Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-Amino-6-methyl-1,3-benzothiazoleoctanedioic acid (2/1)

#### Yao-Geng Wang

College of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: luckyms@126.com

Received 16 October 2009; accepted 16 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.098; data-to-parameter ratio = 14.6.

Cocrystallization of 2-amino-6-methy-1,3-benzothiazole with octanedioic acid in a mixed methanol-water medium afforded the title 2:1 cocrystal, 2C8H8N2S·C8H14O4. The octanedioic acid molecule is located on an inversion centre. In the crystal, intermolecular  $N-H\cdots O$  and  $O-H\cdots O$  hydrogen bonds connect the components into a three-dimensional network.

#### **Related literature**

For molecular self-assembly and its application in crystal engineering, see: Yang et al. (2007); Hunter (1993); Zhao et al. (2007). For the structures and properties of metal complexes and co-crystals with aminobenzothiazole and its derivatives, see: Shi et al. (2009); Lynch et al. (1999); Chen et al. (2008); Zhang et al. (2009). For the structure and performance of octanedioic acid-based metal complexes and co-crystals, see: Geraghty et al. (1999); McCann et al. (1995); Peral et al. (2001).



#### **Experimental**

#### Crystal data

 $2C_8H_8N_2S \cdot C_8H_{14}O_4$  $M_r = 502.64$ Monoclinic,  $P2_1/c$ a = 12.4372 (12) Å b = 7.9165 (8) Å c = 16.6061 (12) Å $\beta = 127.992 (5)^{\circ}$ 



#### Data collection

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.033$ | 156 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.098$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ \AA}^{-3}$  |
| 2271 reflections                | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |

6745 measured reflections

 $R_{\rm int} = 0.019$ 

2271 independent reflections 1767 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$      | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------|----------------|-------------------------|--------------|---------------------------|
| O2−H2···N1            | 0.82           | 1.79                    | 2.5973 (19)  | 169                       |
| $N2-H2B\cdots O1^{i}$ | 0.86           | 2.10                    | 2.922 (2)    | 159                       |
| $N2-H2A\cdots O1$     | 0.86           | 2.19                    | 3.009 (2)    | 160                       |

Symmetry code: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{5}{2}$ .

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

The author gratefully acknowledges financial support by Tianjin Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5102).

#### References

- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany,
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Q., Yang, E. C., Zhang, R. W., Wang, X. G. & Zhao, X. J. (2008). J. Coord. Chem. 12, 1951-1962.
- Geraghty, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293 160-166.
- Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.
- Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S.
- (1999). Aust. J. Chem. 52, 695-703. McCann, M., Cronin, J. F., Devereux, M. & Ferguson, G. (1995). Polyhedron, 14, 2379-2387.
- Peral, I., Madariaga, G., Petříček, V. & Breczewski, T. (2001). Acta Cryst. B57, 386-393.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, X.-J., Wang, Z.-C., Chen, Q. & Zhao, X.-J. (2009). Acta Cryst. E65, o2188. Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst.
- Growth Des. 10, 2009-2015.
- Zhang, N., Liu, K.-S. & Zhao, X.-J. (2009). Acta Cryst. E65, o1398.
- Zhao, X.-J., Li, J., Ding, B., Wang, X.-G. & Yang, E.-C. (2007). Inorg. Chem. Commun. 10, 605-609.

# supporting information

Acta Cryst. (2009). E65, o2832 [https://doi.org/10.1107/S1600536809042652]

2-Amino-6-methyl-1,3-benzothiazole–octanedioic acid (2/1)

