metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(4-oxo-1,4-di­hydro­pyridine-3-sulfonato-κ2O3,O4)zinc(II)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2009; accepted 27 October 2009; online 31 October 2009)

In the crystal structure of the title compound, [Zn(C5H4NO4S)2(H2O)2], the 4-oxo-1,4-dihydro­pyridine-3-sulfonate anion chelates to water-coordinated zinc centres through the carbonyl O atom and through one O atom of the sulfonate group. The ZnII atom lies on a center of inversion, and adjacent mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the structure of the 4-oxo-1,4-dihydro­pyridine-3-sulfonate anion, see: Zhu et al. (2009[Zhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2687.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H4NO4S)2(H2O)2]

  • Mr = 449.71

  • Monoclinic, P 21 /c

  • a = 4.9263 (1) Å

  • b = 20.9529 (6) Å

  • c = 7.4437 (2) Å

  • β = 98.9371 (9)°

  • V = 759.01 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 293 K

  • 0.23 × 0.17 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.662, Tmax = 0.772

  • 7334 measured reflections

  • 1738 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.10

  • 1738 reflections

  • 127 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O2i 0.84 (1) 2.05 (2) 2.797 (2) 147 (2)
O1w—H2⋯O4ii 0.84 (1) 1.92 (1) 2.744 (2) 171 (3)
N1—H3⋯O3iii 0.85 (1) 1.91 (1) 2.754 (2) 175 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of the 4-oxo-1,4-dihydropyridine-3-sulfonate anion, see: Zhu et al. (2009).

Experimental top

Zinc carbonate (0.25 g, 2 mmol) was added to a hot aqueous solution of 4-hydroxypyridine-3-sulfonic acid (0.35 g, 2 mmol); the pH value was adjusted to6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate slowly at room temperature, and colorless prismatic crystals were isolated after about five days. CH&N elemental analysis. Calc. for C10H12N2O10S2Zn:C 26.71, H 2.69, N 6.23%; found: C 26.73, H 2.73, N 6.21%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N–H = O–H = 0.85±0.01 Å.

