organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(2-nitro­phen­yl)disulfane

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao Shandong, 266555, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 15 October 2009; accepted 18 October 2009; online 23 October 2009)

In the title compound, C12H8N2O4S2, the dihedral angle between the two benzene rings is 67.82 (9)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For background to disulfides, see: Kitamura et al. (1991[Kitamura, T., Nutsyuki, J. & Taniguch, H. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1607-1608.]); Palmer et al. (1995[Palmer, B. D., Rewcastle, G. W., Thompson, A. M., Boyd, M., Showalter, H. D. H., Sercel, A. D., Fry, D. W., Kraker, A. J. & Denny, W. A. (1995). J. Med. Chem. 38, 58-67.]); Ramadas & Srinivasan (1995[Ramadas, K. & Srinivasan, N. (1995). Synth. Commun. 25, 227-234.]). For related structures, see: Glidewell et al. (2000[Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893-905.]);

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O4S2

  • Mr = 308.32

  • Monoclinic, P 21 /c

  • a = 8.3762 (9) Å

  • b = 21.028 (2) Å

  • c = 8.1011 (10) Å

  • β = 111.768 (1)°

  • V = 1325.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.44 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.838, Tmax = 0.948

  • 6598 measured reflections

  • 2317 independent reflections

  • 1507 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 0.92

  • 2317 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.53 3.231 (4) 133
C11—H11⋯O3ii 0.93 2.54 3.293 (4) 138
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Disulfides form an important class of compounds with respect to their synthetic and industrial applications and biological occurrence (Palmer, et al., 1995). Their syntheses remain an active area of interest in organic chemistry (Kitamura, et al., 1991). Disulfides are used as sulphenylating agents for enolates and other anions industrially; they find a wide range of applications as vulcanizing agents for rubber and elastomers. Several classes of naturally occurring compounds contain disulfides including gliotoxin and lipoic acid (Ramadas, et al., 1995).

In the title compound (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Glidewell, et al., 2000).

In the crystal structure, the S—S bond length in the molecule is 2.0584 (12)° (S1—S2), showing the single bond character. Meanwhile, the dihedral angle between the benzene rings (C1-C6) and (C7-C12) is 67.82 (9)°, indicating that the two aromatic ring planes are not coplanar.

Moreover, the crystal supramolecular structure was built from the connections of intermolecular weak C-H···O hydrogen bonds interactions (Fig. 2).

Related literature top

For background to disulfides, see: Kitamura et al. (1991); Palmer et al. (1995); Ramadas & Srinivasan (1995). For related structures, see: Glidewell et al. (2000);

Experimental top

o-Nitrochlorobenzene (10.0 mmol), 20 ml ethanol and sodium disulfide (12.0 mmol) were mixed in 50 ml flash. After refluxing 6 h, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C12H8N2O4S2: C 46.74, H 2.62, N 9.09%; found: C 46.65, H 2.66, N 9.14%.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Disulfides form an important class of compounds with respect to their synthetic and industrial applications and biological occurrence (Palmer, et al., 1995). Their syntheses remain an active area of interest in organic chemistry (Kitamura, et al., 1991). Disulfides are used as sulphenylating agents for enolates and other anions industrially; they find a wide range of applications as vulcanizing agents for rubber and elastomers. Several classes of naturally occurring compounds contain disulfides including gliotoxin and lipoic acid (Ramadas, et al., 1995).

In the title compound (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Glidewell, et al., 2000).

In the crystal structure, the S—S bond length in the molecule is 2.0584 (12)° (S1—S2), showing the single bond character. Meanwhile, the dihedral angle between the benzene rings (C1-C6) and (C7-C12) is 67.82 (9)°, indicating that the two aromatic ring planes are not coplanar.

Moreover, the crystal supramolecular structure was built from the connections of intermolecular weak C-H···O hydrogen bonds interactions (Fig. 2).

For background to disulfides, see: Kitamura et al. (1991); Palmer et al. (1995); Ramadas & Srinivasan (1995). For related structures, see: Glidewell et al. (2000);

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing view of (I) showing the weak C-H..O hydrogen bonds with dashed lines. Symmetry codes: (a) -x, -y+1, -z; (b) x, y, z+1.
1,2-Bis(2-nitrophenyl)disulfane top
Crystal data top
C12H8N2O4S2F(000) = 632
Mr = 308.32Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1601 reflections
a = 8.3762 (9) Åθ = 2.6–24.7°
b = 21.028 (2) ŵ = 0.42 mm1
c = 8.1011 (10) ÅT = 298 K
β = 111.768 (1)°Needle, yellow
V = 1325.1 (3) Å30.44 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2317 independent reflections
Radiation source: fine-focus sealed tube1507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.838, Tmax = 0.948k = 2520
6598 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H8N2O4S2V = 1325.1 (3) Å3
Mr = 308.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3762 (9) ŵ = 0.42 mm1
b = 21.028 (2) ÅT = 298 K
c = 8.1011 (10) Å0.44 × 0.18 × 0.13 mm
β = 111.768 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1507 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.948Rint = 0.045
6598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.92Δρmax = 0.32 e Å3
2317 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09105 (9)0.26719 (4)0.07988 (11)0.0597 (3)
S20.01195 (10)0.35209 (4)0.05162 (11)0.0621 (3)
N10.3638 (4)0.16520 (13)0.2840 (4)0.0692 (8)
N20.2348 (3)0.46767 (13)0.1758 (4)0.0619 (7)
O10.2185 (3)0.15373 (11)0.1813 (4)0.0830 (7)
O20.4683 (4)0.12365 (13)0.3492 (5)0.1297 (13)
O30.1569 (3)0.44411 (12)0.2595 (3)0.0852 (7)
O40.3526 (4)0.50494 (12)0.2385 (4)0.0995 (9)
C10.3037 (3)0.28110 (13)0.2387 (4)0.0473 (7)
C20.4143 (4)0.23134 (13)0.3261 (4)0.0531 (8)
C30.5754 (4)0.24239 (16)0.4559 (5)0.0685 (9)
H30.64540.20840.51240.082*
C40.6305 (4)0.30339 (18)0.5001 (5)0.0779 (10)
H40.73820.31120.58690.093*
C50.5255 (4)0.35347 (16)0.4151 (5)0.0719 (10)
H50.56310.39500.44480.086*
C60.3655 (4)0.34241 (14)0.2866 (4)0.0594 (8)
H60.29720.37680.23050.071*
C70.0762 (3)0.39748 (13)0.0814 (4)0.0485 (7)
C80.1831 (3)0.44971 (13)0.0136 (4)0.0494 (7)
C90.2478 (4)0.48675 (15)0.1161 (5)0.0633 (9)
H90.32000.52090.06600.076*
C100.2036 (4)0.47214 (17)0.2937 (5)0.0714 (10)
H100.24420.49690.36490.086*
C110.0996 (4)0.42093 (16)0.3642 (4)0.0671 (9)
H110.06990.41130.48390.081*
C120.0371 (3)0.38288 (15)0.2607 (4)0.0550 (8)
H120.03070.34770.31090.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0511 (4)0.0572 (5)0.0614 (6)0.0011 (4)0.0099 (4)0.0114 (4)
S20.0619 (5)0.0762 (6)0.0455 (5)0.0124 (4)0.0167 (4)0.0020 (4)
N10.0631 (18)0.0618 (18)0.083 (2)0.0056 (16)0.0281 (17)0.0059 (16)
N20.0582 (16)0.0521 (17)0.064 (2)0.0038 (13)0.0096 (15)0.0000 (15)
O10.0839 (18)0.0626 (16)0.093 (2)0.0072 (13)0.0213 (16)0.0079 (13)
O20.097 (2)0.0610 (17)0.201 (4)0.0235 (16)0.020 (2)0.026 (2)
O30.0949 (18)0.106 (2)0.0536 (15)0.0135 (16)0.0258 (14)0.0114 (14)
O40.111 (2)0.0818 (18)0.086 (2)0.0278 (17)0.0132 (16)0.0264 (15)
C10.0420 (15)0.0549 (18)0.0471 (18)0.0003 (14)0.0192 (13)0.0036 (14)
C20.0537 (17)0.0514 (18)0.059 (2)0.0004 (14)0.0272 (16)0.0023 (15)
C30.0526 (18)0.075 (2)0.071 (2)0.0103 (17)0.0154 (17)0.0117 (19)
C40.0493 (19)0.087 (3)0.082 (3)0.0052 (19)0.0056 (18)0.003 (2)
C50.0541 (19)0.068 (2)0.084 (3)0.0084 (18)0.0146 (18)0.009 (2)
C60.0504 (17)0.0541 (19)0.071 (2)0.0010 (15)0.0194 (16)0.0010 (16)
C70.0401 (14)0.0565 (18)0.0460 (18)0.0034 (13)0.0126 (13)0.0048 (14)
C80.0443 (15)0.0472 (17)0.0504 (19)0.0073 (13)0.0103 (14)0.0015 (14)
C90.0589 (19)0.056 (2)0.072 (3)0.0018 (15)0.0210 (18)0.0066 (17)
C100.072 (2)0.075 (2)0.073 (3)0.0013 (19)0.034 (2)0.021 (2)
C110.066 (2)0.085 (2)0.053 (2)0.0054 (19)0.0263 (17)0.0023 (18)
C120.0516 (17)0.066 (2)0.0468 (19)0.0048 (15)0.0179 (15)0.0018 (15)
Geometric parameters (Å, º) top
S1—C11.793 (3)C4—H40.9300
S1—S22.0584 (12)C5—C61.378 (4)
S2—C71.791 (3)C5—H50.9300
N1—O21.210 (3)C6—H60.9300
N1—O11.217 (3)C7—C81.395 (4)
N1—C21.457 (4)C7—C121.399 (4)
N2—O31.208 (3)C8—C91.388 (4)
N2—O41.214 (3)C9—C101.380 (5)
N2—C81.480 (4)C9—H90.9300
C1—C61.390 (4)C10—C111.370 (5)
C1—C21.403 (4)C10—H100.9300
C2—C31.389 (4)C11—C121.394 (4)
C3—C41.365 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.381 (4)
C1—S1—S2105.87 (10)C4—C5—H5119.7
C7—S2—S1106.03 (11)C5—C6—C1121.6 (3)
O2—N1—O1122.2 (3)C5—C6—H6119.2
O2—N1—C2119.1 (3)C1—C6—H6119.2
O1—N1—C2118.6 (3)C8—C7—C12116.8 (3)
O3—N2—O4123.7 (3)C8—C7—S2122.0 (2)
O3—N2—C8117.7 (3)C12—C7—S2121.2 (2)
O4—N2—C8118.6 (3)C9—C8—C7122.8 (3)
C6—C1—C2116.3 (3)C9—C8—N2116.6 (3)
C6—C1—S1121.3 (2)C7—C8—N2120.5 (3)
C2—C1—S1122.3 (2)C10—C9—C8119.0 (3)
C3—C2—C1122.1 (3)C10—C9—H9120.5
C3—C2—N1116.9 (3)C8—C9—H9120.5
C1—C2—N1120.9 (3)C11—C10—C9119.5 (3)
C4—C3—C2119.7 (3)C11—C10—H10120.2
C4—C3—H3120.2C9—C10—H10120.2
C2—C3—H3120.2C10—C11—C12121.6 (3)
C3—C4—C5119.6 (3)C10—C11—H11119.2
C3—C4—H4120.2C12—C11—H11119.2
C5—C4—H4120.2C11—C12—C7120.2 (3)
C6—C5—C4120.6 (3)C11—C12—H12119.9
C6—C5—H5119.7C7—C12—H12119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.533.231 (4)133
C11—H11···O3ii0.932.543.293 (4)138
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H8N2O4S2
Mr308.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3762 (9), 21.028 (2), 8.1011 (10)
β (°) 111.768 (1)
V3)1325.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.44 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 2317, 1507
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 0.92
No. of reflections2317
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.533.231 (4)133
C11—H11···O3ii0.932.543.293 (4)138
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge financial support by the Foundation of Binzhou University (No. BZXYLG200609).

References

First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893–905.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKitamura, T., Nutsyuki, J. & Taniguch, H. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1607–1608.  CrossRef Web of Science Google Scholar
First citationPalmer, B. D., Rewcastle, G. W., Thompson, A. M., Boyd, M., Showalter, H. D. H., Sercel, A. D., Fry, D. W., Kraker, A. J. & Denny, W. A. (1995). J. Med. Chem. 38, 58–67.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRamadas, K. & Srinivasan, N. (1995). Synth. Commun. 25, 227–234.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds