ = 8–18°
c = 9.843 (2) ŵ = 1.54 mm1
α = 105.06 (3)°T = 293 K
β = 112.23 (3)°Prism, colorless
γ = 97.05 (3)°0.18 × 0.11 × 0.05 mm
V = 534.5 (2) Å3
Data collection top
Rigaku AFC6 Difractometer
diffractometer
1236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.5°, θmin = 2.4°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.82, Tmax = 0.92l = 1111
2426 measured reflections3 standard reflections every 150 reflections
1990 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
1990 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Zn(C5H9N2O7P2)2(H2O)2]γ = 97.05 (3)°
Mr = 643.57V = 534.5 (2) Å3
Triclinic, P1Z = 1
a = 7.457 (1) ÅMo Kα radiation
b = 8.408 (2) ŵ = 1.54 mm1
c = 9.843 (2) ÅT = 293 K
α = 105.06 (3)°0.18 × 0.11 × 0.05 mm
β = 112.23 (3)°
Data collection top
Rigaku AFC6 Difractometer
diffractometer
1236 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.82, Tmax = 0.923 standard reflections every 150 reflections
2426 measured reflections intensity decay: <3%
1990 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.04Δρmax = 0.84 e Å3
1990 reflectionsΔρmin = 0.94 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0266 (4)
P10.8731 (2)0.77240 (19)0.52403 (17)0.0172 (4)
P20.8422 (2)0.77671 (19)0.82873 (17)0.0186 (4)
O110.7109 (6)0.6106 (5)0.4453 (4)0.0211 (9)
O120.7749 (6)0.9268 (5)0.5228 (5)0.0242 (10)
H120.84031.01490.52640.036*
O131.0242 (6)0.7849 (5)0.4574 (5)0.0217 (9)
O210.6875 (6)0.6116 (5)0.7361 (5)0.0253 (10)
O220.7342 (6)0.9253 (5)0.8129 (5)0.0254 (10)
H220.80211.02160.86910.038*
O230.9654 (7)0.8002 (5)0.9969 (5)0.0249 (10)
O11.1578 (6)0.9545 (5)0.8097 (5)0.0261 (10)
H11.10191.03260.81400.039*
N11.2533 (8)0.6520 (6)0.8864 (6)0.0224 (11)
N21.3599 (9)0.5904 (8)1.0957 (7)0.0372 (15)
H21.36780.53881.16180.045*
C11.0088 (9)0.7937 (7)0.7310 (6)0.0183 (13)
C21.1243 (10)0.6535 (8)0.7302 (7)0.0271 (15)
H2A1.02880.54390.67190.032*
H2B1.20670.66800.67590.032*
C31.2149 (10)0.5438 (9)0.9533 (8)0.0315 (16)
H31.10520.45090.90840.038*
C51.4298 (10)0.7711 (8)0.9896 (8)0.0319 (16)
H51.49290.86110.97220.038*
C41.4926 (12)0.7303 (10)1.1212 (8)0.042 (2)
H41.60680.78851.21270.051*
O1W0.3851 (6)0.7142 (6)0.4904 (6)0.0349 (12)
H1WA0.46450.80740.52730.052*
H1WB0.27030.72450.46680.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0278 (7)0.0212 (6)0.0247 (6)0.0057 (5)0.0079 (5)0.0030 (5)
P10.0177 (8)0.0145 (8)0.0173 (8)0.0054 (6)0.0056 (7)0.0043 (6)
P20.0194 (8)0.0157 (8)0.0150 (8)0.0029 (7)0.0048 (7)0.0008 (6)