Structure description top

For the structure of the 4-oxo-1,4-dihydropyridine-3-sulfonate anion, see: Zhu et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Zn(H2O)2(C5H4NO4S)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Diaquabis(4-oxo-1,4-dihydropyridine-3-sulfonato- κ2O3,O4)zinc(II) top
Crystal data top
[Zn(C5H4NO4S)2(H2O)2]F(000) = 456
Mr = 449.71Dx = 1.968 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6865 reflections
a = 4.9263 (1) Åθ = 3.4–27.5°
b = 20.9529 (6) ŵ = 1.95 mm1
c = 7.4437 (2) ÅT = 293 K
β = 98.9371 (9)°Prism, colorless
V = 759.01 (3) Å30.23 × 0.17 × 0.14 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1738 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 65
Tmin = 0.662, Tmax = 0.772k = 2727
7334 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.5207P]
where P = (Fo2 + 2Fc2)/3
1738 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.45 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Zn(C5H4NO4S)2(H2O)2]V = 759.01 (3) Å3
Mr = 449.71Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9263 (1) ŵ = 1.95 mm1
b = 20.9529 (6) ÅT = 293 K
c = 7.4437 (2) Å0.23 × 0.17 × 0.14 mm
β = 98.9371 (9)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1738 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1629 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.772Rint = 0.021
7334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0253 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
1738 reflectionsΔρmin = 0.46 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.01991 (11)
S10.54548 (9)0.35166 (2)0.43742 (6)0.02251 (13)
O10.6943 (3)0.41242 (6)0.46588 (19)0.0246 (3)
O20.4026 (3)0.33653 (7)0.5890 (2)0.0327 (3)
O30.7182 (3)0.30080 (7)0.3867 (2)0.0380 (4)
O40.1877 (3)0.47222 (6)0.29786 (18)0.0238 (3)
O1W0.7120 (3)0.54012 (7)0.3004 (2)0.0279 (3)
N10.0061 (4)0.30854 (10)0.0136 (2)0.0361 (5)
C10.2078 (4)0.30795 (10)0.1490 (3)0.0303 (4)
H1A0.30530.27030.17640.036*
C20.2849 (4)0.36189 (8)0.2474 (3)0.0221 (4)
C30.1359 (4)0.42039 (8)0.2098 (2)0.0209 (4)
C40.0876 (4)0.41740 (10)0.0613 (3)0.0294 (4)
H40.18970.45400.02740.035*
C50.1522 (5)0.36232 (11)0.0300 (3)0.0353 (5)
H5A0.29980.36150.12450.042*
H10.738 (5)0.5794 (5)0.318 (4)0.035 (7)*
H20.866 (3)0.5233 (13)0.301 (4)0.040 (7)*
H30.081 (6)0.2742 (9)0.028 (4)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01975 (17)0.01417 (16)0.02420 (18)0.00106 (10)0.00165 (12)0.00169 (10)
S10.0258 (2)0.0128 (2)0.0270 (2)0.00172 (16)0.00212 (18)0.00056 (16)
O10.0221 (6)0.0168 (6)0.0333 (7)0.0005 (5)0.0006 (5)0.0015 (5)
O20.0433 (8)0.0247 (7)0.0286 (7)0.0061 (6)0.0009 (6)0.0042 (6)
O30.0398 (8)0.0203 (7)0.0503 (10)0.0124 (6)0.0037 (7)0.0046 (6)
O40.0226 (6)0.0168 (6)0.0295 (7)0.0010 (5)0.0042 (5)0.0031 (5)
O1W0.0263 (7)0.0244 (7)0.0333 (8)0.0020 (6)0.0059 (6)0.0008 (6)
N10.0443 (11)0.0297 (10)0.0324 (10)0.0131 (8)0.0006 (8)0.0141 (7)
C10.0366 (11)0.0203 (9)0.0337 (10)0.0038 (8)0.0046 (8)0.0065 (8)
C20.0253 (9)0.0178 (8)0.0224 (9)0.0022 (7)0.0008 (7)0.0024 (6)
C30.0215 (8)0.0189 (8)0.0212 (8)0.0032 (7)0.0005 (7)0.0008 (6)
C40.0300 (10)0.0295 (10)0.0256 (9)0.0034 (8)0.0061 (8)0.0025 (8)
C50.0364 (11)0.0414 (12)0.0248 (10)0.0108 (9)0.0056 (8)0.0042 (8)
Geometric parameters (Å, º) top
Zn1—O42.0618 (12)O1W—H20.835 (10)
Zn1—O4i2.0618 (12)N1—C11.340 (3)
Zn1—O1i2.1031 (13)N1—C51.349 (3)
Zn1—O12.1031 (13)N1—H30.846 (10)
Zn1—O1Wi2.1183 (15)C1—C21.368 (3)
Zn1—O1W2.1183 (15)C1—H1A0.9300
S1—O31.4496 (15)C2—C31.434 (2)
S1—O21.4547 (17)C3—C41.435 (2)
S1—O11.4681 (13)C4—C51.352 (3)
S1—C21.7694 (19)C4—H40.9300
O4—C31.274 (2)C5—H5A0.9300
O1W—H10.841 (10)
O4—Zn1—O4i180.00 (7)C3—O4—Zn1133.12 (12)
O4—Zn1—O1i91.86 (5)Zn1—O1W—H1111.3 (18)
O4i—Zn1—O1i88.14 (5)Zn1—O1W—H2112 (2)
O4—Zn1—O188.14 (5)H1—O1W—H2107 (3)
O4i—Zn1—O191.86 (5)C1—N1—C5121.09 (18)
O1i—Zn1—O1180.0C1—N1—H3121 (2)
O4—Zn1—O1Wi90.38 (6)C5—N1—H3116 (2)
O4i—Zn1—O1Wi89.62 (6)N1—C1—C2121.0 (2)
O1i—Zn1—O1Wi88.76 (5)N1—C1—H1A119.5
O1—Zn1—O1Wi91.24 (5)C2—C1—H1A119.5
O4—Zn1—O1W89.62 (6)C1—C2—C3120.70 (17)
O4i—Zn1—O1W90.38 (6)C1—C2—S1115.75 (15)
O1i—Zn1—O1W91.24 (5)C3—C2—S1123.06 (13)
O1—Zn1—O1W88.76 (5)O4—C3—C2124.95 (16)
O1Wi—Zn1—O1W180.00 (7)O4—C3—C4120.14 (17)
O3—S1—O2114.58 (10)C2—C3—C4114.91 (16)
O3—S1—O1112.02 (9)C5—C4—C3121.1 (2)
O2—S1—O1111.59 (9)C5—C4—H4119.4
O3—S1—C2105.27 (9)C3—C4—H4119.4
O2—S1—C2105.55 (9)C4—C5—N1121.12 (18)
O1—S1—C2107.12 (8)C4—C5—H5A119.4
S1—O1—Zn1123.21 (8)N1—C5—H5A119.4
O3—S1—O1—Zn1170.03 (10)O2—S1—C2—C189.44 (17)
O2—S1—O1—Zn159.98 (12)O1—S1—C2—C1151.53 (16)
C2—S1—O1—Zn155.08 (12)O3—S1—C2—C3155.77 (16)
O4—Zn1—O1—S140.93 (10)O2—S1—C2—C382.66 (17)
O4i—Zn1—O1—S1139.07 (10)O1—S1—C2—C336.38 (18)
O1Wi—Zn1—O1—S149.40 (10)Zn1—O4—C3—C26.9 (3)
O1W—Zn1—O1—S1130.60 (10)Zn1—O4—C3—C4173.69 (14)
O1i—Zn1—O4—C3173.83 (17)C1—C2—C3—O4177.73 (19)
O1—Zn1—O4—C36.17 (17)S1—C2—C3—O46.0 (3)
O1Wi—Zn1—O4—C385.06 (18)C1—C2—C3—C41.7 (3)
O1W—Zn1—O4—C394.94 (18)S1—C2—C3—C4173.44 (15)
C5—N1—C1—C20.0 (3)O4—C3—C4—C5177.7 (2)
N1—C1—C2—C30.9 (3)C2—C3—C4—C51.8 (3)
N1—C1—C2—S1173.18 (17)C3—C4—C5—N11.0 (4)
O3—S1—C2—C132.14 (19)C1—N1—C5—C40.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O2i0.84 (1)2.05 (2)2.797 (2)147 (2)
O1w—H2···O4ii0.84 (1)1.92 (1)2.744 (2)171 (3)
N1—H3···O3iii0.85 (1)1.91 (1)2.754 (2)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H4NO4S)2(H2O)2]
Mr449.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.9263 (1), 20.9529 (6), 7.4437 (2)
β (°) 98.9371 (9)
V3)759.01 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.23 × 0.17 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.662, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
7334, 1738, 1629
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.10
No. of reflections1738
No. of parameters127
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.46

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O2i0.84 (1)2.05 (2)2.797 (2)147 (2)
O1w—H2···O4ii0.84 (1)1.92 (1)2.744 (2)171 (3)
N1—H3···O3iii0.85 (1)1.91 (1)2.754 (2)175 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2687.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds