Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tripraseodymium pentairon(III) dodecaoxide, $\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$: a synchrotron radiation study

Takashi Komori, ${ }^{\text {a* }}$ Terutoshi Sakakura, ${ }^{\text {a }}$ Yasuyuki Takenaka, ${ }^{\text {b }}$ Kiyoaki Tanaka ${ }^{\text {a }}$ and Takashi Okuda ${ }^{\text {a }}$
${ }^{\text {a }}$ Graduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and ${ }^{\mathbf{b}}$ Hokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan
Correspondence e-mail: tkomori@katch.ne.jp

Received 14 September 2009; accepted 21 September 2009

Key indicators: single-crystal synchrotron study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{Pr}-\mathrm{Fe})=$ $0.000 \AA ; R$ factor $=0.019 ; w R$ factor $=0.021$; data-to-parameter ratio $=550.1$.

The title compound, pentairon tripraseodymium dodecaoxide (PrIG), has an iron garnet structure. There are two Fe site symmetries. One of the Fe atoms is coordinated by six O atoms, forming a slightly distorted octahedron, and has $\overline{3}$ site symmetry. The other Fe atom is coordinated by four O atoms, forming a slightly distorted tetrahedron, and has $\overline{4}$ site symmetry. FeO_{6} octahedra and FeO_{4} tetrahedra are linked together by corners. The Pr atom is coordinated by eight O atoms, forming a distorted dodecahedron, and has 222 site symmetry. The O atoms occupy the general positions.

Related literature

The title compound is isotypic with the $I a \overline{3} d$ form of $\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (YIG). For related structures, see: Bonnet et al. (1975). For details of the crystal growth from low-temperature liquidphase epitaxy, see: Fratello et al. (1986). For the extinction correction, see: Becker \& Coppens (1975). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka et al. (2008).

Experimental

Crystal data

$\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$	Synchrotron radiation
$M_{r}=893.98$	$\lambda=0.67171 \AA$
Cubic, $I a \overline{3} d$	$\mu=17.41 \mathrm{~mm}^{-1}$
$a=12.6302(3) \AA$	$T=298 \mathrm{~K}$
$V=2014.79(8) \AA^{3}$	0.035 mm (radius)
$Z=8$	

Data collection

Rigaku AFC four-circle diffractometer
Absorption correction: for a sphere [transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3, were interpolated with Lagran-
ge's method (four-point interpolation; Yamauchi et al., 1965)]
$T_{\text {min }}=0.413, T_{\text {max }}=0.441$
9351 measured reflections
1728 independent reflections 1728 reflections with $F>3 \sigma(F)$ $R_{\text {int }}=0.016$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
17 parameters
$w R\left(F^{2}\right)=0.021$
$S=1.06$
9351 reflections
$\Delta \rho_{\max }=2.52 \mathrm{e}^{-3}$
$\Delta \rho_{\max }=2.52 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

Pr1-O1	2.42410 (10)	Fe1-O1	2.03220 (10)
Pr1-O1 $1^{\text {i }}$	2.54010 (10)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {ii }}$	1.87450 (10)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{i}}$	85.87 (1)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {iv }}$	100.02 (1)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {iii }}$	114.39 (1)		
Symmetry codes: $x+\frac{1}{2},-y, z .$	(ii) x	$-z+\frac{1}{2}$ (iii)	$\frac{1}{2}, y+\frac{1}{4} ; \quad \text { (iv) }$

Data collection: $A F C-5$, specially designed for PF-BL14A (Rigaku, 1984) and IUANGLE (Tanaka et al., 1994); cell refinement: RSLC-3 UNICS system (Sakurai \& Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO; molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.

The authors thank Dr V. J. Fratello for supplying the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2121).