O110.020 (2)0.024 (2)0.014 (2)0.0010 (19)0.0059 (18)0.0015 (17)
O120.026 (2)0.020 (2)0.035 (3)0.0118 (19)0.016 (2)0.015 (2)
O130.022 (2)0.019 (2)0.025 (2)0.0082 (18)0.0116 (19)0.0051 (18)
O210.029 (3)0.021 (2)0.017 (2)0.000 (2)0.006 (2)0.0027 (18)
O220.028 (2)0.020 (2)0.024 (2)0.0100 (19)0.009 (2)0.0019 (19)
O230.035 (3)0.021 (2)0.015 (2)0.005 (2)0.007 (2)0.0037 (18)
O10.021 (2)0.018 (2)0.030 (2)0.0008 (19)0.007 (2)0.0003 (19)
N10.023 (3)0.022 (3)0.021 (3)0.010 (2)0.006 (2)0.008 (2)
N20.052 (4)0.039 (4)0.032 (3)0.018 (3)0.020 (3)0.025 (3)
C10.023 (3)0.017 (3)0.017 (3)0.010 (3)0.007 (3)0.007 (2)
C20.029 (4)0.023 (3)0.019 (3)0.010 (3)0.002 (3)0.004 (3)
C30.027 (4)0.031 (4)0.044 (4)0.013 (3)0.016 (3)0.022 (3)
C50.027 (4)0.026 (4)0.037 (4)0.008 (3)0.007 (3)0.012 (3)
C40.048 (5)0.042 (5)0.025 (4)0.020 (4)0.000 (3)0.013 (3)
O1W0.018 (2)0.022 (2)0.059 (3)0.007 (2)0.013 (2)0.011 (2)
Geometric parameters (Å, º) top
Zn1—O11i2.042 (4)O1—H10.8201
Zn1—O112.042 (4)N1—C31.317 (8)
Zn1—O212.079 (4)N1—C51.379 (8)
Zn1—O21i2.079 (4)N1—C21.478 (7)
Zn1—O1Wi2.096 (4)N2—C31.323 (9)
Zn1—O1W2.096 (4)N2—C41.341 (9)
P1—O111.501 (4)N2—H20.8600
P1—O131.509 (4)C1—C21.543 (8)
P1—O121.567 (4)C2—H2A0.9700
P1—C11.847 (6)C2—H2B0.9700
P2—O211.498 (4)C3—H30.9300
P2—O231.502 (4)C5—C41.352 (9)
P2—O221.578 (4)C5—H50.9300
P2—C11.850 (6)C4—H40.9300
O12—H120.8200O1W—H1WA0.8200
O22—H220.8200O1W—H1WB0.8200
O1—C11.448 (7)
O11i—Zn1—O11180.0C1—O1—H1109.4
O11i—Zn1—O2189.35 (16)C3—N1—C5108.8 (6)
O11—Zn1—O2190.65 (16)C3—N1—C2126.2 (6)
O11i—Zn1—O21i90.65 (16)C5—N1—C2125.0 (5)
O11—Zn1—O21i89.35 (16)C3—N2—C4109.7 (6)
O21—Zn1—O21i180.0C3—N2—H2125.1
O11i—Zn1—O1Wi86.18 (18)C4—N2—H2125.1
O11—Zn1—O1Wi93.82 (18)O1—C1—C2106.5 (5)
O21—Zn1—O1Wi87.37 (18)O1—C1—P1108.5 (4)
O21i—Zn1—O1Wi92.63 (18)C2—C1—P1105.0 (4)
O11i—Zn1—O1W93.82 (18)O1—C1—P2110.8 (4)
O11—Zn1—O1W86.18 (18)C2—C1—P2112.6 (4)
O21—Zn1—O1W92.63 (18)P1—C1—P2113.1 (3)
O21i—Zn1—O1W87.37 (18)N1—C2—C1114.5 (5)
O1Wi—Zn1—O1W180.000 (1)N1—C2—H2A108.6
O11—P1—O13115.5 (2)C1—C2—H2A108.6
O11—P1—O12108.9 (2)N1—C2—H2B108.6
O13—P1—O12109.9 (2)C1—C2—H2B108.6
O11—P1—C1108.2 (3)H2A—C2—H2B107.6
O13—P1—C1107.9 (3)N1—C3—N2108.0 (6)
O12—P1—C1106.0 (3)N1—C3—H3126.0
O21—P2—O23115.7 (2)N2—C3—H3126.0
O21—P2—O22108.0 (3)C4—C5—N1106.1 (6)
O23—P2—O22110.9 (2)C4—C5—H5127.0
O21—P2—C1107.4 (3)N1—C5—H5127.0
O23—P2—C1109.4 (3)N2—C4—C5107.4 (6)
O22—P2—C1104.9 (3)N2—C4—H4126.3
P1—O11—Zn1134.2 (2)C5—C4—H4126.3
P1—O12—H12117.6Zn1—O1W—H1WA118.1
P2—O21—Zn1132.6 (3)Zn1—O1W—H1WB130.4
P2—O22—H22116.2H1WA—O1W—H1WB110.8
O13—P1—O11—Zn1167.0 (3)O12—P1—C1—P263.4 (3)
O12—P1—O11—Zn168.8 (4)O21—P2—C1—O1177.3 (4)
C1—P1—O11—Zn146.0 (4)O23—P2—C1—O156.4 (4)
O21—Zn1—O11—P130.0 (4)O22—P2—C1—O162.6 (4)
O21i—Zn1—O11—P1150.0 (4)O21—P2—C1—C263.6 (5)
O1Wi—Zn1—O11—P1117.4 (4)O23—P2—C1—C262.7 (5)
O1W—Zn1—O11—P162.6 (4)O22—P2—C1—C2178.3 (4)
O23—P2—O21—Zn1172.3 (3)O21—P2—C1—P155.2 (4)
O22—P2—O21—Zn162.8 (4)O23—P2—C1—P1178.5 (3)
C1—P2—O21—Zn149.8 (4)O22—P2—C1—P159.5 (3)
O11i—Zn1—O21—P2147.8 (4)C3—N1—C2—C1104.1 (7)
O11—Zn1—O21—P232.2 (4)C5—N1—C2—C172.1 (8)
O1Wi—Zn1—O21—P2126.0 (4)O1—C1—C2—N162.2 (6)
O1W—Zn1—O21—P254.0 (4)P1—C1—C2—N1177.1 (4)
O11—P1—C1—O1176.6 (3)P2—C1—C2—N159.4 (6)
O13—P1—C1—O157.8 (4)C5—N1—C3—N20.4 (8)
O12—P1—C1—O159.9 (4)C2—N1—C3—N2176.3 (6)
O11—P1—C1—C269.9 (4)C4—N2—C3—N10.3 (8)
O13—P1—C1—C255.8 (4)C3—N1—C5—C40.9 (8)
O12—P1—C1—C2173.4 (4)C2—N1—C5—C4175.8 (6)
O11—P1—C1—P253.3 (4)C3—N2—C4—C50.9 (9)
O13—P1—C1—P2178.9 (3)N1—C5—C4—N21.1 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O23ii0.821.902.676 (6)159
O12—H12···O13iii0.821.792.607 (6)176
O1—H1···O23ii0.822.282.910 (6)134
O1W—H1WA···O120.822.433.078 (6)137
O1W—H1WB···O13iv0.821.942.745 (6)167
N2—H2···O21v0.861.902.740 (7)164
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+2, y+2, z+1; (iv) x1, y, z; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C5H9N2O7P2)2(H2O)2]
Mr643.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.457 (1), 8.408 (2), 9.843 (2)
α, β, γ (°)105.06 (3), 112.23 (3), 97.05 (3)
V3)534.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.18 × 0.11 × 0.05
Data collection
DiffractometerRigaku AFC6 Difractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.82, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
2426, 1990, 1236
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.04
No. of reflections1990
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.94

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Zn1—O112.042 (4)Zn1—O1W2.096 (4)
Zn1—O212.079 (4)
O11—Zn1—O2190.65 (16)O21—Zn1—O1W92.63 (18)
O11—Zn1—O1W86.18 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O23i0.821.902.676 (6)158.5
O12—H12···O13ii0.821.792.607 (6)176.0
O1—H1···O23i0.822.282.910 (6)133.7
O1W—H1WA···O120.822.433.078 (6)136.8
O1W—H1WB···O13iii0.821.942.745 (6)167.3
N2—H2···O21iv0.861.902.740 (7)163.8
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+1, z+2.
 

Footnotes

Member of Consejo Nacional de Ciencia y Técnica, Conicet.

Acknowledgements

We acknowledge PICT 25409, the Spanish Research Council (CSIC) for providing us with a free-of-charge licence to use the CSD system (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and Professor Judith Howard for the donation of a Rigaku AFC6S four-circle diffractometer. EF is a member of the research staff of Conicet. The authors are grateful to Laboratorios Gador for providing the zoledronic acid.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCao, D.-K., Li, Y.-Z. & Zheng, L.-M. (2007). Inorg. Chem. 46, 7571–7578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCao, D.-K., Xie, X.-J., Li, Y.-Z. & Zheng, L.-M. (2008). Dalton Trans. pp. 5008–5015.  Web of Science CSD CrossRef Google Scholar
First citationChen, H., Sun, Z., Dong, D., Meng, L., Zheng, X., Zhu, Y., Zha, Y. & Zhang, J. (2008). J. Coord. Chem. 61, 1316–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationChesnut, C. H. III, Skag, A., Christiansen, C., Recker, R., Stakkestad, J. A., Hoiseth, A., Felsenberg, D., Huss, H., Gilbride, J., Schimmer, R. C. & Delmas, P. D. (2004). J. Bone Miner. Res. 19, 1241–1249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoiro, V. M. & Lamba, D. (1989). Acta Cryst. C45, 446–448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFernández, D., Vega, D. & Goeta, A. (2002). Acta Cryst. C58, m494–m497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFleisch, H. (2000). Bisphosphonates in Bone Disease. From the Laboratory to the Patient, 4th ed. New York: Academic Press.  Google Scholar
First citationFleisch, H., Russell, R. G. G., Bisaz, S., Termine, J. D. & Posner, A. S. (1968). Calcif. Tissue Res. 2, 49–59.  CrossRef CAS Web of Science Google Scholar
First citationFreire, E. & Vega, D. R. (2009). Acta Cryst. E65, m1430–m1431.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGreen, J. R., Mueller, K. & Jaeggi, K. A. (1994). J. Bone Miner. Res. 9, 745–751.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, G., Fan, Y., Zhang, T., Ge, T. & Hou, H. (2008). J. Coord. Chem. 61, 540–549.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRalston, S. H., Patel, U., Fraser, W. D., Gallacher, S. J., Dryburgh, F. J., Cowan, R. A. & Boyle, I. T. (1989). Lancet, 334, 1180–1182.  CrossRef Google Scholar
First citationRauch, F. & Glorieux, F. H. (2005). Am. J. Med. Genet. C. Semin. Med. Genet. 139, 31–37.  CrossRef Google Scholar
First citationReid, I. R., Miller, P., Lyles, K., Fraser, W., Brown, J. P., Saidi, Y., Mesenbrink, P., Su, G., Pak, J., Zelenakas, K., Luchi, M., Richardson, P. & Hosking, D. (2005). N. Engl. J. Med. 353, 898–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoss, J. R., Saunders, Y., Edmonds, P. M., Wonderling, D., Normand, C. & Broadley, K. (2004). Health Technol. Assess. 8, 1–176.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, M. R. (2005). Cancer Treat. Rev. 31 (Suppl 3), 19–25.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchtman, V. A. (1972). J. Phys. Chem. 76, 1298–1304.  CSD CrossRef CAS Web of Science Google Scholar
First citationVega, D., Baggio, R. & Garland, M. T. (1996). Acta Cryst. C52, 2198–2201.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVega, D., Baggio, R. & Piro, O. (1998). Acta Cryst. C54, 324–327.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds