

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tripraseodymium pentairon(III) dodecaoxide, Pr₃Fe₅O₁₂: a synchrotron radiation study

Takashi Komori,^a* Terutoshi Sakakura,^a Yasuyuki Takenaka,^b Kiyoaki Tanaka^a and Takashi Okuda^a

^aGraduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and ^bHokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan Correspondence e-mail: tkomori@katch.ne.jp

Received 14 September 2009; accepted 21 September 2009

Key indicators: single-crystal synchrotron study; T = 298 K; mean σ (Pr–Fe) = 0.000 Å; R factor = 0.019; R factor = 0.021; data-to-parameter ratio = 550.1.

The title compound, pentairon tripraseodymium dodecaoxide (PrIG), has an iron garnet structure. There are two Fe site symmetries. One of the Fe atoms is coordinated by six O atoms, forming a slightly distorted octahedron, and has $\overline{3}$ site symmetry. The other Fe atom is coordinated by four O atoms, forming a slightly distorted tetrahedron, and has $\overline{4}$ site symmetry. FeO₆ octahedra and FeO₄ tetrahedra are linked together by corners. The Pr atom is coordinated by eight O atoms, forming a distorted dodecahedron, and has 222 site symmetry. The O atoms occupy the general positions.

Related literature

The title compound is isotypic with the $Ia\overline{3}d$ form of $Y_3Fe_5O_{12}$ (YIG). For related structures, see: Bonnet *et al.* (1975). For details of the crystal growth from low-temperature liquid-phase epitaxy, see: Fratello *et al.* (1986). For the extinction correction, see: Becker & Coppens (1975). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka *et al.* (2008).

Experimental

Crystal data

 $Pr_3Fe_5O_{12}$ $M_r = 893.98$ Cubic, $Ia\overline{3}d$ a = 12.6302 (3) Å V = 2014.79 (8) Å³ Z = 8 Synchrotron radiation $\lambda = 0.67171 \text{ Å}$ $\mu = 17.41 \text{ mm}^{-1}$ T = 298 K 0.035 mm (radius)

Data collection

Rigaku AFC four-circle diffractometer
Absorption correction: for a sphere [transmission coefficients for spheres tabulated in *International Tables C* (1992), Table 6.3.3.3, were interpolated with Lagran-

ge's method (four-point interpolation; Yamauchi et al., 1965)] $T_{\rm min}=0.413,\,T_{\rm max}=0.441$ 9351 measured reflections 1728 independent reflections 1728 reflections with $F>3\sigma(F)$ $R_{\rm int}=0.016$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.021$ S = 1.069351 reflections 17 parameters $\Delta \rho_{\rm max} = 2.52 \text{ e Å}^{-3}$ $\Delta \rho_{\rm min} = -3.16 \text{ e Å}^{-3}$

Table 1Selected geometric parameters (Å, °).

Pr1-O1 Pr1-O1 ⁱ	2.42410 (10) 2.54010 (10)	Fe1-O1 Fe2-O1 ⁱⁱ	2.03220 (10) 1.87450 (10)
O1-Fe1-O1 ⁱ O1 ⁱⁱ -Fe2-O1 ⁱⁱⁱ	85.87 (1) 114.39 (1)	O1 ⁱⁱ -Fe2-O1 ^{iv}	100.02 (1)
Symmetry codes: $x + \frac{1}{2}, -y, z$.	(i) z, x, y ; (ii) $x + \frac{1}{2}$	$y, -z + \frac{1}{2};$ (iii) $-x + \frac{1}{4}$	$z - \frac{1}{4}, y + \frac{1}{4};$ (iv)

Data collection: *AFC-5*, specially designed for PF-BL14A (Rigaku, 1984) and *IUANGLE* (Tanaka *et al.*, 1994); cell refinement: *RSLC-3 UNICS* system (Sakurai & Kobayashi, 1979); data reduction: *RDEDIT* (Tanaka, 2008); program(s) used to solve structure: *QNTAO* (Tanaka *et al.*, 2008); program(s) used to refine structure: *QNTAO*; molecular graphics: *ATOMS for Windows* (Dowty, 2000); software used to prepare material for publication: *RDEDIT*.

The authors thank Dr V. J. Fratello for supplying the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2121).

References

Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.

Bonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). *Acta Cryst.* B**31**, 2233–2240.

Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.

Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). Cryst. Growth, 75, 281–283.

Rigaku (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.

Sakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69-77.

Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.

Tanaka, K. (2008). RDEDIT. Unpublished.

Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252.

Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Win, Z. (2008). Acta Cryst. A64, 437–449.

Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifūkan.

supporting information

Acta Cryst. (2009). E65, i73 [https://doi.org/10.1107/S1600536809038100]

Tripraseodymium pentairon(III) dodecaoxide, Pr₃Fe₅O₁₂: a synchrotron radiation study

Takashi Komori, Terutoshi Sakakura, Yasuyuki Takenaka, Kiyoaki Tanaka and Takashi Okuda

S1. Comment

The title compound, Pr₃Fe₅O₁₂ (PrIG), was difficult to be grown. It was grown by the low-temperature-liquid-phase epitaxy for the first time by Fratello *et al.* (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the Ia3d form of Y₃Fe₅O₁₂ (YIG). (Bonnet *et al.*, 1975). The Pr atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms. It forms a slitely distorted octahedron and FeO₄ tetrahedron are linked together by corners. The structure of PrIG is drawn in Fig.1. And displacement ellipsoids of PrO₈ is drawn in Fig.2.

S2. Experimental

Single crystals of praseodymium iron garnet were prepared by low temperature liquid phase epitaxy on Sm₃(ScGa)₅O₁₂ seeds with lattice parameters near the projected values for PrIG.

S3. Refinement

X-ray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).

Acta Cryst. (2009). E65, i73

Figure 1 The structure of $Pr_3Fe_5O_{12}$. Small red and large green spheres represent O and Pr atoms, respectively. Purple octahedron and blue tetrahedron represent FeO_6 and FeO_4 units, respectively.

Acta Cryst. (2009). E65, i73

Figure 2
View of PrO₈ with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Pr and O atoms, in Fig.1.

Pentairon tripraseodymium dodecaoxide

Crystal data

Pr₃Fe₅O₁₂ $M_r = 893.98$ Cubic, $Ia\overline{3}d$ Hall symbol: -I 4bd 2c 3 a = 12.6302 (3) Å V = 2014.79 (8) Å³ Z = 8F(000) = 3224

Data collection

Rigaku AFC four-circle diffractometer Si 111 monochromator Detector resolution: $1.25 \times 1.25^{\circ}$ pixels mm⁻¹ $\omega/2\theta$ scans Absorption correction: for a sphere [Transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3,

were interpolated with Lagrange's method (four-point interpolation (Yamauchi et al., 1965)]

 $D_x = 5.894 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.67171 \text{ Å}$ Cell parameters from 9 reflections $\theta = 17.5-52.3^{\circ}$ $\mu = 17.41 \text{ mm}^{-1}$ T = 298 KSphere, black 0.04 mm (radius)

 $T_{\text{min}} = 0.413$, $T_{\text{max}} = 0.441$ 9351 measured reflections 1728 independent reflections 1728 reflections with $F > 3\sigma(F)$ $R_{\text{int}} = 0.016$ $\theta_{\text{max}} = 68.3^{\circ}$, $\theta_{\text{min}} = 3.7^{\circ}$ $h = -9 \rightarrow 34$ $k = -9 \rightarrow 32$ $l = -9 \rightarrow 34$

Refinement

Refinement on FLeast-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.021$ S = 1.069351 reflections 17 parameters Primary atom site location: isomorphous structure methods

Weighting scheme based on measured s.u.'s

 $(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta\rho_{\text{max}} = 2.52 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -3.16 \text{ e Å}^{-3}$

Extinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1975)
Extinction coefficient: 0.255 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Pr1	0.125000	0.000000	0.250000	0.00531 (1)
Fe1	0.000000	0.000000	0.000000	0.00512 (1)
Fe2	0.375000	0.000000	0.250000	0.00533 (1)
O1	-0.029622 (2)	0.052553 (2)	0.149166 (2)	0.00711 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.00406(2)	0.00594(2)	0.00594(2)	0	0	0.00111(1)
Fe1	0.00512(2)	0.00512(2)	0.00512(2)	-0.00023(1)	-0.00023 (1)	-0.00023 (1)
Fe2	0.00411 (3)	0.00594(2)	0.00594(2)	0	0	0
O1	0.00718 (8)	0.00829 (8)	0.00587 (7)	-0.00004(6)	0.00080 (6)	0.00038 (6)

Geometric parameters (Å, °)

Pr1—O1	2.4241 (1)	Fe1—O1 ⁱ	2.0322 (1)
Pr1—O1i	2.5401(1)	Fe1—O1viii	2.0322 (1)
Pr1—O1 ⁱⁱ	2.4241 (1)	Fe1—O1ix	2.0322 (1)
Pr1—O1 ⁱⁱⁱ	2.5401(1)	Fe1—O1 ^x	2.0322 (1)
Pr1—O1iv	2.4241 (1)	Fe1—O1 ^{xi}	2.0322 (1)
Pr1—O1 ^v	2.5401(1)	Fe2—O1 ^{xii}	1.8745 (1)
Pr1—O1 ^{vi}	2.4241 (1)	Fe2—O1iv	1.8745 (1)
Pr1—O1 ^{vii}	2.5401(1)	Fe2—O1xiii	1.8745 (1)
Fe1—O1	2.0322 (1)	Fe2—O1vi	1.8745 (1)
O1—Pr1—O1 ⁱ	67.75 (1)	O1—Fe1—O1viii	85.87 (1)
O1—Pr1—O1 ⁱⁱ	72.66 (1)	O1—Fe1—O1ix	180.00
O1—Pr1—O1 ⁱⁱⁱ	124.91 (1)	O1—Fe1—O1 ^x	94.13 (1)
O1—Pr1—O1 ^{iv}	111.18 (1)	$O1$ — $Fe1$ — $O1^{xi}$	94.13 (1)
O1—Pr1—O1 ^v	73.25 (1)	$O1^{xii}$ —Fe2— $O1^{vi}$	114.39 (1)
O1—Pr1—O1 ^{vi}	159.51 (1)	$O1^{xii}$ —Fe2— $O1^{iv}$	114.39 (1)
O1—Pr1—O1 ^{vii}	95.43 (1)	O1 ^{xii} —Fe2—O1 ^{xiii}	100.02 (1)
O1—Fe1—O1 ⁱ	85.87 (1)		

Symmetry codes: (i) z, x, y; (ii) x, -y, -z + 1/2; (iii) z, -x, -y + 1/2; (iv) -x + 1/4, -z + 1/4, -y + 1/4; (v) -z + 1/4, -y + 1/4; (vi) -x + 1/4, z - 1/4, y + 1/4; (vii) -z + 1/4, y - 1/4, x + 1/4; (viii) y, z, x; (ix) -x, -y, -z; (x) -z, -x, -y; (xi) -y, -z, -x; (xii) x + 1/2, y, -z + 1/2; (xiii) x + 1/2, -y, z.

Acta Cryst. (2009). E65, i73 sup-4