Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-Ethyl 3-(2,4,6-trimethylanilino)but-2enoate

Manuel Amézguita-Valencia,* Simón Hernández-Ortega,* G. Alejandra Suárez-Ortiz, Rubén Alfredo Toscano and Armando Cabrera

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico

Correspondence e-mail: majo00@yahoo.com, simonho@unam.mx

Received 24 September 2009; accepted 28 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.145; data-to-parameter ratio = 15.9.

The title compound, C₁₅H₂₁NO₂, was obtained by the reaction of acetoacetate with 2,4,6-trimethylaniline using Mexican bentonitic clay as a catalyst. It crystallizes in the enamine form. The β -enamino ester residue is almost perpendicular to the aromatic ring [dihedral angle = $88.10 (6)^{\circ}$]. The molecular conformation is stabilized by a strong intramolecular N- $H \cdots O$ hydrogen bond. In addition, the N-H group forms a weak intermolecular N-H···O hydrogen bond linking the molecules into centrosymmetric dimers.

Related literature

For enamino esters as intermediates in the synthesis of natural products, see: Marchand et al. (1994). β -Enamino esters are useful in synthesis of pharmaceuticals and bioactive heterocycles (Spivey et al., 2003) and as precursors for the preparation of antibacterial, anticonvulsant (Michael et al., 2001), anti-inflamatory and antitumour agents. For the functionalization of these compounds by the introduction of different substituents on the nitrogen, α -carbon and β -carbonylic carbon atoms, see: Braibante et al. (2002).

Experimental

Crystal data

C15H21NO2 V = 1451.3 (2) Å³ $M_r = 247.33$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.5647 (8) Å $\mu = 0.07 \text{ mm}^{-1}$ b = 20.6131 (19) Å T = 298 Kc = 8.2404 (8) Å $0.48 \times 0.37 \times 0.15 \ \mathrm{mm}$ $\beta = 93.976 \ (2)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.970, \ T_{\max} = 0.989$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.145$	independent and constrained
S = 1.05	refinement
2634 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1	0.82 (2)	2.08 (2)	2.7516 (18)	138.7 (17)
$N1 - H1 \cdots O1^i$	0.82 (2)	2.60 (2)	3.2201 (18)	133.1 (16)
Summature and a (i)		1.1		

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5072).

References

- Braibante, H., Costa, C., Martins, D. & Braibante, M. (2002). Tetrahedron Lett. 43. 8079-8081
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Marchand, P., Fargeau-Bellassoued, M., Bellec, C. & Lhommet, G. (1994). Synthesis, pp. 1118-1120.
- Michael, J., Koning, C., Hosken, G. & Stanbury, T. (2001). Tetrahedron, 57, 9635-9648
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spivey, A., Srikaran, C., Diaper, C. & Turner, D. (2003). Org. Biomol. Chem. 1, 1638-1640.

11717 measured reflections

 $R_{\rm int} = 0.028$

2634 independent reflections

2160 reflections with $I > 2\sigma(I)$

Acta Cryst. (2009). E65, o2728 [https://doi.org/10.1107/S160053680903949X]

(Z)-Ethyl 3-(2,4,6-trimethylanilino)but-2-enoate

Manuel Amézquita-Valencia, Simón Hernández-Ortega, G. Alejandra Suárez-Ortiz, Rubén Alfredo Toscano and Armando Cabrera

S1. Comment

The enamino esters are gaining increased interest, which are known as important intermediates for the synthesis of natural products (Marchand *et al*, 1994). The β -enamino esters are useful in synthesis of pharmaceuticals and bioactive heterocycles (Spivey *et al.*, 2003) and as precursors for the preparation of antibacterial, anticonvulsant (Michael *et al.*, 2001), anti-inflamatory and antitumour agents. The functionalization of these compounds by the introduction of different substituents on the nitrogen atom, the α -carbon and β -carbonylic carbon atoms has been studied (Braibante *et al.*, 2002).

The molecular structure and the atomic numbering scheme is shown in Fig. 1. The trimethylyphenyl substituent is almost perpendicular to the β -enaminoester function forming a dihedral angle of 88.10 (6)°.

S2. Experimental

A mixture of ethyl acetoacetate (5 mmol), 2,4,6-trimethylaniline (5 mmol) were dispersed on Actisil-FF (1 g, Mexican Bentonitic Clay) and the mixture was stirred at r.t overnight. The product was extracted by washing the clay with CH_2Cl_2 (3x10mL), dried (Na₂SO₄), filtred and the solvent was removed *in vacuo*. The crude product was purified by column chromatography and recrystallized from hexane. Yield: 92%, *M.p.* 65.4°C

S3. Refinement

H atom on amine group was found in Fourier map and its coordinates were refined with $U_{iso}(H) = 1.2 U_{eq}(N)$. H atoms bonded to C atoms were placed in geometrically idealized positions [C-H = 0.97 Å (for CH₂) and 0.96 Å (for CH₃)] and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}C$ (methyl).

Figure 1

The Molecular structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms bonded to C omitted. The intramolecular hydrogen bond is shown as a dashed line.

(Z)-Ethyl 3-(2,4,6-trimethylanilino)but-2-enoate

Crystal data

C₁₅H₂₁NO₂ $M_r = 247.33$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.5647 (8) Å b = 20.6131 (19) Å c = 8.2404 (8) Å $\beta = 93.976$ (2)° V = 1451.3 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.661 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{min} = 0.970, T_{max} = 0.989$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.145$ S = 1.052634 reflections 166 parameters 0 restraints F(000) = 536 $D_x = 1.132 \text{ Mg m}^{-3}$ Melting point: 338.2 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5426 reflections $\theta = 2.6-25.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 298 KPlates, colorless $0.48 \times 0.37 \times 0.15 \text{ mm}$

11717 measured reflections 2634 independent reflections 2160 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.4^\circ$, $\theta_{min} = 2.0^\circ$ $h = -10 \rightarrow 10$ $k = -24 \rightarrow 24$ $l = -9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0824P)^{2} + 0.188P] \qquad \Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	V	7	Uice*/Uce	
01	0.24004 (14)	0.02620.(6)	0.57044 (15)	0.0678 (4)	
01	0.34094(14) 0.12207(13)	0.02029(0)	0.57044(13) 0.67115(14)	0.0078(4) 0.0634(3)	
02 N1	0.12297(13)	0.00308(3)	0.0/113(14)	0.0034(3)	
	0.48408(17)	0.11091(7)	0.36990 (19)	0.0608 (4)	
HI C1	0.475(2)	0.0741(10)	0.407 (2)	0.073*	
CI	0.25234 (18)	0.07166 (8)	0.58833 (18)	0.0531 (4)	
C2	0.26799 (18)	0.13592 (8)	0.5250 (2)	0.0572 (4)	
H2	0.1988	0.1676	0.5560	0.069*	
C3	0.37828 (18)	0.15303 (8)	0.4223 (2)	0.0559 (4)	
C4	0.3850 (2)	0.22125 (9)	0.3585 (3)	0.0767 (6)	
H4A	0.4923	0.2344	0.3555	0.115*	
H4B	0.3321	0.2499	0.4285	0.115*	
H4C	0.3349	0.2230	0.2507	0.115*	
C5	0.0901 (2)	0.00058 (9)	0.7287 (3)	0.0746 (5)	
H5A	0.1642	-0.0108	0.8185	0.089*	
H5B	0.0998	-0.0307	0.6421	0.089*	
C6	-0.0711 (2)	-0.00040 (10)	0.7828 (2)	0.0733 (5)	
H6A	-0.0964	-0.0435	0.8164	0.110*	
H6B	-0.1433	0.0128	0.6946	0.110*	
H6C	-0.0782	0.0289	0.8725	0.110*	
C7	0.60799 (18)	0.12825 (7)	0.27088 (19)	0.0520 (4)	
C8	0.58802 (19)	0.12037 (8)	0.1023 (2)	0.0568 (4)	
C9	0.7112 (2)	0.13715 (8)	0.0097 (2)	0.0603 (4)	
H9	0.6984	0.1328	-0.1027	0.072*	
C10	0.85176 (19)	0.16000 (8)	0.0787(2)	0.0568 (4)	
C11	0.86788 (19)	0.16666 (8)	0.2457 (2)	0.0577 (4)	
H11	0.9623	0.1819	0.2938	0.069*	
C12	0.74836(19)	0.15143 (7)	0.34424 (19)	0.0549 (4)	
C13	0.4379(2)	0.09401(11)	0.0225(3)	0.0857 (6)	
H13A	0.4511	0.0857	-0.0903	0.129*	
H13R	0.3556	0.1251	0.0319	0.129*	
H13C	0.4112	0.0544	0.0752	0.129	
C14	0.9112 0.0846 (2)	0.0344	-0.0250(3)	0.129	
014	0.2040 (2)	0.17003 (10)	0.0230(3)	0.0794(0)	

H14A	1.0610	0.2021	0.0375	0.119*
H14B	0.9449	0.2010	-0.1182	0.119*
H14C	1.0322	0.1374	-0.0603	0.119*
C15	0.7719 (3)	0.15816 (11)	0.5262 (2)	0.0779 (6)
H15A	0.8812	0.1640	0.5567	0.117*
H15B	0.7350	0.1197	0.5771	0.117*
H15C	0.7146	0.1951	0.5608	0.117*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0634 (7)	0.0594 (7)	0.0838 (8)	0.0124 (6)	0.0279 (6)	0.0107 (6)
O2	0.0624 (7)	0.0567 (7)	0.0746 (7)	0.0074 (5)	0.0297 (6)	0.0078 (5)
N1	0.0599 (8)	0.0490 (8)	0.0766 (9)	0.0057 (6)	0.0279 (7)	0.0094 (6)
C1	0.0497 (8)	0.0573 (9)	0.0535 (8)	0.0036 (7)	0.0120 (7)	-0.0022 (6)
C2	0.0530 (9)	0.0534 (9)	0.0672 (10)	0.0071 (7)	0.0176 (7)	-0.0019 (7)
C3	0.0543 (9)	0.0506 (8)	0.0639 (9)	0.0035 (7)	0.0119 (7)	0.0002 (7)
C4	0.0776 (12)	0.0550 (10)	0.1014 (14)	0.0119 (9)	0.0333 (11)	0.0115 (9)
C5	0.0786 (12)	0.0627 (11)	0.0861 (12)	0.0072 (9)	0.0319 (10)	0.0177 (9)
C6	0.0698 (12)	0.0707 (11)	0.0814 (12)	-0.0063 (9)	0.0192 (9)	0.0079 (9)
C7	0.0514 (9)	0.0451 (8)	0.0610 (9)	0.0051 (6)	0.0156 (7)	0.0047 (6)
C8	0.0527 (9)	0.0570 (9)	0.0610 (9)	0.0046 (7)	0.0056 (7)	-0.0013 (7)
C9	0.0667 (10)	0.0639 (10)	0.0510 (8)	0.0071 (8)	0.0102 (7)	0.0015 (7)
C10	0.0594 (10)	0.0492 (8)	0.0636 (9)	0.0036 (7)	0.0186 (7)	0.0058 (7)
C11	0.0534 (9)	0.0518 (9)	0.0683 (10)	-0.0035 (7)	0.0079 (7)	0.0008 (7)
C12	0.0610 (10)	0.0492 (8)	0.0552 (9)	0.0056 (7)	0.0081 (7)	0.0026 (6)
C13	0.0639 (12)	0.1009 (16)	0.0914 (14)	-0.0044 (10)	-0.0012 (10)	-0.0153 (12)
C14	0.0781 (13)	0.0738 (12)	0.0907 (14)	-0.0036 (10)	0.0375 (11)	0.0090 (10)
C15	0.0872 (14)	0.0882 (14)	0.0583 (10)	0.0039 (11)	0.0061 (9)	-0.0009 (9)

Geometric parameters (Å, °)

01—C1	1.2196 (18)	С7—С8	1.397 (2)
O2—C1	1.3479 (18)	C8—C9	1.388 (2)
O2—C5	1.446 (2)	C8—C13	1.505 (3)
N1—C3	1.351 (2)	C9—C10	1.378 (2)
N1—C7	1.4243 (19)	С9—Н9	0.9300
N1—H1	0.82 (2)	C10-C11	1.380 (2)
C1—C2	1.433 (2)	C10-C14	1.509 (2)
C2—C3	1.358 (2)	C11—C12	1.386 (2)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.504 (2)	C12—C15	1.506 (2)
C4—H4A	0.9600	C13—H13A	0.9600
C4—H4B	0.9600	C13—H13B	0.9600
C4—H4C	0.9600	C13—H13C	0.9600
С5—С6	1.481 (3)	C14—H14A	0.9600
С5—Н5А	0.9700	C14—H14B	0.9600
С5—Н5В	0.9700	C14—H14C	0.9600

