organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Eth­oxy­benzo­yl)-4-(4-meth­oxy­phen­yl)thiosemicarbazide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: farman@qau.edu.pk

(Received 9 September 2009; accepted 10 September 2009; online 3 October 2009)

The title compound, C17H19N3O3S, crystallizes with two closely similar independent mol­ecules related by a pseudotranslation of c/2. Each mol­ecule consists of three approximately planar moieties centred on the N2CS group and the two ring systems. The packing involves classical H bonds of the form Namide—H⋯S and Nhydrazine—H⋯OC, together with various weak hydrogen bonds and Nhydrazine—H⋯π inter­actions. The overall packing is three-dimensional, but layer substructures parallel to the xz plane can be readily identified. Each mol­ecule forms a topologically equivalent set of hydrogen-bond inter­actions.

Related literature

Thio­semicarbazides represent a class of versatile precursors for the syntheses of various nitro­gen heterocycles, see: Al-Masoudi et al. (2006[Al-Masoudi, I. A., Al-Soud, Y. A., Al-Salihi, N. J. & Al-Masoudi, N. A. (2006). Chem. Heterocycl. Comp. 42, 1377-1403.]); Kucukguzel et al. (2007[Kucukguzel, S. G., Kucukguzel, I., Tatar, E. & Rollas, S. (2007). Eur. J. Med. Chem. 42, 893-901.]); Serwar et al.2009[Serwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC pp. 210-221.]); Serwer et al. (2008[Serwer, M., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o812.]); Tomascikava et al. (2008[Tomascikava, J., Imrich, J. & Danihel, I. (2008). Molecules 13, 501-518.]); Tozkoparan et al. (2007[Tozkoparan, B., Kupeli, E., Yesilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808-1814.]). For the pharmaceutical potential of the thio­semicarbazide moiety, see: Angelusiu et al. (2009[Angelusiu, M. V., Almajan, G. L., Rosu, T., Negoiu, M., Almajan, E. R. & Roy, J. (2009). Eur. J. Med. Chem. 44, 3323-3329.]); Ghosh et al. (2009[Ghosh, S., Mishra, A. K. & Bhatia, G. (2009). Bioorg. Med. Chem. Lett. 19, 386-389.]); Liu et al. (2009[Liu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773-1778.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O3S

  • Mr = 345.41

  • Monoclinic, P 21

  • a = 15.40429 (13) Å

  • b = 9.67120 (9) Å

  • c = 11.69922 (9) Å

  • β = 95.0922 (7)°

  • V = 1736.05 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, Oxford, UK.]) Tmin = 0.981, Tmax = 1.000

  • 44704 measured reflections

  • 9918 independent reflections

  • 6348 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.055

  • S = 0.96

  • 9918 reflections

  • 461 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4562 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯S′ 0.826 (11) 2.735 (12) 3.4483 (14) 145.5 (14)
N4—H04⋯O1′i 0.812 (12) 2.016 (13) 2.8156 (17) 168.2 (17)
N1′—H01′⋯Sii 0.816 (11) 2.659 (12) 3.3772 (14) 147.8 (14)
N4′—H04′⋯O1i 0.836 (12) 2.011 (13) 2.8228 (18) 163.7 (15)
C11′—H11′⋯O1i 0.95 2.41 3.3378 (19) 166
C11—H11⋯O1′i 0.95 2.38 3.2927 (18) 162
C20—H20B⋯Siii 0.98 2.98 3.9215 (17) 161
C20′—H20E⋯S′iv 0.98 2.92 3.8936 (18) 175
C10′—H10′⋯Si 0.95 2.83 3.7559 (17) 166
C10—H10⋯S′i 0.95 2.81 3.7369 (17) 166
C15′—H15′⋯Sii 0.95 3.05 3.6482 (16) 123
C15—H15⋯S′ 0.95 2.94 3.6925 (17) 137
N3′—H03′⋯Cg 0.847 (10) 2.53 3.25 144
N3—H03⋯Cgv 0.822 (10) 2.65 3.29 135
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y, z+1. Cg is the centroid of the C6–C11 ring and Cg′ is the centroid of the C6′–C11′ ring.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, Oxford, UK.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazides represent a class of versatile precursors for the syntheses of various nitrogen heterocycles (Kucukguzel et al., 2007; Al-Masoudi et al., 2006; Tozkoparan et al., 2007; Tomascikava et al., 2008; Serwer et al. 2008; Serwar et al. 2009). The thiosemicarbazide moiety possesses substantial pharmaceutical potential such as anti-tumor (Angelusiu et al., 2009), tyrosinase inhibitor (Liu et al., 2009) and antioxidant (Ghosh et al., 2009) properties. The title compound was synthesized as an intermediate for its onward conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles and in order to explore their anti-bacterial, urease inhibition and anti-fungal activities.

The title compound crystallizes with two independent molecules in the asymmetric unit (Fig. 1); these are related to a good approximation by a translation of c/2. A least-squares fit of both molecules gives an r.m.s. deviation of 0.15 Å for all non-H atoms. Main differences involve orientations of the aromatic rings, e.g. C2—N1—C14—C15 131.9 (2), 122.1 (2)°. Atoms of the second independent molecule are distinguished by a prime (') where necessary. Molecular dimensions (e.g. the hydrazine N—N bond lengths of 1.393 (2), 1.391 (2) Å) may be regarded as normal. The thione sulfur is trans to N4 across the bond C2—N3 (torsion angles 174.8 (1), 172.2 (1)°) but cis to C14 across the bond N1—C2 (torsion angles -9.0 (2), -8.1 (2)).

Each molecule consists of three approximately planar moieties with various common atoms: (1) the central thioamide section (S, N2, N3, N4, C2, C14); (2) the hydrazine and its aromatic ring (C5–13, O1, O2, N3, N4); and (3) the amide and its aromatic ring (C14–20, N1, O3). These display r.m.s. deviations of 0.07, 0.05, 0.01 Å in molecule 1 and 0.08, 0.06, 0.01 Å in molecule 2. Interplanar angles (1)–(2) and (3)–(2) are 68.09 (3), 56.56 (4)° in molecule 1 and 77.22 (3), 66.14 (3)° in molecule 2.

The molecular packing is three-dimensional; classical and "weak" hydrogen bonds are summarized in Table 2. Both molecules form a topologically equivalent set of hydrogen bonds. Fig. 2 shows that the molecules associate to form layers parallel to the xz plane; within the layers, the molecules are linked by classical H bonds N1—H01···S' (and N1'—H01'···S), whereas the layers are linked by N4—H04···O1' and the weak H bonds C10—H10···S' and C11—H11···O1' (and their counterparts). The H bond donors N3—H03 and N03'—H03' are involved in C—H···π interactions to the centroids of the ring C6'–11' and C6–11 respectively, with H···π 2.65, 2.53 Å and angles 135°, 144° respectively (operators x,y,1 + z, and x,y,z). These interactions are not shown explicitly in Fig. 2 but can be recognized within the layers.

Related literature top

Thiosemicarbazides represent a class of versatile precursors for the syntheses of various nitrogen heterocycles, see: Al-Masoudi et al. (2006); Kucukguzel et al. (2007); Serwar et al.2009); Serwer et al. (2008); Tomascikava et al. (2008); Tozkoparan et al. (2007). For the pharmaceutical potential of the thiosemicarbazide moiety, see: Angelusiu et al. (2009); Ghosh et al. (2009); Liu et al. (2009).

Experimental top

4-Ethoxybenzohydrazide (0.0068 moles) was dissolved in methanol (30 ml) and a solution of 4-methoxyphenylisothiocyanate (0.0066 moles), separately dissolved in 10 ml of methanol, was added dropwise with continuous stirring. The reaction mixture was refluxed for 10–12 h and progress of the reaction monitored by TLC. After consumption of the starting materials, the mixture was cooled to room temperature. The methanol was removed to give the crude thiosemicarbazide as an oil that solidified on cooling. The product was recrystallized from ethanol as large colourless blocks that were cut to size for X-ray analysis.

Refinement top

The NH H atoms were refined freely but with N—H distances restrained equal. Methyl H atoms were identified in difference syntheses, idealized and refined as rigid groups with C—H 0.98 Å and H—C—H angles 109.5°, allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with C—Harom 0.95 and C—Hmethylene 0.99 Å; the hydrogen U values were fixed at 1.5 (methyl) or 1.2 × U(eq) of the parent carbon atom.

The compound is achiral but crystallizes by chance in a chiral space group. The translational pseudosymmetry causes the reflections with l odd to be weak, but they are definitely present.

Structure description top

Thiosemicarbazides represent a class of versatile precursors for the syntheses of various nitrogen heterocycles (Kucukguzel et al., 2007; Al-Masoudi et al., 2006; Tozkoparan et al., 2007; Tomascikava et al., 2008; Serwer et al. 2008; Serwar et al. 2009). The thiosemicarbazide moiety possesses substantial pharmaceutical potential such as anti-tumor (Angelusiu et al., 2009), tyrosinase inhibitor (Liu et al., 2009) and antioxidant (Ghosh et al., 2009) properties. The title compound was synthesized as an intermediate for its onward conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles and in order to explore their anti-bacterial, urease inhibition and anti-fungal activities.

The title compound crystallizes with two independent molecules in the asymmetric unit (Fig. 1); these are related to a good approximation by a translation of c/2. A least-squares fit of both molecules gives an r.m.s. deviation of 0.15 Å for all non-H atoms. Main differences involve orientations of the aromatic rings, e.g. C2—N1—C14—C15 131.9 (2), 122.1 (2)°. Atoms of the second independent molecule are distinguished by a prime (') where necessary. Molecular dimensions (e.g. the hydrazine N—N bond lengths of 1.393 (2), 1.391 (2) Å) may be regarded as normal. The thione sulfur is trans to N4 across the bond C2—N3 (torsion angles 174.8 (1), 172.2 (1)°) but cis to C14 across the bond N1—C2 (torsion angles -9.0 (2), -8.1 (2)).

Each molecule consists of three approximately planar moieties with various common atoms: (1) the central thioamide section (S, N2, N3, N4, C2, C14); (2) the hydrazine and its aromatic ring (C5–13, O1, O2, N3, N4); and (3) the amide and its aromatic ring (C14–20, N1, O3). These display r.m.s. deviations of 0.07, 0.05, 0.01 Å in molecule 1 and 0.08, 0.06, 0.01 Å in molecule 2. Interplanar angles (1)–(2) and (3)–(2) are 68.09 (3), 56.56 (4)° in molecule 1 and 77.22 (3), 66.14 (3)° in molecule 2.

The molecular packing is three-dimensional; classical and "weak" hydrogen bonds are summarized in Table 2. Both molecules form a topologically equivalent set of hydrogen bonds. Fig. 2 shows that the molecules associate to form layers parallel to the xz plane; within the layers, the molecules are linked by classical H bonds N1—H01···S' (and N1'—H01'···S), whereas the layers are linked by N4—H04···O1' and the weak H bonds C10—H10···S' and C11—H11···O1' (and their counterparts). The H bond donors N3—H03 and N03'—H03' are involved in C—H···π interactions to the centroids of the ring C6'–11' and C6–11 respectively, with H···π 2.65, 2.53 Å and angles 135°, 144° respectively (operators x,y,1 + z, and x,y,z). These interactions are not shown explicitly in Fig. 2 but can be recognized within the layers.

Thiosemicarbazides represent a class of versatile precursors for the syntheses of various nitrogen heterocycles, see: Al-Masoudi et al. (2006); Kucukguzel et al. (2007); Serwar et al.2009); Serwer et al. (2008); Tomascikava et al. (2008); Tozkoparan et al. (2007). For the pharmaceutical potential of the thiosemicarbazide moiety, see: Angelusiu et al. (2009); Ghosh et al. (2009); Liu et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the two independent molecules, the atom labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A section of the three-dimensional packing diagram of the title compound viewed parallel to the x axis. Bond types: thick continuous bonds, molecule 1; open continuous bonds, molecule 2; thick dashed bonds, classical H bonds; thin dashed bonds, C—H···O interactions. For clarity, the ethoxy substituents and all H atoms not involved in the H bonds were omitted and the rings at N1 are shown only as their ipso carbons.
1-(4-Ethoxybenzoyl)-4-(4-methoxyphenyl)thiosemicarbazide top
Crystal data top
C17H19N3O3SF(000) = 728
Mr = 345.41Dx = 1.322 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 15.40429 (13) ÅCell parameters from 16506 reflections
b = 9.67120 (9) Åθ = 2.3–30.7°
c = 11.69922 (9) ŵ = 0.21 mm1
β = 95.0922 (7)°T = 100 K
V = 1736.05 (3) Å3Tablet, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
9918 independent reflections
Radiation source: Enhance (Mo) X-ray Source6348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1419 pixels mm-1θmax = 30.5°, θmin = 2.3°
ω–scanh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.981, Tmax = 1.000l = 1516
44704 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
9918 reflectionsΔρmax = 0.30 e Å3
461 parametersΔρmin = 0.23 e Å3
16 restraintsAbsolute structure: Flack (1983), 4562 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C17H19N3O3SV = 1736.05 (3) Å3
Mr = 345.41Z = 4
Monoclinic, P21Mo Kα radiation
a = 15.40429 (13) ŵ = 0.21 mm1
b = 9.67120 (9) ÅT = 100 K
c = 11.69922 (9) Å0.3 × 0.2 × 0.1 mm
β = 95.0922 (7)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
9918 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6348 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1.000Rint = 0.032
44704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.30 e Å3
S = 0.96Δρmin = 0.23 e Å3
9918 reflectionsAbsolute structure: Flack (1983), 4562 Friedel pairs
461 parametersAbsolute structure parameter: 0.01 (3)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.0283 (0.0011) x + 1.4133 (0.0037) y - 6.8581 (0.0016) z = 2.4289 (0.0026)

* 0.0169 (0.0013) C6 * 0.0162 (0.0012) C7 * 0.0312 (0.0012) C8 * 0.0483 (0.0013) C9 * 0.0676 (0.0014) C10 * 0.0481 (0.0013) C11 * 0.0436 (0.0010) O2 * -0.0206 (0.0014) C12 * -0.1392 (0.0013) C13 * 0.0011 (0.0013) C5 * -0.0780 (0.0010) O1 * 0.0952 (0.0010) N4 * -0.1306 (0.0010) N3

Rms deviation of fitted atoms = 0.0705

- 5.8835 (0.0067) x + 8.3025 (0.0025) y + 4.3848 (0.0043) z = 4.5767 (0.0054)

Angle to previous plane (with approximate e.s.d.) = 68.09 (0.03)

* -0.0909 (0.0013) N1 * -0.0296 (0.0012) C2 * 0.0247 (0.0006) S * 0.0499 (0.0008) N4 * -0.0143 (0.0011) N3 * 0.0602 (0.0008) C14

Rms deviation of fitted atoms = 0.0518

4.4124 (0.0064) x - 7.2670 (0.0036) y + 6.6294 (0.0075) z = 4.1549 (0.0063)

Angle to previous plane (with approximate e.s.d.) = 56.56 (0.04)

* 0.0131 (0.0015) C14 * 0.0077 (0.0017) C15 * -0.0154 (0.0018) C16 * 0.0007 (0.0017) C17 * -0.0065 (0.0015) C18 * -0.0105 (0.0015) C19 * -0.0002 (0.0013) O3 * 0.0099 (0.0013) C20 * 0.0012 (0.0012) N1

Rms deviation of fitted atoms = 0.0089

13.0659 (0.0012) x + 1.8489 (0.0037) y - 6.6371 (0.0017) z = 6.1077 (0.0017)

Angle to previous plane (with approximate e.s.d.) = 78.79 (0.03)

* 0.0172 (0.0013) C6' * 0.0319 (0.0011) C7' * 0.0585 (0.0011) C8' * 0.0569 (0.0013) C9' * 0.0548 (0.0014) C10' * 0.0249 (0.0013) C11' * 0.0496 (0.0010) O2' * -0.0083 (0.0015) C12' * -0.1597 (0.0014) C13' * -0.0114 (0.0013) C5' * -0.1233 (0.0010) O1' * 0.1239 (0.0010) N4' * -0.1150 (0.0010) N3'

Rms deviation of fitted atoms = 0.0802

- 4.7715 (0.0070) x + 8.8203 (0.0020) y + 3.4544 (0.0044) z = 2.9970 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 77.22 (0.03)

* -0.0881 (0.0013) N1' * -0.0271 (0.0012) C2' * 0.0344 (0.0006) S' * 0.0675 (0.0008) N4' * -0.0418 (0.0011) N3' * 0.0550 (0.0008) C14'

Rms deviation of fitted atoms = 0.0563

2.1176 (0.0060) x - 6.0315 (0.0044) y + 8.8245 (0.0052) z = 0.7518 (0.0041)

