

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1'-[4-(4-Methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-diyl]diethanone

M. Thenmozhi,^a T. Kavitha,^a B. Palakshi Reddy,^b V. Vijayakumar^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India. Correspondence e-mail: mnpsy2004@yahoo.com

Received 12 September 2009; accepted 12 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.148; data-to-parameter ratio = 19.5.

In the title compound, $C_{18}H_{21}NO_3$, which belongs to the family of calcium channel blockers, the dihydropyridine ring assumes a flattened boat conformation. The two carbonyl units adopt a synperiplanar conformation with respect to the double bonds in the dihydropyridine ring. The methoxyphenyl ring is almost perpendicular to the prydine ring [dihedral angle = 89.01 (7)°]. In the crystal, the molecules are connected by intermolecular N-H···O hydrogen bonds.

Related literature

For general background, see: Ganjali et al. (2007); Xia et al. (2005). For hybridization, see: Beddoes et al.(1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data C18H21NO3

 $M_r = 299.36$

organic compounds

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

Z = 8

Orthorhombic, Pbca a = 12.0781 (3) Å b = 8.9650 (2) Åc = 29.3755 (8) Å V = 3180.78 (14) Å³

Data collection

Bruker Kappa APEXII area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.979, T_{\rm max} = 0.983$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 \\ wR(F^2) &= 0.148 \end{split}$$
S = 1.054055 reflections 208 parameters 1 restraint

36021 measured reflections 4055 independent reflections

2828 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.032$

H atoms treated by a mixture of

refinement $\Delta \rho_{\rm max} = 0.21$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

independent and constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^i$	0.869 (19)	2.03 (2)	2.8961 (19)	173.1 (18)
Symmetry code: (i)	$x - \frac{1}{2}, y, -z + \frac{1}{2}$			

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. VV thanks the DST-India for funding the project under the Fast-Track Proposal scheme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5060).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ganjali, M. R., Rezapour, M., Rasoolipour, S., Norouzi, P. & Adib, M. (2007). J. Braz. Chem. Soc. 18, 352-358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xia, J. J. & Wang, G. W. (2005). One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water in Thieme eJournals, Synthesis 2005, pp. 2379-2383. New York: Georg Thieme Verlag Stuttgart.

supporting information

Acta Cryst. (2009). E65, o2795 [https://doi.org/10.1107/S1600536809041592]

1,1'-[4-(4-Methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-diyl]diethanone

M. Thenmozhi, T. Kavitha, B. Palakshi Reddy, V. Vijayakumar and M. N. Ponnuswamy

S1. Comment

1,4-Dihydropyridine compounds are the important class of calcium channel blockers and as such commercialized in, for instance nifedipine, amlodipine or nimodipine (Xia *et al.*, 2005). Pyridine derivatives can be used as a suitable neutral ionophore for preparing an Er(III) membrane sensor with high selectivity, which are utilized for direct monitoring of Er(III) in binary mixtures and indirect determination of fluoride ions in mouth wash preparations (Ganjali *et al.*, 2007).

The ORTEP plot of the molecule is shown in Fig. 1. The pyridine ring assumes a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) $q_2=0.2975$ (16)Å, $q_3=-0.0900$ (16)Å, $\varphi=355.2$ (3)° and asymmetry parameters (Nardelli, 1983) $\Delta_s(N1,C4) = 3.26$ (16)°. The methyl groups attached at C2 and C6 positions of the pyridine ring adopt equatorial oriention as can be seen from the torsion angles [C7-C2-N1-C6=]-165.71 (15)° and [C19-C6-N1-C2 =]164.36 (15)°. Both the carboxylate groups at 3rd and 5th positions in the pyridine ring, have synperiplanar(sp) conformation with respect to the double bonds in the dihydropyridine ring which are evident from the torsion angles [C2-C3-C8-O1=]-6.3 (3)°) and [C6-C5-C17-O3=]-17.3 (3)°. The methoxyphenyl ring is almost perpendicular to the best plane of the prydine ring as can be seen from the dihedral angle of 89.01 (7)°. The sum of the bond angles around atom N1[357.06°] of the pyridine ring is in accordance with sp² hybridization (Beddoes *et al.*, 1986).

Atom N1(x,y,z) of the pyridine ring donates a proton to atom O1(-1/2+x,y,1/2-z), leading to a zig-zag chain running along the *a* - axis (Fig. 2).

S2. Experimental

Dimethyl-4-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was prepared by heating the mixture of 4-methoxybenzaldehyde (10 mmol), methylacetoacetate (20 mmol) and ammonium acetate (10 mmol) at 80°C for 2 hours and 45 min (monitored by TLC). After completion of the reaction, the mixture was cooled to room temperature and kept for 3 days to get the solid product. The obtained solid was washed with diethyl ether and collected separately. The purity of the crude product was checked through TLC and recrystallized using acetone and ether.

S3. Refinement

H atoms were positioned geometrically (C-H = 0.93-0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C5 and C6 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Perpective view of the molecule, showing 30% probability displacement ellipsoids.

Figure 2

Crystal packing of the molecules viewed down *a* axis.

1,1'-[4-(4-Methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-diyl]diethanone

Crystal data	
$C_{18}H_{21}NO_3$	F(000) = 1280
$M_r = 299.36$	$D_{\rm x} = 1.250 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4055 reflections
a = 12.0781 (3) Å	$\theta = 1.4 - 28.6^{\circ}$
b = 8.9650 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 29.3755 (8) Å	T = 293 K
$V = 3180.78 (14) Å^3$	Block, light yellow
<i>Z</i> = 8	$0.25 \times 0.20 \times 0.20$ mm
Data collection	
Bruker Kappa APEXII area-detector	36021 measured reflections
diffractometer	4055 independent reflections
Radiation source: fine-focus sealed tube	2828 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
ω and φ scans	$\theta_{\text{max}} = 28.6^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 14$
(SADABS; Sheldrick, 2001)	$k = -12 \rightarrow 10$
$T_{\min} = 0.979, \ T_{\max} = 0.983$	$l = -37 \rightarrow 39$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.148$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
4055 reflections	and constrained refinement
208 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 1.0129P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.003$
direct methods	$\Delta ho_{ m max} = 0.21 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C2	0.52089 (13)	0.12861 (18)	0.28911 (5)	0.0418 (4)	
C3	0.60545 (12)	0.18029 (17)	0.31531 (5)	0.0392 (3)	
C4	0.57919 (12)	0.24866 (17)	0.36162 (5)	0.0378 (3)	
H4	0.6343	0.3265	0.3675	0.045*	
C5	0.46584 (13)	0.32299 (17)	0.36102 (5)	0.0409 (3)	
C6	0.38706 (12)	0.27123 (18)	0.33254 (5)	0.0422 (3)	
C7	0.52978 (15)	0.0360 (2)	0.24679 (6)	0.0595 (5)	
H7A	0.5613	0.0949	0.2228	0.089*	
H7B	0.4574	0.0025	0.2379	0.089*	
H7C	0.5763	-0.0487	0.2526	0.089*	
C8	0.72005 (13)	0.1649 (2)	0.30089 (6)	0.0487 (4)	
C9	0.81050 (15)	0.2381 (3)	0.32811 (8)	0.0741 (6)	
H9A	0.8186	0.1875	0.3567	0.111*	
H9B	0.7918	0.3407	0.3334	0.111*	
H9C	0.8789	0.2327	0.3115	0.111*	
C10	0.59067 (12)	0.13184 (16)	0.39902 (5)	0.0368 (3)	
C11	0.67301 (14)	0.14207 (18)	0.43151 (5)	0.0460 (4)	
H11	0.7216	0.2225	0.4304	0.055*	
C12	0.68580 (14)	0.03681 (19)	0.46561 (5)	0.0486 (4)	
H12	0.7423	0.0467	0.4869	0.058*	
C13	0.61449 (13)	-0.08222 (17)	0.46774 (5)	0.0438 (4)	
C14	0.53161 (14)	-0.09579 (19)	0.43563 (6)	0.0478 (4)	
H14	0.4833	-0.1765	0.4368	0.057*	
C15	0.52023 (13)	0.00946 (17)	0.40189 (5)	0.0434 (4)	

H15	0.4641	-0.0015	0.3805	0.052*
C16	0.70171 (18)	-0.1747 (2)	0.53459 (6)	0.0664 (5)
H16A	0.7741	-0.1742	0.5211	0.100*
H16B	0.6964	-0.2558	0.5558	0.100*
H16C	0.6895	-0.0822	0.5502	0.100*
C17	0.44451 (17)	0.44728 (19)	0.39277 (6)	0.0547 (5)
C18	0.5199 (2)	0.4709 (2)	0.43225 (7)	0.0728 (6)
H18A	0.4905	0.5480	0.4514	0.109*
H18B	0.5918	0.5000	0.4214	0.109*
H18C	0.5261	0.3800	0.4493	0.109*
C19	0.26738 (14)	0.3160 (2)	0.33045 (7)	0.0589 (5)
H19A	0.2469	0.3640	0.3584	0.088*
H19B	0.2224	0.2289	0.3261	0.088*
H19C	0.2564	0.3837	0.3055	0.088*
N1	0.41402 (11)	0.16250 (16)	0.30102 (5)	0.0441 (3)
01	0.74715 (11)	0.09406 (19)	0.26662 (4)	0.0754 (5)
O2	0.62054 (12)	-0.19260 (14)	0.49995 (4)	0.0596 (4)
03	0.36634 (16)	0.5314 (2)	0.38831 (6)	0.1011 (6)
H1	0.3631 (16)	0.135 (2)	0.2819 (6)	0.057 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0386 (8)	0.0492 (9)	0.0374 (7)	0.0028 (7)	0.0024 (6)	0.0020 (6)
C3	0.0345 (7)	0.0462 (8)	0.0370 (7)	0.0005 (6)	0.0022 (6)	0.0023 (6)
C4	0.0386 (7)	0.0384 (8)	0.0364 (7)	-0.0017 (6)	0.0021 (6)	0.0010 (6)
C5	0.0446 (8)	0.0388 (8)	0.0393 (7)	0.0045 (6)	0.0071 (6)	0.0067 (6)
C6	0.0384 (7)	0.0456 (9)	0.0426 (8)	0.0069 (6)	0.0071 (6)	0.0113 (6)
C7	0.0497 (10)	0.0809 (13)	0.0479 (9)	0.0060 (9)	-0.0051 (8)	-0.0174 (9)
C8	0.0378 (8)	0.0648 (11)	0.0435 (8)	-0.0005 (7)	0.0069 (7)	0.0053 (8)
C9	0.0388 (9)	0.1061 (17)	0.0773 (13)	-0.0135 (11)	0.0059 (9)	-0.0123 (13)
C10	0.0387 (8)	0.0364 (7)	0.0351 (7)	0.0025 (6)	0.0030 (6)	-0.0027 (6)
C11	0.0473 (9)	0.0436 (8)	0.0470 (9)	-0.0054 (7)	-0.0054 (7)	0.0002 (7)
C12	0.0517 (9)	0.0502 (9)	0.0440 (8)	0.0015 (8)	-0.0097 (7)	0.0014 (7)
C13	0.0490 (9)	0.0414 (8)	0.0410 (8)	0.0093 (7)	0.0043 (7)	0.0038 (7)
C14	0.0475 (9)	0.0407 (8)	0.0552 (9)	-0.0036 (7)	0.0007 (7)	0.0042 (7)
C15	0.0416 (8)	0.0432 (8)	0.0454 (8)	-0.0025 (7)	-0.0051 (6)	0.0006 (7)
C16	0.0765 (13)	0.0739 (13)	0.0488 (10)	0.0138 (11)	-0.0043 (9)	0.0162 (9)
C17	0.0683 (12)	0.0430 (9)	0.0529 (10)	0.0123 (8)	0.0117 (8)	0.0041 (7)
C18	0.0929 (16)	0.0552 (11)	0.0704 (13)	0.0078 (11)	-0.0053 (11)	-0.0226 (10)
C19	0.0413 (9)	0.0695 (12)	0.0660 (11)	0.0145 (8)	0.0062 (8)	0.0108 (9)
N1	0.0335 (7)	0.0551 (8)	0.0438 (7)	0.0018 (6)	-0.0028 (6)	-0.0005 (6)
O1	0.0454 (7)	0.1195 (12)	0.0613 (8)	-0.0014 (8)	0.0170 (6)	-0.0231 (8)
O2	0.0696 (8)	0.0534 (7)	0.0559 (7)	0.0045 (6)	-0.0023 (6)	0.0167 (6)
O3	0.1203 (14)	0.0915 (12)	0.0916 (12)	0.0615 (11)	-0.0129 (10)	-0.0239 (10)

Geometric parameters (Å, °)

C2—C3	1.360 (2)	C11—C12	1.385 (2)	
C2—N1	1.3715 (19)	C11—H11	0.9300	
C2—C7	1.499 (2)	C12—C13	1.373 (2)	
C3—C8	1.454 (2)	C12—H12	0.9300	
C3—C4	1.526 (2)	C13—O2	1.3711 (19)	
C4—C5	1.523 (2)	C13—C14	1.381 (2)	
C4—C10	1.524 (2)	C14—C15	1.375 (2)	
C4—H4	0.9800	C14—H14	0.9300	
C5—C6	1.349 (2)	C15—H15	0.9300	
C5—C17	1.476 (2)	C16—O2	1.422 (2)	
C6—N1	1.383 (2)	C16—H16A	0.9600	
C6—C19	1.502 (2)	C16—H16B	0.9600	
С7—Н7А	0.9600	C16—H16C	0.9600	
С7—Н7В	0.9600	С17—ОЗ	1.216 (2)	
С7—Н7С	0.9600	C17—C18	1.490 (3)	
C8—O1	1.234 (2)	C18—H18A	0.9600	
C8—C9	1.504 (3)	C18—H18B	0.9600	
С9—Н9А	0.9600	C18—H18C	0.9600	
С9—Н9В	0.9600	C19—H19A	0.9600	
С9—Н9С	0.9600	C19—H19B	0.9600	
C10—C11	1.381 (2)	C19—H19C	0.9600	
C10—C15	1.391 (2)	N1—H1	0.869 (19)	
C3—C2—N1	119.13 (14)	C12—C11—H11	118.8	
C3—C2—C7	127.17 (14)	C13—C12—C11	119.51 (15)	
N1—C2—C7	113.69 (14)	C13—C12—H12	120.2	
C2—C3—C8	121.17 (14)	C11—C12—H12	120.2	
C2—C3—C4	119.04 (13)	O2—C13—C12	123.99 (15)	
C8—C3—C4	119.72 (13)	O2—C13—C14	116.52 (15)	
C5—C4—C10	113.01 (12)	C12—C13—C14	119.49 (15)	
C5—C4—C3	110.63 (12)	C15—C14—C13	120.29 (15)	
C10—C4—C3	110.35 (12)	C15—C14—H14	119.9	
C5—C4—H4	107.5	C13—C14—H14	119.9	
C10—C4—H4	107.5	C14—C15—C10	121.58 (14)	
C3—C4—H4	107.5	C14—C15—H15	119.2	
C6—C5—C17	121.90 (15)	C10—C15—H15	119.2	
C6—C5—C4	119.39 (14)	O2—C16—H16A	109.5	
C17—C5—C4	118.68 (15)	O2—C16—H16B	109.5	
C5—C6—N1	119.43 (14)	H16A—C16—H16B	109.5	
C5—C6—C19	127.76 (16)	O2—C16—H16C	109.5	
N1—C6—C19	112.80 (15)	H16A—C16—H16C	109.5	
С2—С7—Н7А	109.5	H16B—C16—H16C	109.5	
С2—С7—Н7В	109.5	O3—C17—C5	122.42 (18)	
H7A—C7—H7B	109.5	O3—C17—C18	118.06 (17)	
С2—С7—Н7С	109.5	C5—C17—C18	119.51 (16)	
H7A—C7—H7C	109.5	C17—C18—H18A	109.5	

H7B—C7—H7C	109.5	C17—C18—H18B	109.5
O1—C8—C3	122.60 (16)	H18A—C18—H18B	109.5
O1—C8—C9	117.72 (15)	C17—C18—H18C	109.5
C3—C8—C9	119.67 (15)	H18A—C18—H18C	109.5
С8—С9—Н9А	109.5	H18B—C18—H18C	109.5
C8—C9—H9B	109.5	C6—C19—H19A	109.5
H9A—C9—H9B	109.5	C6—C19—H19B	109.5
С8—С9—Н9С	109.5	H19A—C19—H19B	109.5
Н9А—С9—Н9С	109.5	C6—C19—H19C	109.5
H9B—C9—H9C	109.5	H19A—C19—H19C	109.5
C11—C10—C15	116.79 (14)	H19B—C19—H19C	109.5
C11—C10—C4	121.19 (13)	C2—N1—C6	123.26 (14)
C15—C10—C4	122.01 (13)	C2—N1—H1	116.0 (13)
C10-C11-C12	122.34 (15)	C6—N1—H1	117.8 (13)
C10-C11-H11	118.8	C13—O2—C16	116.70 (14)
N1—C2—C3—C8	-171.57 (15)	C5-C4-C10-C15	58.19 (18)
C7—C2—C3—C8	8.0 (3)	C3—C4—C10—C15	-66.27 (18)
N1-C2-C3-C4	11.4 (2)	C15-C10-C11-C12	-0.2 (2)
C7—C2—C3—C4	-169.03 (16)	C4-C10-C11-C12	-179.46 (15)
C2—C3—C4—C5	-30.7 (2)	C10-C11-C12-C13	-0.3 (3)
C8—C3—C4—C5	152.27 (14)	C11—C12—C13—O2	179.63 (15)
C2-C3-C4-C10	95.13 (17)	C11—C12—C13—C14	0.5 (2)
C8—C3—C4—C10	-81.92 (18)	O2-C13-C14-C15	-179.49 (15)
C10—C4—C5—C6	-95.93 (16)	C12—C13—C14—C15	-0.3 (2)
C3—C4—C5—C6	28.38 (19)	C13—C14—C15—C10	-0.2 (2)
C10-C4-C5-C17	82.28 (17)	C11-C10-C15-C14	0.4 (2)
C3—C4—C5—C17	-153.41 (14)	C4-C10-C15-C14	179.66 (14)
C17—C5—C6—N1	174.94 (14)	C6—C5—C17—O3	-17.3 (3)
C4—C5—C6—N1	-6.9 (2)	C4—C5—C17—O3	164.55 (19)
C17—C5—C6—C19	-5.9 (3)	C6—C5—C17—C18	161.94 (18)
C4—C5—C6—C19	172.25 (15)	C4—C5—C17—C18	-16.2 (2)
C2-C3-C8-O1	-6.3 (3)	C3—C2—N1—C6	13.9 (2)
C4—C3—C8—O1	170.70 (16)	C7—C2—N1—C6	-165.71 (15)
C2—C3—C8—C9	173.28 (18)	C5—C6—N1—C2	-16.4 (2)
C4—C3—C8—C9	-9.7 (2)	C19—C6—N1—C2	164.36 (15)
C5-C4-C10-C11	-122.56 (16)	C12—C13—O2—C16	4.3 (2)
C3—C4—C10—C11	112.98 (16)	C14—C13—O2—C16	-176.55 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O1 ⁱ	0.869 (19)	2.03 (2)	2.8961 (19)	173.1 (18)

Symmetry code: (i) x-1/2, y, -z+1/2.