## **Yao-Geng Wang**

#### S1. Comment

Nowadays, molecular self-assembly driven by popular coordination bonds and weak intermolecular non-covalent interactions (hydrogen-bonding,  $\pi \cdots \pi$  stack, electrostatic interactions and so on), has been attracting more and more interest in biochemistry, life science and new material fields (Hunter, 1993; Yang *et al.*, 2007; Zhao *et al.*, 2007). In this regard, aminobenzothiazole and its varios derivatives have been becoming one of the excellent building blocks with multiple hydrogen-bonding and metal ion binding sites and have been extensively applied in new materials, biochemistry and agriculture chemistry, due to the lower toxicity, high biological activity and excellent chemical reactivity (Shi *et al.*, 2009; Lynch *et al.*, 1999; Chen *et al.*, 2008; Zhang *et al.*, 2009).On the other hand, the long octanedioic acid with variable deprotonated form and flexible aliphatic chain has also exhibited novel functions in the fields of metal complexes and molecular co-crystals (McCann *et al.* 1995; Peral *et al.* 2001; Geraghty *et al.* 1999).

Herein, as a continuation of molecular assembly behavior in the solid state, the rigid 2-amino-6-methy-1,3-benzothiazole and flexible octanedioic acid were selected as building blocks to cocrystallize. Consequently, an intermolecular hydrogen bonded adduct, (I), was obtained in the mixed methanol-water medium, exhibiting three-dimensional network by intermolecular hydrogen-bonding interactions.

As shown in Fig. 1, the asymmetric unit of (**I**) contains one neutral 2-amino-6-methy-1,3-benzothiazole molecule with no crystallographically imposed symmetry and half a octanedioic acid located on a centre of inversion. Obviously, no proton transfer was observed for the neutral cocrystal, which is different from the 2-aminobenzothiazolium 2,4-dicarb-oxybenzoate monohydrate (Zhang *et al.*, 2009). The exocyclic amino group of 2-amino-6-methy-1,3-benzothiazole is roughly coplanar with the benzothiazole ring. Similarily, the carboxylic residues of octanedioic acid are also co-planar with their long aliphatic chain. In the packing structure of **I**, two pairs of the intermolecuar O2—H2 …N1 and N2—H2A …O1 hydrogen-bonding interactions (Table 1) connect the two 2-amino-6-methy-1,3-benzothiazole molecules and one octanedioic acid into a trimer. Furthermore, the adjacent trimers are hydrogen-bonded together by N2—H2B…O1 to generate a three dimensional network.

#### S2. Experimental

2-Amino-6-methylbenzothiazole (16.4 mg, 0.1 mmol) and octanedioic acid (17.4 mg, 0.1 mmol) were dissolved in a mixed methanol-water solution (1:1, 10 ml). The resulting mixture was stirring for one hour and filtered. The colorless filtrate was left to stand at room temperature. The colorless block-shaped crystals suitable for *x*-ray diffraction were isolated by slow evaporation of the solvent in one week (yield: 30.0% based on 2-amino-6-methylbenzothiazole). Analysis calculated for  $C_{48}H_{60}N_8O_8S_4$ : C 57.35, H 6.02, N 11.15%; found: C 57.55, H 6.00, N 11.48%.

### **S3. Refinement**

H-atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C–H = 0.93 (aromatic) or 0.96 (methyl and methylene)Å, O – H = 0.82 Å, and N – H = 0.86 Å. All H atoms were allocated displacement parameters related to those of their parent atoms  $[U_{iso}(H)] = 1.2 U_{eq}$  (C, N, O) or  $U_{iso}(H)] = 1.5 U_{eq}$  (C<sub>methyl</sub>)].



### Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed lines indicate intermolecular hydrogen bonds. Symmetry code: (A) 1 - x, 2 - y, 2 - z.

2-Amino-6-methyl-1,3-benzothiazole-octanedioic acid (2/1)

#### Crystal data

 $2C_8H_8N_2S \cdot C_8H_{14}O_4$   $M_r = 502.64$ Monoclinic,  $P2_1/c$  a = 12.4372 (12) Å b = 7.9165 (8) Å c = 16.6061 (12) Å  $\beta = 127.992$  (5)° V = 1288.6 (2) Å<sup>3</sup> Z = 2

#### Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.942, T_{\max} = 0.958$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.098$ S = 1.052271 reflections F(000) = 532  $D_x = 1.295 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2130 reflections  $\theta = 2.5-24.4^{\circ}$   $\mu = 0.24 \text{ mm}^{-1}$  T = 293 KBlock, colourless  $0.25 \times 0.20 \times 0.18 \text{ mm}$ 

6745 measured reflections 2271 independent reflections 1767 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.019$  $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.1^{\circ}$  $h = -14 \rightarrow 13$  $k = -7 \rightarrow 9$  $l = -19 \rightarrow 19$ 

156 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

| Hydrogen site location: inferred from | $w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.215P]$           |
|---------------------------------------|------------------------------------------------------------|
| neighbouring sites                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| H-atom parameters constrained         | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|                                       | $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$    |
|                                       | $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|            | X            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| <b>S</b> 1 | 0.27303 (5)  | -0.11551 (6) | 1.15536 (3)  | 0.06084 (19)                |  |
| 01         | 0.41522 (14) | 0.48915 (16) | 1.10448 (9)  | 0.0707 (4)                  |  |
| O2         | 0.24755 (15) | 0.39416 (17) | 0.95120 (9)  | 0.0743 (4)                  |  |
| H2         | 0.2495       | 0.3168       | 0.9849       | 0.111*                      |  |
| N1         | 0.23024 (15) | 0.12817 (17) | 1.03421 (11) | 0.0561 (4)                  |  |
| N2         | 0.40617 (17) | 0.1802 (2)   | 1.20575 (12) | 0.0760 (5)                  |  |
| H2A        | 0.4222       | 0.2778       | 1.1924       | 0.091*                      |  |
| H2B        | 0.4541       | 0.1450       | 1.2679       | 0.091*                      |  |
| C1         | 0.13613 (17) | 0.0017 (2)   | 0.97271 (13) | 0.0517 (4)                  |  |
| C2         | 0.14393 (17) | -0.1411 (2)  | 1.02435 (13) | 0.0534 (4)                  |  |
| C3         | 0.0586 (2)   | -0.2780 (3)  | 0.97316 (14) | 0.0700 (6)                  |  |
| H3         | 0.0656       | -0.3730      | 1.0090       | 0.084*                      |  |
| C4         | -0.0376 (2)  | -0.2717 (3)  | 0.86769 (15) | 0.0711 (6)                  |  |
| C5         | -0.0446 (2)  | -0.1297 (3)  | 0.81731 (15) | 0.0716 (6)                  |  |
| H5         | -0.1090      | -0.1260      | 0.7465       | 0.086*                      |  |
| C6         | 0.03990 (19) | 0.0074 (3)   | 0.86719 (13) | 0.0656 (5)                  |  |
| H6         | 0.0325       | 0.1020       | 0.8308       | 0.079*                      |  |
| C7         | 0.30726 (18) | 0.0837 (2)   | 1.13027 (13) | 0.0541 (4)                  |  |
| C8         | -0.1328 (3)  | -0.4193 (4)  | 0.81008 (19) | 0.1066 (9)                  |  |
| H8A        | -0.1898      | -0.3967      | 0.7381       | 0.160*                      |  |
| H8B        | -0.1888      | -0.4354      | 0.8311       | 0.160*                      |  |
| H8C        | -0.0803      | -0.5196      | 0.8246       | 0.160*                      |  |
| C9         | 0.33968 (18) | 0.5053 (2)   | 1.01209 (13) | 0.0537 (4)                  |  |
| C10        | 0.34445 (19) | 0.6517 (2)   | 0.95779 (13) | 0.0570 (5)                  |  |
| H10A       | 0.2554       | 0.7052       | 0.9163       | 0.068*                      |  |
| H10B       | 0.3616       | 0.6092       | 0.9118       | 0.068*                      |  |
| C11        | 0.45049 (18) | 0.7847 (2)   | 1.02578 (12) | 0.0541 (4)                  |  |
| H11A       | 0.5402       | 0.7330       | 1.0659       | 0.065*                      |  |
| H11B       | 0.4351       | 0.8265       | 1.0728       | 0.065*                      |  |
| C12        | 0.44826 (18) | 0.9325 (2)   | 0.96670 (13) | 0.0564 (4)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

| H12A | 0.4649 | 0.8906 | 0.9204 | 0.068* |
|------|--------|--------|--------|--------|
| H12B | 0.3580 | 0.9825 | 0.9257 | 0.068* |

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-----------------|-------------|--------------|-------------|--------------|
| S1  | 0.0674 (3)  | 0.0618 (3)      | 0.0453 (3)  | -0.0065 (2)  | 0.0307 (2)  | 0.0036 (2)   |
| 01  | 0.0878 (9)  | 0.0557 (8)      | 0.0427 (7)  | -0.0119 (7)  | 0.0270 (7)  | 0.0017 (6)   |
| O2  | 0.0888 (10) | 0.0590 (9)      | 0.0466 (7)  | -0.0179 (7)  | 0.0274 (7)  | 0.0011 (6)   |
| N1  | 0.0597 (9)  | 0.0503 (9)      | 0.0469 (8)  | 0.0005 (7)   | 0.0272 (7)  | 0.0031 (7)   |
| N2  | 0.0856 (12) | 0.0609 (10)     | 0.0485 (9)  | -0.0145 (9)  | 0.0246 (9)  | -0.0005 (8)  |
| C1  | 0.0489 (9)  | 0.0540 (10)     | 0.0480 (9)  | 0.0032 (8)   | 0.0276 (8)  | 0.0002 (8)   |
| C2  | 0.0515 (10) | 0.0613 (11)     | 0.0464 (9)  | -0.0034 (8)  | 0.0296 (8)  | 0.0004 (8)   |
| C3  | 0.0740 (13) | 0.0726 (14)     | 0.0621 (12) | -0.0200 (11) | 0.0413 (11) | -0.0048 (10) |
| C4  | 0.0610 (12) | 0.0830 (15)     | 0.0565 (11) | -0.0164 (11) | 0.0296 (10) | -0.0111 (11) |
| C5  | 0.0592 (12) | 0.0876 (16)     | 0.0461 (10) | -0.0005 (11) | 0.0215 (9)  | -0.0039 (11) |
| C6  | 0.0621 (11) | 0.0698 (13)     | 0.0470 (10) | 0.0057 (10)  | 0.0245 (9)  | 0.0068 (9)   |
| C7  | 0.0588 (10) | 0.0519 (10)     | 0.0460 (9)  | 0.0016 (8)   | 0.0294 (9)  | 0.0009 (8)   |
| C8  | 0.0974 (18) | 0.117 (2)       | 0.0769 (16) | -0.0487 (16) | 0.0392 (14) | -0.0237 (15) |
| C9  | 0.0618 (11) | 0.0464 (10)     | 0.0449 (10) | 0.0025 (8)   | 0.0288 (9)  | 0.0002 (8)   |
| C10 | 0.0641 (11) | 0.0534 (10)     | 0.0465 (9)  | 0.0020 (9)   | 0.0304 (9)  | 0.0046 (8)   |
| C11 | 0.0611 (11) | 0.0489 (10)     | 0.0479 (9)  | 0.0039 (8)   | 0.0313 (9)  | 0.0055 (8)   |

0.0475 (9)

0.0039 (8)

0.0310 (9)

0.0085 (8)

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

0.0618 (11)

0.0547 (10)

C12

| S1—C2     | 1.7469 (18) | C5—C6                | 1.377 (3) |
|-----------|-------------|----------------------|-----------|
| S1—C7     | 1.7491 (19) | С5—Н5                | 0.9300    |
| O1—C9     | 1.2159 (19) | С6—Н6                | 0.9300    |
| O2—C9     | 1.297 (2)   | C8—H8A               | 0.9600    |
| O2—H2     | 0.8200      | C8—H8B               | 0.9600    |
| N1—C7     | 1.306 (2)   | C8—H8C               | 0.9600    |
| N1—C1     | 1.394 (2)   | C9—C10               | 1.492 (2) |
| N2—C7     | 1.331 (2)   | C10-C11              | 1.513 (2) |
| N2—H2A    | 0.8599      | C10—H10A             | 0.9700    |
| N2—H2B    | 0.8601      | C10—H10B             | 0.9700    |
| C1—C2     | 1.386 (2)   | C11—C12              | 1.516 (2) |
| C1—C6     | 1.387 (2)   | C11—H11A             | 0.9700    |
| С2—С3     | 1.383 (3)   | C11—H11B             | 0.9700    |
| С3—С4     | 1.386 (3)   | C12-C12 <sup>i</sup> | 1.507 (4) |
| С3—Н3     | 0.9300      | C12—H12A             | 0.9700    |
| C4—C5     | 1.371 (3)   | C12—H12B             | 0.9700    |
| C4—C8     | 1.513 (3)   |                      |           |
| C2—S1—C7  | 88.84 (8)   | C4—C8—H8A            | 109.5     |
| С9—О2—Н2  | 109.5       | C4—C8—H8B            | 109.5     |
| C7—N1—C1  | 110.78 (15) | H8A—C8—H8B           | 109.5     |
| C7—N2—H2A | 120.0       | C4—C8—H8C            | 109.5     |
|           |             |                      |           |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C7—N2—H2B                       | 120.0       | H8A—C8—H8C                                      | 109.5       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------------------------------------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H2A—N2—H2B                      | 120.0       | H8B—C8—H8C                                      | 109.5       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2—C1—C6                        | 119.08 (17) | O1—C9—O2                                        | 122.54 (16) |
| C6—C1—N1125.76 (17)O2—C9—C10113.60 (15)C3—C2—C1121.59 (17)C9—C10—C11115.48 (14)C3—C2—S1128.73 (15)C9—C10—H10A108.4C1—C2—S1109.67 (13)C11—C10—H10A108.4C2—C3—C4119.16 (19)C9—C10—H10B108.4C2—C3—H3120.4C11—C10—H10B108.4C4—C3—H3120.4C10—C11—H10B107.5C5—C4—C3118.79 (19)C10—C11—C12113.19 (14)C5—C4—C8121.09 (19)C10—C11—H11A108.9C4—C5—C6122.73 (18)C10—C11—H11B108.9C4—C5—H5118.6C12—C11—H11B108.9C4—C5—H5118.6C12—C11—H11B107.8C5—C6—C1118.65 (19)C12 <sup>i</sup> —C12—C11113.92 (17)C5—C6—H6120.7C12 <sup>i</sup> —C12—H12A108.8C1—C6—H6120.7C12 <sup>i</sup> —C12—H12A108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-C1-N1                        | 115.16 (15) | O1—C9—C10                                       | 123.85 (16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C6-C1-N1                        | 125.76 (17) | O2—C9—C10                                       | 113.60 (15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3—C2—C1                        | 121.59 (17) | C9—C10—C11                                      | 115.48 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3—C2—S1                        | 128.73 (15) | C9—C10—H10A                                     | 108.4       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C1—C2—S1                        | 109.67 (13) | C11—C10—H10A                                    | 108.4       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2—C3—C4                        | 119.16 (19) | C9-C10-H10B                                     | 108.4       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С2—С3—Н3                        | 120.4       | C11-C10-H10B                                    | 108.4       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С4—С3—Н3                        | 120.4       | H10A—C10—H10B                                   | 107.5       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C5—C4—C3                        | 118.79 (19) | C10-C11-C12                                     | 113.19 (14) |
| C3-C4-C8       120.1 (2)       C12-C11-H11A       108.9         C4-C5-C6       122.73 (18)       C10-C11-H11B       108.9         C4-C5-H5       118.6       C12-C11-H11B       108.9         C6-C5-H5       118.6       H11A-C11-H11B       107.8         C5-C6-C1       118.65 (19)       C12 <sup>i</sup> -C12-C11       113.92 (17)         C5-C6-H6       120.7       C12 <sup>i</sup> -C12-H12A       108.8         C1-C6-H6       120.7       C11-C12-H12A       108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C5—C4—C8                        | 121.09 (19) | C10-C11-H11A                                    | 108.9       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C3—C4—C8                        | 120.1 (2)   | C12—C11—H11A                                    | 108.9       |
| C4—C5—H5       118.6       C12—C11—H11B       108.9         C6—C5—H5       118.6       H11A—C11—H11B       107.8         C5—C6—C1       118.65 (19)       C12 <sup>i</sup> —C12—C11       113.92 (17)         C5—C6—H6       120.7       C12 <sup>i</sup> —C12—H12A       108.8         C1—C6—H6       120.7       C11—C12—H12A       108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C4—C5—C6                        | 122.73 (18) | C10-C11-H11B                                    | 108.9       |
| C6—C5—H5       118.6       H11A—C11—H11B       107.8         C5—C6—C1       118.65 (19)       C12 <sup>i</sup> —C12—C11       113.92 (17)         C5—C6—H6       120.7       C12 <sup>i</sup> —C12—H12A       108.8         C1—C6—H6       120.7       C11—C12—H12A       108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С4—С5—Н5                        | 118.6       | C12—C11—H11B                                    | 108.9       |
| C5—C6—C1       118.65 (19)       C12 <sup>i</sup> —C12—C11       113.92 (17)         C5—C6—H6       120.7       C12 <sup>i</sup> —C12—H12A       108.8         C1—C6—H6       120.7       C11—C12—H12A       108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С6—С5—Н5                        | 118.6       | H11A—C11—H11B                                   | 107.8       |
| C5—C6—H6         120.7         C12 <sup>i</sup> —C12—H12A         108.8           C1—C6—H6         120.7         C11—C12—H12A         108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C5—C6—C1                        | 118.65 (19) | C12 <sup>i</sup> —C12—C11                       | 113.92 (17) |
| C1—C6—H6 120.7 C11—C12—H12A 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С5—С6—Н6                        | 120.7       | C12 <sup>i</sup> —C12—H12A                      | 108.8       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С1—С6—Н6                        | 120.7       | C11—C12—H12A                                    | 108.8       |
| $N1-C7-N2$ 123.60 (17) $C12^{i}-C12-H12B$ 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N1—C7—N2                        | 123.60 (17) | C12 <sup>i</sup> —C12—H12B                      | 108.8       |
| N1—C7—S1 115.54 (13) C11—C12—H12B 108.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N1—C7—S1                        | 115.54 (13) | C11—C12—H12B                                    | 108.8       |
| N2—C7—S1 120.86 (14) H12A—C12—H12B 107.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N2—C7—S1                        | 120.86 (14) | H12A—C12—H12B                                   | 107.7       |
| C7 - N1 - C1 - C2 - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) - 0.4(2) -                                                                                                                                                                                                                                                                                                                                                                                             | C7N1C1C2                        | -0.4(2)     | C8_C4_C5_C6                                     | 1797(2)     |
| $C_{1} = C_{1} = C_{2}$<br>$C_{2} = C_{1} = C_{2}$<br>$C_{3} = C_{4} = C_{5} = C_{6} = C_{1}$<br>$C_{4} = C_{5} = C_{6} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C7 - N1 - C1 - C2               | -17952(17)  | $C_{4}^{4} - C_{5}^{5} - C_{6}^{6} - C_{1}^{1}$ | (1/).7(2)   |
| $C_{1} = C_{1} = C_{2} = C_{2$                                                                                                                                                                                                                                                                                                                                                                                           | $C_{6}$ $C_{1}$ $C_{2}$ $C_{3}$ | 0.3(3)      | $C_{2}^{-}$ $C_{1}^{-}$ $C_{6}^{-}$ $C_{5}^{-}$ | -0.2(3)     |
| $N_1 = C_1 = C_2 = C_3$<br>$N_1 $ | $N_1 - C_1 - C_2 - C_3$         | -178.90(17) | $N_1 - C_1 - C_6 - C_5$                         | 178.93(18)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C6-C1-C2-S1                     | 179.83(14)  | C1 - N1 - C7 - N2                               | 179.78 (17) |
| $N_1 = C_1 = C_2 = S_1$ $0.64(19)$ $C_1 = N_1 = C_7 = N_2$ $0.0(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N1 - C1 - C2 - S1               | 0.64(19)    | C1 - N1 - C7 - S1                               | 179.70(17)  |
| C7 = S1 = C2 = C3<br>C7 = S1 = C2 = C3<br>C7 = S1 = C7 = N1<br>C2 = S1 = C7 = N1<br>C34 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C7 = S1 = C2 = S1               | 178.97(19)  | $C_{2}=S_{1}=C_{2}=N_{1}$                       | 0.0(2)      |
| $C_7 = S_1 - C_2 - C_3 = C_1 - C_7 - N_1 = 0.54 (15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_7 = S_1 = C_2 = C_3$         | -0.53(13)   | $C_2 = S_1 = C_7 = N_1$                         | -170.49(17) |
| $C_1 = C_2 = C_1$ $C_2 = C_1 = 0.55 (15)$ $C_2 = S_1 = C_1 = C_2 = 0.54 (17)$<br>$C_1 = C_2 = C_3 = C_4$ $-0.4 (3)$ $O_1 = C_2 = C_1 = C_1 = 0.54 (17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{1} = C_{2} = C_{1}$         | -0.4(3)     | $C_2 = S_1 = C_7 = N_2$                         | -0.7(3)     |
| $S_1 = C_2 = C_3 = C_4$ $-179 \ S_1 \ (16) = 0.2 = C_2 = C_1 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -179 \ (16) = -$                                                                                                                                                                                                                                                                                                                                                                                           | $S_1 = C_2 = C_3 = C_4$         | -179.81(16) | $0^{2}-0^{9}-0^{10}-0^{11}$                     | -179.99(16) |
| $C_2 = C_3 = C_4 = C_5$ $C_3 = C_4 = C_5$ $C_5 = C_6$ $C_6 = C_1 = C_1 = C_1$ $C_1 = C_1 = C_1$ $C_1 = C_1$ $C_2 = C_2 = C_1 = C_1$ $C_1 = C_1$ $C_2 = C_2 = C_1$ $C_1 = C_1$ $C_2 = C_2$ $C_2 = C_2$ $C_1 = C_1$ $C_2 = C_2$ $C_2 = C_2$ $C_1 = C_1$ $C_2 = C_2$ $C_2 = C_2$ $C_2 = C_2$ $C_1 = C_1$ $C_2 = C_2$ $C_2$ $C_2 = C_2$ $C_2$                                                                                                                                                                                                                                                                                                                                                                                            | $C_2 = C_3 = C_4 = C_5$         | 0.3(3)      | $C_{2} = C_{10} = C_{11} = C_{12}$              | -17851(16)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_2 = C_3 = C_4 = C_8$         | -1795(2)    | $C10-C11-C12-C12^{i}$                           | 179 07 (19) |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$ $C_{6}$ $-0.2 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$ | -0.2(3)     | 010 011 012 012                                 | 1,7.07 (17) |

Symmetry code: (i) -x+1, -y+2, -z+2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | Н…А  | D····A      | <i>D</i> —Н··· <i>A</i> |
|------------------------------------|------|------|-------------|-------------------------|
| 02—H2…N1                           | 0.82 | 1.79 | 2.5973 (19) | 169                     |
| N2—H2 <i>B</i> ···O1 <sup>ii</sup> | 0.86 | 2.10 | 2.922 (2)   | 159                     |
| N2—H2A…O1                          | 0.86 | 2.19 | 3.009 (2)   | 160                     |

Symmetry code: (ii) –*x*+1, *y*–1/2, –*z*+5/2.