Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-Amino-6-methyl-1,3-benzothiazoleoctanedioic acid (2/1)

Yao-Geng Wang

College of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
Correspondence e-mail: luckyms@126.com
Received 16 October 2009; accepted 16 October 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.098$; data-to-parameter ratio $=14.6$.

Cocrystallization of 2-amino-6-methy-1,3-benzothiazole with octanedioic acid in a mixed methanol-water medium afforded the title $2: 1$ cocrystal, $2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S} \cdot \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$. The octanedioic acid molecule is located on an inversion centre. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the components into a three-dimensional network.

Related literature

For molecular self-assembly and its application in crystal engineering, see: Yang et al. (2007); Hunter (1993); Zhao et al. (2007). For the structures and properties of metal complexes and co-crystals with aminobenzothiazole and its derivatives, see: Shi et al. (2009); Lynch et al. (1999); Chen et al. (2008); Zhang et al. (2009). For the structure and performance of octanedioic acid-based metal complexes and co-crystals, see: Geraghty et al. (1999); McCann et al. (1995); Peral et al. (2001).

Experimental

Crystal data

$$
\begin{aligned}
& 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S} \cdot \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \\
& M_{r}=502.64 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=12.4372(12) \AA \\
& b=7.9165(8) \AA \\
& c=16.6061(12) \AA
\end{aligned}
$$

$$
\beta=127.992(5)^{\circ}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\text {max }}=0.958$

6745 measured reflections 2271 independent reflections 1767 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 156$ parameters
$w R\left(F^{2}\right)=0.098 \quad \mathrm{H}$-atom parameters constrained
$S=1.05$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3}$
2271 reflections

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.79	$2.5973(19)$	169
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.10	$2.922(2)$	159
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.19	$3.009(2)$	160
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{5}{2}$				

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: SHELXL97.

The author gratefully acknowledges financial support by Tianjin Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5102).

References

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Q., Yang, E. C., Zhang, R. W., Wang, X. G. \& Zhao, X. J. (2008). J. Coord. Chem. 12, 1951-1962.
Geraghty, M., McCann, M., Devereux, M. \& McKee, V. (1999). Inorg. Chim. Acta, 293 160-166.
Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.
Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. \& Parsons, S. (1999). Aust. J. Chem. 52, 695-703.

McCann, M., Cronin, J. F., Devereux, M. \& Ferguson, G. (1995). Polyhedron, 14, 2379-2387.
Peral, I., Madariaga, G., Petříček, V. \& Breczewski, T. (2001). Acta Cryst. B57, 386-393.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, X.-J., Wang, Z.-C., Chen, Q. \& Zhao, X.-J. (2009). Acta Cryst. E65, o2188.
Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. \& Zhao, X.-J. (2007). Cryst. Growth Des. 10, 2009-2015.
Zhang, N., Liu, K.-S. \& Zhao, X.-J. (2009). Acta Cryst. E65, o1398.
Zhao, X.-J., Li, J., Ding, B., Wang, X.-G. \& Yang, E.-C. (2007). Inorg. Chem. Commии. 10, 605-609.

supporting information

Acta Cryst. (2009). E65, o2832 [https://doi.org/10.1107/S1600536809042652]

2-Amino-6-methyl-1,3-benzothiazole-octanedioic acid (2/1)

Yao-Geng Wang

S1. Comment

Nowadays, molecular self-assembly driven by popular coordination bonds and weak intermolecular non-covalent interactions (hydrogen-bonding, $\pi \cdots \pi$ stack, electrostatic interactions and so on), has been attracting more and more interest in biochemistry, life science and new material fields (Hunter, 1993; Yang et al., 2007; Zhao et al., 2007). In this regard, aminobenzothiazole and its varios derivatives have been becoming one of the excellent building blocks with multiple hydrogen-bonding and metal ion binding sites and have been extensively applied in new materials, biochemistry and agriculture chemistry, due to the lower toxicity, high biological activity and excellent chemical reactivity (Shi et al., 2009; Lynch et al., 1999; Chen et al., 2008; Zhang et al., 2009).On the other hand, the long octanedioic acid with variable deprotonated form and flexible aliphatic chain has also exhibited novel functions in the fields of metal complexes and molecular co-crystals (McCann et al. 1995; Peral et al. 2001; Geraghty et al. 1999).
Herein, as a continuation of molecular assembly behavior in the solid state, the rigid 2-amino-6-methy-1,3-benzothiazole and flexible octanedioic acid were selected as building blocks to cocrystallize. Consequently, an intermolecular hydrogen bonded adduct, (I), was obtained in the mixed methanol-water medium, exhibiting three-dimensional network by intermolecular hydrogen-bonding interactions.
As shown in Fig. 1, the asymmetric unit of (I) contains one neutral 2-amino-6-methy-1,3-benzothiazole molecule with no crystallographically imposed symmetry and half a octanedioic acid located on a centre of inversion. Obviously, no proton transfer was observed for the neutral cocrystal, which is different from the 2-aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate (Zhang et al., 2009). The exocyclic amino group of 2-amino-6-methy-1,3-benzothiazole is roughly coplanar with the benzothiazole ring. Similarily, the carboxylic residues of octanedioic acid are also co-planar with their long aliphatic chain. In the packing structure of \mathbf{I}, two pairs of the intermolecuar $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$ \cdots O1 hydrogen-bonding interactions (Table 1) connect the two 2-amino-6-methy-1,3-benzothiazole molecules and one octanedioic acid into a trimer. Furthermore, the adjacent trimers are hydrogen-bonded together by $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1$ to generate a three dimensional network.

S2. Experimental

2-Amino-6-methylbenzothiazole ($16.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and octanedioic acid ($17.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in a mixed methanol-water solution ($1: 1,10 \mathrm{ml}$). The resulting mixture was stirring for one hour and filtered. The colorless filtrate was left to stand at room temperature. The colorless block-shaped crystals suitable for x-ray diffraction were isolated by slow evaporation of the solvent in one week (yield: 30.0% based on 2-amino-6-methylbenzothiazole). Analysis calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{4}$: C 57.35, H 6.02, N 11.15\%; found: C 57.55 , H 6.00, N 11.48%.

S3. Refinement

H -atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or 0.96 (methyl and methylene) $\AA, \mathrm{O}-\mathrm{H}=0.82 \AA$, and $\mathrm{N}-\mathrm{H}=0.86 \AA$. All H atoms were allocated displacement parameters related to those of their parent atoms $\left[U_{\mathrm{iso}}(\mathrm{H})\right]=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}, \mathrm{O})$ or $\left.U_{\mathrm{iso}}(\mathrm{H})\right]=1.5 U_{\text {eq }}$ ($\left.\mathrm{C}_{\text {methy }}\right)$].

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines indicate intermolecular hydrogen bonds. Symmetry code: (A) $1-x, 2-y, 2-z$.

2-Amino-6-methyl-1,3-benzothiazole-octanedioic acid (2/1)

Crystal data

$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S} \cdot \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$
$M_{r}=502.64$
Monoclinic, $P 2_{1} / c$
$a=12.4372$ (12) \AA
$b=7.9165$ (8) \AA
$c=16.6061(12) \AA$
$\beta=127.992(5)^{\circ}$
$V=1288.6$ (2) \AA^{3}
$Z=2$
$F(000)=532$
$D_{\mathrm{x}}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2130 reflections
$\theta=2.5-24.4^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.25 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\text {max }}=0.958$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.098$
$S=1.05$
2271 reflections

6745 measured reflections
2271 independent reflections
1767 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-14 \rightarrow 13$
$k=-7 \rightarrow 9$
$l=-19 \rightarrow 19$

156 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0501 P)^{2}+0.215 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	0.27303 (5)	-0.11551 (6)	1.15536 (3)	0.06084 (19)
O1	0.41522 (14)	0.48915 (16)	1.10448 (9)	0.0707 (4)
O2	0.24755 (15)	0.39416 (17)	0.95120 (9)	0.0743 (4)
H2	0.2495	0.3168	0.9849	0.111*
N1	0.23024 (15)	0.12817 (17)	1.03421 (11)	0.0561 (4)
N2	0.40617 (17)	0.1802 (2)	1.20575 (12)	0.0760 (5)
H2A	0.4222	0.2778	1.1924	0.091*
H2B	0.4541	0.1450	1.2679	0.091*
C1	0.13613 (17)	0.0017 (2)	0.97271 (13)	0.0517 (4)
C2	0.14393 (17)	-0.1411 (2)	1.02435 (13)	0.0534 (4)
C3	0.0586 (2)	-0.2780 (3)	0.97316 (14)	0.0700 (6)
H3	0.0656	-0.3730	1.0090	0.084*
C4	-0.0376 (2)	-0.2717 (3)	0.86769 (15)	0.0711 (6)
C5	-0.0446 (2)	-0.1297 (3)	0.81731 (15)	0.0716 (6)
H5	-0.1090	-0.1260	0.7465	0.086*
C6	0.03990 (19)	0.0074 (3)	0.86719 (13)	0.0656 (5)
H6	0.0325	0.1020	0.8308	0.079*
C7	0.30726 (18)	0.0837 (2)	1.13027 (13)	0.0541 (4)
C8	-0.1328 (3)	-0.4193 (4)	0.81008 (19)	0.1066 (9)
H8A	-0.1898	-0.3967	0.7381	0.160*
H8B	-0.1888	-0.4354	0.8311	0.160*
H8C	-0.0803	-0.5196	0.8246	0.160*
C9	0.33968 (18)	0.5053 (2)	1.01209 (13)	0.0537 (4)
C10	0.34445 (19)	0.6517 (2)	0.95779 (13)	0.0570 (5)
H10A	0.2554	0.7052	0.9163	0.068*
H10B	0.3616	0.6092	0.9118	0.068*
C11	0.45049 (18)	0.7847 (2)	1.02578 (12)	0.0541 (4)
H11A	0.5402	0.7330	1.0659	0.065*
H11B	0.4351	0.8265	1.0728	0.065*
C12	0.44826 (18)	0.9325 (2)	0.96670 (13)	0.0564 (4)

H12A	0.4649	0.8906	0.9204	0.068^{*}
H12B	0.3580	0.9825	0.9257	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0674(3)$	$0.0618(3)$	$0.0453(3)$	$-0.0065(2)$	$0.0307(2)$	$0.0036(2)$
O1	$0.0878(9)$	$0.0557(8)$	$0.0427(7)$	$-0.0119(7)$	$0.0270(7)$	$0.0017(6)$
O2	$0.0888(10)$	$0.0590(9)$	$0.0466(7)$	$-0.0179(7)$	$0.0274(7)$	$0.0011(6)$
N1	$0.0597(9)$	$0.0503(9)$	$0.0469(8)$	$0.0005(7)$	$0.0272(7)$	$0.0031(7)$
N2	$0.0856(12)$	$0.0609(10)$	$0.0485(9)$	$-0.0145(9)$	$0.0246(9)$	$-0.0005(8)$
C1	$0.0489(9)$	$0.0540(10)$	$0.0480(9)$	$0.0032(8)$	$0.0276(8)$	$0.0002(8)$
C2	$0.0515(10)$	$0.0613(11)$	$0.0464(9)$	$-0.0034(8)$	$0.0296(8)$	$0.0004(8)$
C3	$0.0740(13)$	$0.0726(14)$	$0.0621(12)$	$-0.0200(11)$	$0.0413(11)$	$-0.0048(10)$
C4	$0.0610(12)$	$0.0830(15)$	$0.0565(11)$	$-0.0164(11)$	$0.0296(10)$	$-0.0111(11)$
C5	$0.0592(12)$	$0.0876(16)$	$0.0461(10)$	$-0.0005(11)$	$0.0215(9)$	$-0.0039(11)$
C6	$0.0621(11)$	$0.0698(13)$	$0.0470(10)$	$0.0057(10)$	$0.0245(9)$	$0.0068(9)$
C7	$0.0588(10)$	$0.0519(10)$	$0.0460(9)$	$0.0016(8)$	$0.0294(9)$	$0.0009(8)$
C8	$0.0974(18)$	$0.117(2)$	$0.0769(16)$	$-0.0487(16)$	$0.0392(14)$	$-0.0237(15)$
C9	$0.0618(11)$	$0.0464(10)$	$0.0449(10)$	$0.0025(8)$	$0.0288(9)$	$0.0002(8)$
C10	$0.0641(11)$	$0.0534(10)$	$0.0465(9)$	$0.0020(9)$	$0.0304(9)$	$0.0046(8)$
C11	$0.0611(11)$	$0.0489(10)$	$0.0479(9)$	$0.0039(8)$	$0.0313(9)$	$0.0055(8)$
C12	$0.0618(11)$	$0.0547(10)$	$0.0475(9)$	$0.0039(8)$	$0.0310(9)$	$0.0085(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

S1-C2	1.7469 (18)	C5-C6	1.377 (3)
S1-C7	1.7491 (19)	C5-H5	0.9300
O1-C9	1.2159 (19)	C6-H6	0.9300
O2-C9	1.297 (2)	C8-H8A	0.9600
$\mathrm{O} 2-\mathrm{H} 2$	0.8200	C8-H8B	0.9600
N1-C7	1.306 (2)	C8-H8C	0.9600
N1-C1	1.394 (2)	C9-C10	1.492 (2)
N2-C7	1.331 (2)	C10-C11	1.513 (2)
N2-H2A	0.8599	C10-H10A	0.9700
N2-H2B	0.8601	C10-H10B	0.9700
C1-C2	1.386 (2)	C11-C12	1.516 (2)
C1-C6	1.387 (2)	C11-H11A	0.9700
C2-C3	1.383 (3)	C11-H11B	0.9700
C3-C4	1.386 (3)	C12-C12 ${ }^{\text {i }}$	1.507 (4)
C3-H3	0.9300	C12-H12A	0.9700
C4-C5	1.371 (3)	C12-H12B	0.9700
C4-C8	1.513 (3)		
C2-S1-C7	88.84 (8)	C4-C8-H8A	109.5
C9-O2-H2	109.5	C4-C8-H8B	109.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	110.78 (15)	H8A-C8-H8B	109.5
C7-N2-H2A	120.0	C4-C8-H8C	109.5

$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
C2-C1-C6	119.08 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	115.16 (15)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	125.76 (17)
C3-C2-C1	121.59 (17)
C3-C2-S1	128.73 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	109.67 (13)
C2-C3-C4	119.16 (19)
C2-C3-H3	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
C5-C4-C3	118.79 (19)
C5-C4-C8	121.09 (19)
C3-C4-C8	120.1 (2)
C4-C5-C6	122.73 (18)
C4-C5-H5	118.6
C6-C5-H5	118.6
C5-C6-C1	118.65 (19)
C5-C6-H6	120.7
C1-C6- H 6	120.7
N1-C7-N2	123.60 (17)
N1-C7-S1	115.54 (13)
N2-C7-S1	120.86 (14)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.4 (2)
C7-N1-C1-C6	-179.52 (17)
C6-C1-C2-C3	0.3 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.90 (17)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	179.83 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	0.64 (19)
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	178.97 (19)
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 1$	-0.53 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.4 (3)
S1-C2-C3-C4	-179.81 (16)
C2-C3-C4-C5	0.3 (3)
C2-C3-C4-C8	-179.5 (2)
C3-C4-C5-C6	-0.2 (3)

H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2$	122.54 (16)
O1-C9-C10	123.85 (16)
O2-C9-C10	113.60 (15)
C9-C10-C11	115.48 (14)
C9-C10-H10A	108.4
C11-C10-H10A	108.4
C9-C10-H10B	108.4
C11-C10-H10B	108.4
H10A-C10-H10B	107.5
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	113.19 (14)
C10-C11-H11A	108.9
C12-C11-H11A	108.9
C10-C11-H11B	108.9
C12-C11-H11B	108.9
H11A-C11-H11B	107.8
C12- $\mathrm{C} 12-\mathrm{C} 11$	113.92 (17)
C12- $\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	108.8
C11-C12-H12A	108.8
C12 ${ }^{\text {- }} \mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.8
C11-C12-H12B	108.8
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	107.7
C8-C4-C5-C6	179.7 (2)
C4-C5-C6-C1	0.1 (3)
C2-C1-C6-C5	-0.2 (3)
N1-C1-C6-C5	178.93 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	179.78 (17)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	0.0 (2)
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1$	0.34 (15)
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2$	-179.49 (17)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	-0.7 (3)
O2-C9-C10-C11	-179.99 (16)
C9-C10-C11-C12	-178.51 (16)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 12{ }^{\text {i }}$	179.07 (19)

Symmetry code: (i) $-x+1,-y+2,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.79	$2.5973(19)$	169
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.10	$2.922(2)$	159
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.19	$3.009(2)$	160

Symmetry code: (ii) $-x+1, y-1 / 2,-z+5 / 2$.