References

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Bonnet, M., Delapalme, A., Fuess, H. \& Thomas, M. (1975). Acta Cryst. B31, 2233-2240.
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. \& Wolfe, R. (1986). Cryst. Growth, 75, 281-283.
Rigaku (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.
Sakurai, T. \& Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69-77.
Takenaka, Y., Sakakura, T., Tanaka, K. \& Kishimoto, S. (2008). Acta Cryst. A64, C566.
Tanaka, K. (2008). RDEDIT. Unpublished.
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. \& Shirotani, I. (1994). Acta Cryst. A50, 246-252.
Tanaka, K., Makita, R., Funahashi, S., Komori, T. \& Win, Z. (2008). Acta Cryst. A64, 437-449.
Yamauchi, J., Moriguchi, S. \& Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifūkan.

supporting information

Acta Cryst. (2009). E65, i73 [https://doi.org/10.1107/S1600536809038100]

Tripraseodymium pentairon(III) dodecaoxide, $\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$: a synchrotron radiation study

Takashi Komori, Terutoshi Sakakura, Yasuyuki Takenaka, Kiyoaki Tanaka and Takashi Okuda

S1. Comment

The title compound, $\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (PrIG), was difficult to be grown. It was grown by the low-temperature-liquid-phase epitaxy for the first time by Fratello et al. (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the $\mathrm{Ia} \overline{3} \mathrm{~d}$ form of $\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ (YIG). (Bonnet et al., 1975). The Pr atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms. It forms a slitely distorted octahedron. The other Fe atom is coordinated by four oxygen atoms. It forms a slightly distorted tetrahedron. FeO_{6} octahedron and FeO_{4} tetrahedron are linked together by corners. The structure of PrIG is drawn in Fig.1. And displacement ellipsoids of PrO_{8} is drawn in Fig.2.

S2. Experimental

Single crystals of praseodymium iron garnet were prepared by low temperature liquid phase epitaxy on $\mathrm{Sm}_{3}(\mathrm{ScGa})_{5} \mathrm{O}_{12}$ seeds with lattice parameters near the projected values for PrIG.

S3. Refinement

X-ray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).

Figure 1
The structure of $\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$. Small red and large green spheres represent O and Pr atoms, respectively. Purple octahedron and blue tetrahedron represent FeO_{6} and FeO_{4} units, respectively.

Figure 2
View of PrO_{8} with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Pr and O atoms, in Fig.1.

Pentairon tripraseodymium dodecaoxide

Crystal data

$\mathrm{Pr}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$
$M_{r}=893.98$
Cubic, Ia $\overline{3} d$
Hall symbol: -I 4bd 2c 3
$a=12.6302$ (3) \AA
$V=2014.79(8) \AA^{3}$
$Z=8$
$F(000)=3224$

Data collection

Rigaku AFC four-circle diffractometer
Si 111 monochromator
Detector resolution: $1.25 \times 1.25^{\circ}$ pixels mm^{-1}
$\omega / 2 \theta$ scans
Absorption correction: for a sphere
[Transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (fourpoint interpolation (Yamauchi et al., 1965)]
$D_{\mathrm{x}}=5.894 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.67171 \AA$
Cell parameters from 9 reflections
$\theta=17.5-52.3^{\circ}$
$\mu=17.41 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Sphere, black
0.04 mm (radius)
$T_{\text {min }}=0.413, T_{\text {max }}=0.441$
9351 measured reflections
1728 independent reflections
1728 reflections with $F>3 \sigma(F)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=68.3^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-9 \rightarrow 34$
$k=-9 \rightarrow 32$
$l=-9 \rightarrow 34$

Refinement

Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.021$
$S=1.06$
9351 reflections
17 parameters

Primary atom site location: isomorphous structure methods
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=2.52 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-3.16$ e \AA^{-3}
Extinction correction: B-C type 1 Gaussian isotropic (Becker \& Coppens, 1975)
Extinction coefficient: 0.255 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pr1	0.125000	0.000000	0.250000	$0.00531(1)$
Fe1	0.000000	0.000000	0.000000	$0.00512(1)$
Fe2	0.375000	0.000000	0.250000	$0.00533(1)$
O1	$-0.029622(2)$	$0.052553(2)$	$0.149166(2)$	$0.00711(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	$0.00406(2)$	$0.00594(2)$	$0.00594(2)$	0	0	$0.00111(1)$
Fe1	$0.00512(2)$	$0.00512(2)$	$0.00512(2)$	$-0.00023(1)$	$-0.00023(1)$	$-0.00023(1)$
Fe2	$0.00411(3)$	$0.00594(2)$	$0.00594(2)$	0	0	0
O1	$0.00718(8)$	$0.00829(8)$	$0.00587(7)$	$-0.00004(6)$	$0.00080(6)$	$0.00038(6)$

Geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Pr} 1-\mathrm{O} 1$	2.4241 (1)	$\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	2.0322 (1)
Pr1-O1 ${ }^{\text {i }}$	2.5401 (1)	Fel-O1 ${ }^{\text {viii }}$	2.0322 (1)
Pr1-O1 ${ }^{\text {ii }}$	2.4241 (1)	Fel-O1 ${ }^{\text {ix }}$	2.0322 (1)
$\mathrm{Pr} 1-\mathrm{O} 1^{\text {iii }}$	2.5401 (1)	$\mathrm{Fe} 1-\mathrm{O} 1^{\text {x }}$	2.0322 (1)
$\mathrm{Pr} 1-\mathrm{O} 1^{\text {iv }}$	2.4241 (1)	$\mathrm{Fe} 1-\mathrm{O} 1^{\text {xi }}$	2.0322 (1)
Pr1-O1 ${ }^{\text {v }}$	2.5401 (1)	Fe 2 - $\mathrm{O}^{\text {xii }}$	1.8745 (1)
$\mathrm{Pr} 1-\mathrm{O} 1^{\text {vi }}$	2.4241 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {iv }}$	1.8745 (1)
Pr1-O1 ${ }^{\text {vii }}$	2.5401 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {xiii }}$	1.8745 (1)
Fel-O1	2.0322 (1)	$\mathrm{Fe} 2-\mathrm{O} 1^{\text {vi }}$	1.8745 (1)
$\mathrm{O} 1-\mathrm{Pr} 1-\mathrm{Ol}^{\text {i }}$	67.75 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {viii }}$	85.87 (1)
$\mathrm{O} 1-\mathrm{Pr} 1-\mathrm{Ol}^{1 i}$	72.66 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{\text {ix }}$	180.00
O1-Pr1-O1 $1^{\text {iii }}$	124.91 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{\text {x }}$	94.13 (1)
O1-Pr1-O1 ${ }^{\text {iv }}$	111.18 (1)	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{\text {xi }}$	94.13 (1)
$\mathrm{O} 1-\mathrm{Pr} 1-\mathrm{O}^{\text {v }}$	73.25 (1)	$\mathrm{O}^{\text {xii }}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {vi }}$	114.39 (1)
O1-Pr1-O1 ${ }^{\text {vi }}$	159.51 (1)	$\mathrm{O}^{\text {xii }}-\mathrm{Fe} 2-\mathrm{Ol}^{\text {iv }}$	114.39 (1)
O1-Pr1-O1 $1^{\text {vii }}$	95.43 (1)	$\mathrm{O} 1^{\text {xii }}-\mathrm{Fe} 2-\mathrm{O} 1^{\text {xiii }}$	100.02 (1)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {i }}$	85.87 (1)		

[^0]
[^0]: Symmetry codes: (i) z, x, y; (ii) $x,-y,-z+1 / 2$; (iii) $z,-x,-y+1 / 2$; (iv) $-x+1 / 4,-z+1 / 4,-y+1 / 4$; (v) $-z+1 / 4,-y+1 / 4,-x+1 / 4$; (vi) $-x+1 / 4, z-1 / 4, y+1 / 4$; (vii) $-z+1 / 4, y-1 / 4, x+1 / 4$; (viii) y, z, x; (ix) $-x,-y,-z$; (x) $-z,-x,-y$; (xi) $-y,-z,-x$; (xii) $x+1 / 2, y,-z+1 / 2$; (xiii) $x+1 / 2,-y, z$.