С6—Н6А	0.9600	C15—H15A	0.9600
С6—Н6В	0.9600	C15—H15B	0.9600
С6—Н6С	0.9600	C15—H15C	0.9600
C7—C12	1.392 (2)		
C1—O2—C5	116.36 (12)	C9—C8—C7	118.18 (15)
C3—N1—C7	124.42 (14)	C9—C8—C13	120.59 (16)
C3—N1—H1	112.7 (13)	C7—C8—C13	121.23 (16)
C7—N1—H1	122.8 (13)	C10—C9—C8	122.28 (15)
O1—C1—O2	121.62 (14)	С10—С9—Н9	118.9
O1—C1—C2	126.15 (14)	С8—С9—Н9	118.9
O2—C1—C2	112.22 (13)	C9—C10—C11	117.98 (15)
C3—C2—C1	123.61 (14)	C9—C10—C14	121.04 (16)
C3—C2—H2	118.2	C11—C10—C14	120.98 (17)
C1-C2-H2	118.2	C10-C11-C12	122.32 (15)
N1-C3-C2	123.10(15)	C10—C11—H11	118.8
N1-C3-C4	116 49 (15)	C12—C11—H11	118.8
$C_{2}-C_{3}-C_{4}$	12040(14)	C11 - C12 - C7	118.29 (15)
$C_3 - C_4 - H_4 A$	109 5	$C_{11} - C_{12} - C_{15}$	120.61 (16)
$C_3 - C_4 - H_4 B$	109.5	C7-C12-C15	120.01 (10)
$H_{4A} - C_{4} - H_{4B}$	109.5	C_{8} C_{13} H_{13}	109 5
$C_3 - C_4 - H_4C$	109.5	C8-C13-H13B	109.5
$H_{4A} - C_{4} - H_{4C}$	109.5	$H_{13} = C_{13} = H_{13}B$	109.5
HAB CA HAC	109.5	$C_8 C_{13} H_{13}C$	109.5
$0^{2} C^{5} C^{6}$	109.5		109.5
02 - 05 - 00	110.0	H13R C13 H13C	109.5
C6 C5 H5A	110.0	C10 C14 H144	109.5
C_{0} C_{5} H_{5} R_{0}	110.0	C10 - C14 - H14R	109.5
C_{1}	110.0	C10 - C14 - H14B	109.5
	100.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$H_{A} = C_{A} = H_{A}$	100.4		109.5
$C_{5} = C_{6} = H_{6} P_{6}$	109.5	H14A - C14 - H14C	109.5
	109.5	H14B - C14 - H14C	109.5
	109.5	C12—C15—H15A	109.5
C5-C6-H6C	109.5	CI2—CI5—HI5B	109.5
$H_0A - C_0 - H_0C$	109.5	HISA—CIS—HISB	109.5
HbB - Cb - HbC	109.5	C12—C15—H15C	109.5
C12 - C7 - C8	120.94 (14)	HISA—CIS—HISC	109.5
C12 - C/ - NI	119.32 (14)	HISB-CIS-HISC	109.5
C8-C/-NI	119.73 (14)		
C5 02 C1 01	27(2)	N1 C7 C9 C12	(1, 2, (2))
$C_{5} = 0_{2} = C_{1} = 0_{1}$	-3.7(2)	N1 - C = C = C = C = C = C = C = C = C = C	0.2(2)
$C_{3} = 0_{2} = C_{1} = C_{2}$	1/3.22(13)	$C_{12} = C_{8} = C_{10} = C_{10}$	1.2(2) 178 42(17)
01 - 01 - 02 - 03	0.4(3) -172 41 (15)	$C_{13} - C_{0} - C_{9} - C_{10}$	-1/6.42(1/)
02 - 01 - 02 - 03	-1/2.41(13)	$C_{0} = C_{10} = C_{14}$	-0.0(2)
$C_1 = 1 \times 1 = C_2 = C_2$	-1/3./1(10)	$C_0 = C_1 $	1/6.82(10) -0.2(2)
$C_1 = C_2 = C_2 = N_1$	3.4 (3) 0.1 (2)	C_{9} $- C_{10}$ $- C_{11}$ $- C_{12}$	-0.2(2)
CI = C2 = C3 = NI	-0.1(3)	C14-C10-C11-C12	-1/9.62(15)
C1 - C2 - C3 - C4	1/8./5(1/)	C10—C11—C12—C/	0.4 (2)

C1—O2—C5—C6	-167.50 (15)	C10-C11-C12-C15	178.79 (16)
C3—N1—C7—C12	85.6 (2)	C8—C7—C12—C11	0.1 (2)
C3—N1—C7—C8	-95.9 (2)	N1-C7-C12-C11	178.62 (13)
C12—C7—C8—C9	-0.9 (2)	C8—C7—C12—C15	-178.23 (15)
N1—C7—C8—C9	-179.37 (13)	N1—C7—C12—C15	0.2 (2)
C12—C7—C8—C13	178.68 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	$D \cdots A$	D—H···A
N1—H1…O1	0.82 (2)	2.08 (2)	2.7516 (18)	138.7 (17)
N1—H1···O1 ⁱ	0.82 (2)	2.60 (2)	3.2201 (18)	133.1 (16)

Symmetry code: (i) -x+1, -y, -z+1.