Angle to previous plane (with approximate e.s.d.) = 66.14 (0.03)

* 0.0140 (0.0014) C14' * 0.0048 (0.0014) C15' * -0.0082 (0.0014) C16' * -0.0043 (0.0016) C17' * -0.0002 (0.0015) C18' * -0.0089 (0.0014) C19' * -0.0003 (0.0013) O3' * 0.0060 (0.0013) C20' * -0.0029 (0.0012) N1'

Rms deviation of fitted atoms = 0.0069

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.70206 (2)0.50456 (5)1.03604 (3)0.01728 (10)
O10.52373 (7)0.30901 (11)0.71581 (8)0.0180 (2)
O20.28479 (6)0.55263 (11)0.29437 (8)0.0211 (3)
O31.02907 (7)0.86352 (16)0.88836 (10)0.0411 (4)
N10.70429 (8)0.60538 (15)0.82176 (11)0.0181 (3)
H010.6823 (9)0.6052 (17)0.7547 (10)0.021 (5)*
C20.66134 (9)0.54043 (16)0.90110 (11)0.0125 (3)
N30.57906 (8)0.50134 (15)0.86822 (10)0.0142 (3)
H030.5512 (8)0.4637 (14)0.9164 (10)0.005 (4)*
N40.53669 (8)0.53524 (14)0.76180 (10)0.0133 (3)
H040.5143 (10)0.6113 (14)0.7606 (14)0.027 (6)*
C50.50445 (9)0.42990 (16)0.69256 (13)0.0128 (3)
C60.44704 (9)0.47015 (16)0.58951 (12)0.0122 (3)
C70.41778 (9)0.36550 (16)0.51243 (12)0.0148 (4)
H70.43490.27240.52740.018*
C80.36421 (10)0.39690 (17)0.41495 (12)0.0169 (4)
H80.34470.32520.36340.020*
C90.33859 (9)0.53260 (17)0.39175 (12)0.0157 (3)
C100.36805 (10)0.63793 (17)0.46663 (12)0.0171 (4)
H100.35160.73110.45070.021*
C110.42156 (10)0.60574 (16)0.56447 (13)0.0157 (4)
H110.44130.67770.61560.019*
C120.25273 (10)0.69102 (17)0.27136 (13)0.0244 (4)
H12A0.30150.75390.25770.029*
H12B0.22340.72640.33740.029*
C130.18893 (11)0.68298 (19)0.16578 (13)0.0312 (5)
H13A0.21770.64210.10250.047*
H13B0.16850.77620.14430.047*
H13C0.13910.62550.18210.047*
C140.78727 (10)0.67202 (18)0.84138 (13)0.0198 (4)
C150.85155 (11)0.6460 (2)0.76923 (14)0.0428 (6)
H150.84140.58210.70780.051*
C160.93107 (12)0.7134 (3)0.78670 (14)0.0503 (7)
H160.97460.69700.73570.060*
C170.94779 (10)0.8035 (2)0.87684 (14)0.0298 (5)
C180.88347 (10)0.83019 (18)0.94777 (15)0.0270 (4)
H180.89380.89331.00970.032*
C190.80302 (10)0.76466 (18)0.92888 (15)0.0272 (4)
H190.75840.78460.97750.033*
C201.04658 (11)0.9572 (2)0.98097 (15)0.0376 (5)
H20A1.00511.03420.97290.056*
H20B1.10610.99300.98030.056*
H20C1.04060.90921.05360.056*
S'0.69682 (2)0.51034 (4)0.53698 (3)0.01624 (9)
O1'0.52337 (7)0.30780 (11)0.21440 (8)0.0184 (2)
O2'0.28670 (6)0.54492 (11)0.21151 (8)0.0215 (3)
O3'1.04034 (7)0.80274 (17)0.38417 (11)0.0439 (4)
N1'0.70424 (8)0.58667 (14)0.31685 (11)0.0161 (3)
H01'0.6834 (9)0.5828 (16)0.2504 (10)0.017 (5)*
C2'0.65809 (9)0.53631 (15)0.39935 (11)0.0122 (3)
N3'0.57447 (7)0.50178 (15)0.36778 (10)0.0139 (3)
H03'0.5419 (8)0.4738 (15)0.4176 (10)0.012 (4)*
N4'0.53359 (8)0.53414 (14)0.26033 (10)0.0133 (3)
H04'0.5104 (10)0.6123 (14)0.2551 (13)0.023 (5)*
C5'0.50319 (9)0.42750 (16)0.19115 (12)0.0130 (3)
C6'0.44667 (9)0.46655 (16)0.08647 (12)0.0118 (3)
C7'0.42218 (9)0.36192 (16)0.00689 (12)0.0140 (3)
H7'0.44180.26990.02120.017*
C8'0.36966 (9)0.39163 (17)0.09224 (12)0.0152 (3)
H8'0.35390.32030.14600.018*
C9'0.33984 (9)0.52599 (17)0.11327 (12)0.0157 (3)
C10'0.36423 (10)0.63083 (17)0.03574 (13)0.0173 (4)
H10'0.34500.72290.05080.021*
C11'0.41673 (10)0.60055 (16)0.06368 (13)0.0155 (4)
H11'0.43250.67230.11700.019*
C12'0.25161 (11)0.68144 (18)0.23382 (14)0.0274 (4)
H12C0.29900.74710.24720.033*
H12D0.22170.71440.16750.033*
C13'0.18795 (12)0.6718 (2)0.33901 (14)0.0392 (5)
H13D0.21670.62980.40190.059*
H13E0.16760.76470.36160.059*
H13F0.13810.61470.32200.059*
C14'0.79061 (10)0.64214 (18)0.33595 (13)0.0187 (4)
C15'0.85761 (10)0.5858 (2)0.28031 (13)0.0280 (4)
H15'0.84720.50880.23050.034*
C16'0.94058 (10)0.6430 (2)0.29804 (13)0.0350 (5)
H16'0.98690.60510.25970.042*
C17'0.95622 (10)0.7544 (2)0.37088 (14)0.0294 (5)
C18'0.88890 (10)0.81103 (19)0.42619 (15)0.0282 (4)
H18'0.89940.88730.47670.034*
C19'0.80553 (10)0.75494 (18)0.40688 (14)0.0259 (4)
H19'0.75860.79480.44290.031*
C20'1.05700 (12)0.9175 (2)0.45930 (16)0.0441 (6)
H20D1.02410.99800.42850.066*
H20E1.11940.93870.46580.066*
H20F1.03890.89460.53520.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0191 (2)0.0208 (3)0.01124 (19)0.0005 (2)0.00234 (16)0.00053 (18)
O10.0241 (6)0.0118 (6)0.0177 (6)0.0013 (5)0.0002 (5)0.0031 (5)
O20.0243 (6)0.0218 (7)0.0157 (6)0.0006 (5)0.0066 (5)0.0002 (5)
O30.0235 (7)0.0669 (11)0.0330 (7)0.0240 (7)0.0037 (6)0.0058 (7)
N10.0150 (7)0.0272 (9)0.0117 (7)0.0055 (6)0.0012 (6)0.0051 (6)
C20.0115 (7)0.0120 (9)0.0140 (8)0.0012 (6)0.0010 (6)0.0018 (6)
N30.0154 (6)0.0180 (8)0.0092 (7)0.0034 (6)0.0009 (5)0.0031 (6)
N40.0148 (7)0.0116 (8)0.0127 (7)0.0000 (6)0.0026 (5)0.0001 (6)
C50.0123 (8)0.0125 (9)0.0143 (8)0.0011 (7)0.0043 (6)0.0009 (7)
C60.0129 (8)0.0110 (9)0.0131 (8)0.0026 (6)0.0023 (6)0.0001 (6)
C70.0164 (8)0.0111 (9)0.0172 (9)0.0009 (7)0.0039 (7)0.0010 (7)
C80.0177 (8)0.0182 (10)0.0144 (8)0.0043 (7)0.0002 (7)0.0049 (7)
C90.0121 (7)0.0210 (10)0.0138 (8)0.0019 (7)0.0004 (6)0.0034 (7)
C100.0221 (8)0.0117 (9)0.0170 (9)0.0005 (7)0.0009 (7)0.0008 (7)
C110.0174 (8)0.0131 (10)0.0161 (9)0.0017 (7)0.0016 (7)0.0051 (7)
C120.0244 (10)0.0245 (11)0.0233 (10)0.0044 (8)0.0041 (8)0.0023 (8)
C130.0273 (10)0.0399 (12)0.0246 (10)0.0040 (8)0.0076 (8)0.0047 (8)
C140.0119 (8)0.0278 (10)0.0194 (9)0.0038 (7)0.0005 (6)0.0082 (7)
C150.0288 (10)0.0805 (18)0.0202 (9)0.0255 (11)0.0082 (7)0.0192 (10)
C160.0298 (11)0.096 (2)0.0274 (10)0.0292 (11)0.0170 (8)0.0178 (11)
C170.0194 (9)0.0454 (13)0.0240 (9)0.0128 (8)0.0023 (7)0.0086 (8)
C180.0211 (9)0.0215 (10)0.0387 (10)0.0053 (7)0.0048 (8)0.0080 (8)
C190.0180 (9)0.0214 (10)0.0434 (10)0.0038 (7)0.0087 (8)0.0077 (8)
C200.0245 (9)0.0496 (13)0.0374 (10)0.0197 (9)0.0049 (8)0.0030 (9)
S'0.0178 (2)0.0181 (2)0.01218 (19)0.0001 (2)0.00225 (15)0.00011 (18)
O1'0.0255 (6)0.0116 (7)0.0178 (6)0.0013 (5)0.0007 (5)0.0025 (5)
O2'0.0246 (6)0.0232 (7)0.0151 (6)0.0011 (5)0.0079 (5)0.0006 (5)
O3'0.0182 (6)0.0690 (11)0.0448 (8)0.0180 (7)0.0041 (6)0.0062 (7)
N1'0.0131 (7)0.0236 (8)0.0113 (7)0.0032 (6)0.0004 (6)0.0006 (6)
C2'0.0149 (8)0.0081 (9)0.0139 (8)0.0017 (6)0.0026 (6)0.0011 (6)
N3'0.0121 (6)0.0188 (8)0.0105 (7)0.0020 (6)0.0004 (5)0.0015 (6)
N4'0.0139 (7)0.0130 (9)0.0124 (7)0.0014 (6)0.0019 (5)0.0020 (6)
C5'0.0128 (8)0.0138 (9)0.0131 (8)0.0018 (7)0.0042 (6)0.0003 (7)
C6'0.0096 (7)0.0125 (9)0.0134 (8)0.0018 (6)0.0019 (6)0.0016 (7)
C7'0.0154 (8)0.0114 (9)0.0156 (8)0.0026 (7)0.0037 (7)0.0018 (7)
C8'0.0155 (8)0.0156 (9)0.0148 (8)0.0047 (7)0.0031 (6)0.0026 (7)
C9'0.0130 (7)0.0238 (10)0.0103 (7)0.0012 (7)0.0006 (6)0.0009 (7)
C10'0.0180 (8)0.0158 (9)0.0178 (9)0.0039 (7)0.0008 (7)0.0037 (7)
C11'0.0185 (8)0.0131 (9)0.0149 (9)0.0012 (7)0.0008 (7)0.0017 (7)
C12'0.0286 (10)0.0264 (11)0.0255 (10)0.0024 (8)0.0079 (8)0.0030 (8)
C13'0.0399 (12)0.0448 (14)0.0299 (11)0.0070 (10)0.0142 (9)0.0026 (9)
C14'0.0142 (8)0.0253 (10)0.0165 (8)0.0027 (7)0.0009 (6)0.0047 (7)
C15'0.0187 (8)0.0423 (12)0.0233 (9)0.0025 (8)0.0040 (7)0.0088 (8)
C16'0.0164 (9)0.0614 (14)0.0277 (10)0.0018 (9)0.0056 (7)0.0101 (9)
C17'0.0150 (8)0.0459 (13)0.0266 (9)0.0101 (8)0.0013 (7)0.0057 (9)
C18'0.0212 (9)0.0248 (10)0.0384 (10)0.0065 (8)0.0009 (8)0.0009 (8)
C19'0.0145 (8)0.0262 (11)0.0377 (10)0.0007 (7)0.0060 (7)0.0030 (8)
C20'0.0260 (10)0.0522 (14)0.0521 (13)0.0214 (10)0.0083 (9)0.0102 (10)
Geometric parameters (Å, º) top
S—C21.6823 (14)C14'—C19'1.378 (2)
O1—C51.2307 (17)C14'—C15'1.380 (2)
O2—C91.3618 (16)C15'—C16'1.391 (2)
O2—C121.4436 (18)C16'—C17'1.382 (2)
O3—C171.3757 (18)C17'—C18'1.383 (2)
O3—C201.420 (2)C18'—C19'1.394 (2)
N1—C21.3428 (18)N1—H010.826 (11)
N1—C141.4316 (19)N3—H030.822 (10)
C2—N31.3457 (17)N4—H040.812 (12)
N3—N41.3926 (16)C7—H70.9500
N4—C51.3672 (19)C8—H80.9500
C5—C61.482 (2)C10—H100.9500
C6—C111.393 (2)C11—H110.9500
C6—C71.4030 (19)C12—H12A0.9900
C7—C81.3809 (19)C12—H12B0.9900
C8—C91.390 (2)C13—H13A0.9800
C9—C101.393 (2)C13—H13B0.9800
C10—C111.3853 (19)C13—H13C0.9800
C12—C131.5108 (19)C15—H150.9500
C14—C191.366 (2)C16—H160.9500
C14—C151.380 (2)C18—H180.9500
C15—C161.387 (2)C19—H190.9500
C16—C171.375 (3)C20—H20A0.9800
C17—C181.372 (2)C20—H20B0.9800
C18—C191.392 (2)C20—H20C0.9800
S'—C2'1.6856 (14)N1'—H01'0.816 (11)
O1'—C5'1.2229 (17)N3'—H03'0.847 (10)
O2'—C9'1.3630 (16)N4'—H04'0.836 (12)
O2'—C12'1.4417 (19)C7'—H7'0.9500
O3'—C17'1.3733 (18)C8'—H8'0.9500
O3'—C20'1.425 (2)C10'—H10'0.9500
N1'—C2'1.3402 (17)C11'—H11'0.9500
N1'—C14'1.4335 (19)C12'—H12C0.9900
C2'—N3'1.3501 (17)C12'—H12D0.9900
N3'—N4'1.3908 (16)C13'—H13D0.9800
N4'—C5'1.3678 (19)C13'—H13E0.9800
C5'—C6'1.487 (2)C13'—H13F0.9800
C6'—C11'1.393 (2)C15'—H15'0.9500
C6'—C7'1.4039 (19)C16'—H16'0.9500
C7'—C8'1.3840 (19)C18'—H18'0.9500
C8'—C9'1.393 (2)C19'—H19'0.9500
C9'—C10'1.390 (2)C20'—H20D0.9800
C10'—C11'1.3877 (19)C20'—H20E0.9800
C12'—C13'1.507 (2)C20'—H20F0.9800
C9—O2—C12117.42 (12)C6—C7—H7119.8
C17—O3—C20116.97 (14)C7—C8—H8119.8
C2—N1—C14125.98 (13)C9—C8—H8119.8
N1—C2—N3116.31 (13)C11—C10—H10120.3
N1—C2—S125.42 (11)C9—C10—H10120.3
N3—C2—S118.27 (11)C10—C11—H11119.3
C2—N3—N4122.97 (12)C6—C11—H11119.3
C5—N4—N3118.10 (13)O2—C12—H12A110.3
O1—C5—N4120.60 (15)C13—C12—H12A110.3
O1—C5—C6122.96 (14)O2—C12—H12B110.3
N4—C5—C6116.44 (14)C13—C12—H12B110.3
C11—C6—C7118.40 (14)H12A—C12—H12B108.6
C11—C6—C5123.71 (13)C12—C13—H13A109.5
C7—C6—C5117.89 (14)C12—C13—H13B109.5
C8—C7—C6120.43 (15)H13A—C13—H13B109.5
C7—C8—C9120.49 (15)C12—C13—H13C109.5
O2—C9—C8116.02 (14)H13A—C13—H13C109.5
O2—C9—C10124.21 (15)H13B—C13—H13C109.5
C8—C9—C10119.77 (14)C14—C15—H15120.1
C11—C10—C9119.48 (15)C16—C15—H15120.1
C10—C11—C6121.42 (14)C17—C16—H16119.5
O2—C12—C13106.96 (13)C15—C16—H16119.5
C19—C14—C15119.26 (15)C17—C18—H18120.0
C19—C14—N1120.81 (15)C19—C18—H18120.0
C15—C14—N1119.90 (15)C14—C19—H19119.5
C14—C15—C16119.76 (17)C18—C19—H19119.5
C17—C16—C15120.94 (17)O3—C20—H20A109.5
C18—C17—C16119.13 (16)O3—C20—H20B109.5
C18—C17—O3124.15 (16)H20A—C20—H20B109.5
C16—C17—O3116.71 (16)O3—C20—H20C109.5
C17—C18—C19119.93 (16)H20A—C20—H20C109.5
C14—C19—C18120.94 (16)H20B—C20—H20C109.5
C9'—O2'—C12'117.59 (12)C2'—N1'—H01'118.7 (11)
C17'—O3'—C20'116.84 (14)C14'—N1'—H01'116.6 (11)
C2'—N1'—C14'124.62 (13)C2'—N3'—H03'120.0 (9)
N1'—C2'—N3'116.56 (13)N4'—N3'—H03'116.5 (9)
N1'—C2'—S'125.22 (11)C5'—N4'—H04'121.1 (11)
N3'—C2'—S'118.21 (11)N3'—N4'—H04'115.2 (11)
C2'—N3'—N4'122.41 (12)C8'—C7'—H7'119.7
C5'—N4'—N3'117.96 (13)C6'—C7'—H7'119.7
O1'—C5'—N4'121.01 (15)C7'—C8'—H8'120.0
O1'—C5'—C6'122.84 (14)C9'—C8'—H8'120.0
N4'—C5'—C6'116.14 (14)C11'—C10'—H10'120.1
C11'—C6'—C7'118.59 (14)C9'—C10'—H10'120.1
C11'—C6'—C5'123.61 (14)C10'—C11'—H11'119.5
C7'—C6'—C5'117.80 (14)C6'—C11'—H11'119.5
C8'—C7'—C6'120.58 (15)O2'—C12'—H12C110.3
C7'—C8'—C9'120.05 (14)C13'—C12'—H12C110.3
O2'—C9'—C10'124.03 (15)O2'—C12'—H12D110.3
O2'—C9'—C8'115.99 (14)C13'—C12'—H12D110.3
C10'—C9'—C8'119.97 (14)H12C—C12'—H12D108.5
C11'—C10'—C9'119.79 (15)C12'—C13'—H13D109.5
C10'—C11'—C6'121.00 (15)C12'—C13'—H13E109.5
O2'—C12'—C13'107.32 (14)H13D—C13'—H13E109.5
C19'—C14'—C15'120.33 (15)C12'—C13'—H13F109.5
C19'—C14'—N1'119.55 (15)H13D—C13'—H13F109.5
C15'—C14'—N1'120.08 (15)H13E—C13'—H13F109.5
C14'—C15'—C16'119.21 (17)C14'—C15'—H15'120.4
C17'—C16'—C15'120.65 (16)C16'—C15'—H15'120.4
O3'—C17'—C16'116.52 (16)C17'—C16'—H16'119.7
O3'—C17'—C18'123.46 (17)C15'—C16'—H16'119.7
C16'—C17'—C18'120.02 (16)C17'—C18'—H18'120.4
C17'—C18'—C19'119.23 (17)C19'—C18'—H18'120.4
C14'—C19'—C18'120.52 (16)C14'—C19'—H19'119.7
C2—N1—H01118.0 (11)C18'—C19'—H19'119.7
C14—N1—H01116.0 (11)O3'—C20'—H20D109.5
C2—N3—H03117.6 (9)O3'—C20'—H20E109.5
N4—N3—H03119.0 (9)H20D—C20'—H20E109.5
C5—N4—H04122.2 (12)O3'—C20'—H20F109.5
N3—N4—H04113.2 (12)H20D—C20'—H20F109.5
C8—C7—H7119.8H20E—C20'—H20F109.5
C14—N1—C2—N3171.14 (15)C14'—N1'—C2'—N3'173.21 (15)
C14—N1—C2—S9.0 (2)C14'—N1'—C2'—S'8.1 (2)
N1—C2—N3—N45.3 (2)N1'—C2'—N3'—N4'9.0 (2)
S—C2—N3—N4174.82 (11)S'—C2'—N3'—N4'172.22 (11)
C2—N3—N4—C5123.25 (16)C2'—N3'—N4'—C5'119.34 (16)
N3—N4—C5—O110.8 (2)N3'—N4'—C5'—O1'11.7 (2)
N3—N4—C5—C6169.88 (12)N3'—N4'—C5'—C6'169.66 (11)
O1—C5—C6—C11177.14 (15)O1'—C5'—C6'—C11'174.11 (15)
N4—C5—C6—C113.6 (2)N4'—C5'—C6'—C11'7.2 (2)
O1—C5—C6—C73.6 (2)O1'—C5'—C6'—C7'5.6 (2)
N4—C5—C6—C7175.64 (13)N4'—C5'—C6'—C7'173.03 (13)
C11—C6—C7—C80.7 (2)C11'—C6'—C7'—C8'0.2 (2)
C5—C6—C7—C8179.97 (13)C5'—C6'—C7'—C8'180.00 (13)
C6—C7—C8—C90.1 (2)C6'—C7'—C8'—C9'0.7 (2)
C12—O2—C9—C8176.35 (13)C12'—O2'—C9'—C10'2.1 (2)
C12—O2—C9—C103.6 (2)C12'—O2'—C9'—C8'177.49 (13)
C7—C8—C9—O2179.13 (12)C7'—C8'—C9'—O2'178.38 (12)
C7—C8—C9—C100.8 (2)C7'—C8'—C9'—C10'1.2 (2)
O2—C9—C10—C11178.93 (13)O2'—C9'—C10'—C11'178.20 (13)
C8—C9—C10—C111.0 (2)C8'—C9'—C10'—C11'1.4 (2)
C9—C10—C11—C60.4 (2)C9'—C10'—C11'—C6'1.0 (2)
C7—C6—C11—C100.5 (2)C7'—C6'—C11'—C10'0.4 (2)
C5—C6—C11—C10179.72 (13)C5'—C6'—C11'—C10'179.86 (13)
C9—O2—C12—C13174.97 (12)C9'—O2'—C12'—C13'173.82 (13)
C2—N1—C14—C1950.0 (2)C2'—N1'—C14'—C19'60.2 (2)
C2—N1—C14—C15131.93 (18)C2'—N1'—C14'—C15'122.06 (18)
C19—C14—C15—C160.3 (3)C19'—C14'—C15'—C16'0.9 (3)
N1—C14—C15—C16178.35 (18)N1'—C14'—C15'—C16'178.60 (16)
C14—C15—C16—C171.6 (3)C14'—C15'—C16'—C17'0.4 (3)
C15—C16—C17—C182.2 (3)C20'—O3'—C17'—C16'179.90 (16)
C15—C16—C17—O3178.87 (19)C20'—O3'—C17'—C18'0.1 (3)
C20—O3—C17—C180.9 (3)C15'—C16'—C17'—O3'179.18 (16)
C20—O3—C17—C16179.71 (18)C15'—C16'—C17'—C18'0.6 (3)
C16—C17—C18—C190.9 (3)O3'—C17'—C18'—C19'179.81 (17)
O3—C17—C18—C19179.73 (17)C16'—C17'—C18'—C19'0.4 (3)
C15—C14—C19—C181.6 (3)C15'—C14'—C19'—C18'2.0 (3)
N1—C14—C19—C18179.64 (16)N1'—C14'—C19'—C18'179.66 (15)
C17—C18—C19—C141.0 (3)C17'—C18'—C19'—C14'1.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S0.83 (1)2.74 (1)3.4483 (14)146 (1)
N4—H04···O1i0.81 (1)2.02 (1)2.8156 (17)168 (2)
N1—H01···Sii0.82 (1)2.66 (1)3.3772 (14)148 (1)
N4—H04···O1i0.84 (1)2.01 (1)2.8228 (18)164 (2)
C11—H11···O1i0.952.413.3378 (19)166
C11—H11···O1i0.952.383.2927 (18)162
C20—H20B···Siii0.982.983.9215 (17)161
C20—H20E···Siv0.982.923.8936 (18)175
C10—H10···Si0.952.833.7559 (17)166
C10—H10···Si0.952.813.7369 (17)166
C15—H15···Sii0.953.053.6482 (16)123
C15—H15···S0.952.943.6925 (17)137
N3—H03···Cg0.85 (1)2.533.25144
N3—H03···Cg'v0.82 (1)2.653.29135
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+2, y+1/2, z+2; (iv) x+2, y+1/2, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H19N3O3S
Mr345.41
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)15.40429 (13), 9.67120 (9), 11.69922 (9)
β (°) 95.0922 (7)
V3)1736.05 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.981, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
44704, 9918, 6348
Rint0.032
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.055, 0.96
No. of reflections9918
No. of parameters461
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.23
Absolute structureFlack (1983), 4562 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···S'0.826 (11)2.735 (12)3.4483 (14)145.5 (14)
N4—H04···O1'i0.812 (12)2.016 (13)2.8156 (17)168.2 (17)
N1'—H01'···Sii0.816 (11)2.659 (12)3.3772 (14)147.8 (14)
N4'—H04'···O1i0.836 (12)2.011 (13)2.8228 (18)163.7 (15)
C11'—H11'···O1i0.952.413.3378 (19)166.3
C11—H11···O1'i0.952.383.2927 (18)162.2
C20—H20B···Siii0.982.983.9215 (17)161.3
C20'—H20E···S'iv0.982.923.8936 (18)174.6
C10'—H10'···Si0.952.833.7559 (17)165.7
C10—H10···S'i0.952.813.7369 (17)165.8
C15'—H15'···Sii0.953.053.6482 (16)122.8
C15—H15···S'0.952.943.6925 (17)137.1
N3'—H03'···Cg0.847 (10)2.533.25144
N3—H03···Cg'v0.822 (10)2.653.29135
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+2, y+1/2, z+2; (iv) x+2, y+1/2, z+1; (v) x, y, z+1.
 

References

First citationAl-Masoudi, I. A., Al-Soud, Y. A., Al-Salihi, N. J. & Al-Masoudi, N. A. (2006). Chem. Heterocycl. Comp. 42, 1377–1403.  CrossRef CAS Google Scholar
First citationAngelusiu, M. V., Almajan, G. L., Rosu, T., Negoiu, M., Almajan, E. R. & Roy, J. (2009). Eur. J. Med. Chem. 44, 3323–3329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, S., Mishra, A. K. & Bhatia, G. (2009). Bioorg. Med. Chem. Lett. 19, 386–389.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, S. G., Kucukguzel, I., Tatar, E. & Rollas, S. (2007). Eur. J. Med. Chem. 42, 893–901.  Web of Science CrossRef PubMed Google Scholar
First citationLiu, J., Cao, R., Yi, W., Ma, C., Wan, Y., Zhou, B., Ma, L. & Song, H. (2009). Eur. J. Med. Chem. 44, 1773–1778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, Oxford, UK.  Google Scholar
First citationSerwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC pp. 210–221.  Google Scholar
First citationSerwer, M., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, USA.  Google Scholar
First citationTomascikava, J., Imrich, J. & Danihel, I. (2008). Molecules 13, 501–518.  Web of Science PubMed Google Scholar
First citationTozkoparan, B., Kupeli, E., Yesilada, E. & Ertan, M. (2007). Bioorg. Med. Chem. 15, 1808–1814.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds