organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{1-[(2-Chloro­thia­zol-5-yl)meth­yl]-5-methyl-1H-1,2,3-triazol-4-yl}ethanone

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan, 442000, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 18 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title compound, C9H9ClN4OS, the two rings enclose a dihedral angle of 84.67 (11)°. Inter­molecular C—H⋯O and C—H⋯N hydrogen bonds stabilize the crystal packing.

Related literature

For the biological activity of triazole derivatives, see Najim et al. (2004[Najim, A. A., Yaseen, A. A. & Asmehan, A. (2004). Heteroat. Chem. 15, 380-387.]); Liu et al. (2001[Liu, Z. M., Yang, G. F. & Qing, X. H. (2001). J. Chem. Technol. Biotechnol. 76, 1154-1158.]). For the synthesis of the title compound, see: Chen & Shi (2008[Chen, X. B. & Shi, D. Q. (2008). J. Heterocycl. Chem. 45, 1493-1497.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN4OS

  • Mr = 256.71

  • Orthorhombic, P b c a

  • a = 10.5421 (6) Å

  • b = 11.1494 (6) Å

  • c = 19.8557 (10) Å

  • V = 2333.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.16 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 22708 measured reflections

  • 2556 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.15

  • 2556 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯N3i 0.97 2.48 3.399 (3) 159
C4—H4A⋯O1ii 0.97 2.48 3.376 (3) 153
C7—H7C⋯O1ii 0.96 2.57 3.396 (3) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that many triazole-related molecules play an important role in the development of agrochemicals such as insecticides, nematocides, acaricide and plant growth regulators ( Najim et al., 2004; Liu et al., 2001). The structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound (Fig. 1), which was synthesized by adding a thiazole rings to a 1,2,3-Triazole molecular framework. Intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the crystal packing (Fig. 2).

Related literature top

For the biological activity of triazole derivatives, see Najim et al. (2004); Liu et al. (2001). For the synthesis of the title compound, see: Chen & Shi (2008).

Experimental top

Acetylacetone (2 mmol) and 5-azidomethyl-2-chlorothiazole (2 mmol) were added to a suspension of milled potassium carbonate (6 mmol) in DMSO (10 ml). The mixture was stirred at room temperature for 10 h (monitored by thin-layer chromatography) and poured to water (50 ml). The solid was collected by filtration, washed with water and diethyl ether, respectively, and dried to give 0.46 g of the title compound (yield 90%). Colorless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (1:3, v/v).

Refinement top

H atoms bonded to C were placed at calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). the methyl groups were allowed to rotate but not to tip.

Structure description top

It is well known that many triazole-related molecules play an important role in the development of agrochemicals such as insecticides, nematocides, acaricide and plant growth regulators ( Najim et al., 2004; Liu et al., 2001). The structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound (Fig. 1), which was synthesized by adding a thiazole rings to a 1,2,3-Triazole molecular framework. Intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the crystal packing (Fig. 2).

For the biological activity of triazole derivatives, see Najim et al. (2004); Liu et al. (2001). For the synthesis of the title compound, see: Chen & Shi (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the C—H···O and C—H···N hydrogen bonds as dashed lines.
1-{1-[(2-Chlorothiazol-5-yl)methyl]-5-methyl-1H-1,2,3-triazol-4- yl}ethanone top
Crystal data top
C9H9ClN4OSDx = 1.461 Mg m3
Mr = 256.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9847 reflections
a = 10.5421 (6) Åθ = 2.8–28.3°
b = 11.1494 (6) ŵ = 0.49 mm1
c = 19.8557 (10) ÅT = 298 K
V = 2333.8 (2) Å3Block, colorless
Z = 80.16 × 0.10 × 0.10 mm
F(000) = 1056
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
φ and ω scansh = 1313
22708 measured reflectionsk = 1414
2556 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.9336P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H9ClN4OSV = 2333.8 (2) Å3
Mr = 256.71Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.5421 (6) ŵ = 0.49 mm1
b = 11.1494 (6) ÅT = 298 K
c = 19.8557 (10) Å0.16 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2336 reflections with I > 2σ(I)
22708 measured reflectionsRint = 0.046
2556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.15Δρmax = 0.29 e Å3
2556 reflectionsΔρmin = 0.19 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06077 (19)0.5833 (2)0.07494 (12)0.0523 (5)
C20.1710 (2)0.4540 (2)0.13106 (13)0.0611 (6)
H20.18380.39140.16130.073*
C30.26783 (19)0.50485 (18)0.09799 (9)0.0425 (4)
C40.40502 (19)0.47144 (17)0.10133 (10)0.0433 (4)
H4A0.41710.41370.13730.052*
H4B0.42910.43310.05940.052*
C50.50309 (18)0.64274 (16)0.16817 (9)0.0389 (4)
C60.59612 (18)0.72323 (17)0.14998 (9)0.0403 (4)
C70.4283 (3)0.6266 (2)0.23107 (11)0.0649 (7)
H7A0.33950.63360.22110.097*
H7B0.45190.68720.26310.097*
H7C0.44520.54880.24970.097*
C80.6563 (2)0.81698 (19)0.19098 (11)0.0492 (5)
C90.7538 (2)0.8946 (2)0.15856 (13)0.0637 (6)
H9A0.78300.95330.19030.096*
H9B0.71730.93440.12030.096*
H9C0.82390.84600.14410.096*
Cl10.06811 (6)0.66155 (7)0.04706 (5)0.0803 (3)
N10.05217 (18)0.4984 (2)0.11826 (11)0.0659 (6)
N20.48829 (14)0.57468 (14)0.11306 (7)0.0380 (3)
N30.56710 (16)0.61037 (18)0.06291 (9)0.0499 (4)
N40.63206 (16)0.70047 (17)0.08532 (8)0.0498 (4)
O10.6277 (2)0.82866 (17)0.24974 (9)0.0745 (5)
S10.21063 (5)0.61575 (6)0.04596 (3)0.0553 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (10)0.0567 (12)0.0623 (13)0.0021 (9)0.0002 (9)0.0114 (11)
C20.0553 (13)0.0692 (15)0.0589 (13)0.0073 (11)0.0030 (10)0.0170 (11)
C30.0443 (10)0.0455 (10)0.0376 (9)0.0051 (8)0.0020 (8)0.0005 (8)
C40.0475 (10)0.0421 (10)0.0405 (9)0.0010 (8)0.0026 (8)0.0021 (8)
C50.0438 (10)0.0384 (9)0.0344 (9)0.0058 (8)0.0010 (7)0.0005 (7)
C60.0385 (9)0.0433 (10)0.0391 (9)0.0041 (7)0.0016 (7)0.0009 (7)
C70.0893 (19)0.0635 (14)0.0419 (11)0.0171 (13)0.0195 (11)0.0072 (10)
C80.0520 (11)0.0442 (10)0.0514 (12)0.0021 (9)0.0063 (9)0.0048 (9)
C90.0555 (13)0.0612 (14)0.0745 (15)0.0125 (11)0.0003 (12)0.0112 (12)
Cl10.0474 (4)0.0764 (5)0.1170 (6)0.0117 (3)0.0114 (3)0.0108 (4)
N10.0470 (11)0.0823 (15)0.0683 (13)0.0106 (10)0.0095 (9)0.0072 (11)
N20.0367 (8)0.0438 (8)0.0333 (7)0.0019 (6)0.0005 (6)0.0020 (6)
N30.0494 (10)0.0628 (11)0.0375 (8)0.0066 (8)0.0062 (7)0.0066 (8)
N40.0462 (9)0.0611 (11)0.0423 (9)0.0072 (8)0.0063 (7)0.0067 (8)
O10.1052 (15)0.0692 (11)0.0490 (9)0.0220 (10)0.0015 (9)0.0161 (8)
S10.0431 (3)0.0575 (4)0.0653 (4)0.0022 (2)0.0006 (2)0.0173 (2)
Geometric parameters (Å, º) top
C1—N11.283 (3)C5—C71.488 (3)
C1—Cl11.707 (2)C6—N41.362 (2)
C1—S11.720 (2)C6—C81.469 (3)
C2—C31.340 (3)C7—H7A0.9600
C2—N11.371 (3)C7—H7B0.9600
C2—H20.9300C7—H7C0.9600
C3—C41.495 (3)C8—O11.212 (3)
C3—S11.720 (2)C8—C91.490 (3)
C4—N21.466 (2)C9—H9A0.9600
C4—H4A0.9700C9—H9B0.9600
C4—H4B0.9700C9—H9C0.9600
C5—N21.341 (2)N2—N31.357 (2)
C5—C61.378 (3)N3—N41.295 (3)
N1—C1—Cl1122.58 (17)C5—C7—H7B109.5
N1—C1—S1116.39 (17)H7A—C7—H7B109.5
Cl1—C1—S1121.03 (15)C5—C7—H7C109.5
C3—C2—N1116.9 (2)H7A—C7—H7C109.5
C3—C2—H2121.6H7B—C7—H7C109.5
N1—C2—H2121.6O1—C8—C6120.2 (2)
C2—C3—C4127.6 (2)O1—C8—C9121.7 (2)
C2—C3—S1109.37 (17)C6—C8—C9118.14 (19)
C4—C3—S1123.01 (14)C8—C9—H9A109.5
N2—C4—C3113.00 (16)C8—C9—H9B109.5
N2—C4—H4A109.0H9A—C9—H9B109.5
C3—C4—H4A109.0C8—C9—H9C109.5
N2—C4—H4B109.0H9A—C9—H9C109.5
C3—C4—H4B109.0H9B—C9—H9C109.5
H4A—C4—H4B107.8C1—N1—C2109.05 (19)
N2—C5—C6103.75 (16)C5—N2—N3111.21 (16)
N2—C5—C7123.72 (18)C5—N2—C4130.06 (16)
C6—C5—C7132.53 (18)N3—N2—C4118.71 (15)
N4—C6—C5108.88 (17)N4—N3—N2107.41 (15)
N4—C6—C8122.34 (18)N3—N4—C6108.75 (16)
C5—C6—C8128.73 (18)C1—S1—C388.29 (11)
C5—C7—H7A109.5
N1—C2—C3—C4178.2 (2)C6—C5—N2—N30.2 (2)
N1—C2—C3—S10.6 (3)C7—C5—N2—N3178.9 (2)
C2—C3—C4—N2130.4 (2)C6—C5—N2—C4178.39 (17)
S1—C3—C4—N252.3 (2)C7—C5—N2—C42.5 (3)
N2—C5—C6—N40.3 (2)C3—C4—N2—C569.8 (2)
C7—C5—C6—N4178.7 (2)C3—C4—N2—N3111.75 (19)
N2—C5—C6—C8177.00 (18)C5—N2—N3—N40.0 (2)
C7—C5—C6—C84.0 (4)C4—N2—N3—N4178.78 (17)
N4—C6—C8—O1174.8 (2)N2—N3—N4—C60.2 (2)
C5—C6—C8—O12.2 (3)C5—C6—N4—N30.4 (2)
N4—C6—C8—C94.2 (3)C8—C6—N4—N3177.18 (18)
C5—C6—C8—C9178.8 (2)N1—C1—S1—C30.6 (2)
Cl1—C1—N1—C2179.37 (19)Cl1—C1—S1—C3179.14 (15)
S1—C1—N1—C20.4 (3)C2—C3—S1—C10.65 (18)
C3—C2—N1—C10.2 (3)C4—C3—S1—C1178.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N3i0.972.483.399 (3)159
C4—H4A···O1ii0.972.483.376 (3)153
C7—H7C···O1ii0.962.573.396 (3)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9ClN4OS
Mr256.71
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)10.5421 (6), 11.1494 (6), 19.8557 (10)
V3)2333.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.16 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22708, 2556, 2336
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.15
No. of reflections2556
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N3i0.972.483.399 (3)158.8
C4—H4A···O1ii0.972.483.376 (3)153.4
C7—H7C···O1ii0.962.573.396 (3)144.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Yunyang Medical College (grant No. 2007ZQB24).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. B. & Shi, D. Q. (2008). J. Heterocycl. Chem. 45, 1493–1497.  CrossRef CAS Google Scholar
First citationLiu, Z. M., Yang, G. F. & Qing, X. H. (2001). J. Chem. Technol. Biotechnol. 76, 1154–1158.  CrossRef CAS Google Scholar
First citationNajim, A. A., Yaseen, A. A. & Asmehan, A. (2004). Heteroat. Chem. 15, 380–387.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds