Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

#### (3,5-Dimethylpyrazol-1-yl)[5-(3,5dimethylpyrazol-1-ylcarbonyl)-2thienyl]methanone

#### Ilia A. Guzei,<sup>a</sup>\* Lara C. Spencer,<sup>a</sup> Mmboneni G. Tshivashe<sup>b</sup> and James Darkwa<sup>b</sup>

<sup>a</sup>Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and <sup>b</sup>Department of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa Correspondence e-mail: iguzei@chem.wisc.edu

Received 17 August 2009; accepted 6 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.112; data-to-parameter ratio = 11.5.

The title compound, C<sub>16</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>S, crystallizes with two symmetry-independent half-molecules in the asymmetric unit. All non-H atoms in each molecule lie in a crystallographic mirror plane. The molecules form sheets in the ac plane, which then form stacks along the b axis. The sheets are connected via  $\pi$ - $\pi$  stacking interactions [centroid-centroid distance between pyrazolato rings = 3.6949(8) Å].

#### **Related literature**

In the course of our studies toward effective polymerization catalysts we have investigated Pd complexes with pyrazolyl derivatives as ligands, see: Guzei et al. (2003); Mohlala et al. (2005). The title compound was isolated serendipitously during this work. For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2002). For thiophene carbonyl linker pyrazolyl compounds, see: Ojwach et al. (2005).



#### **Experimental**

#### Crystal data

| $C_{16}H_{16}N_4O_2S$           | V = 1603.9 (6) Å <sup>3</sup>     |
|---------------------------------|-----------------------------------|
| $M_r = 328.39$                  | Z = 4                             |
| Monoclinic, $P2_1/m$            | Mo $K\alpha$ radiation            |
| a = 15.615 (3) Å                | $\mu = 0.22 \text{ mm}^{-1}$      |
| b = 6.7153 (16)  Å              | T = 296  K                        |
| c = 16.803 (4)  Å               | $0.30 \times 0.30 \times 0.20$ mm |
| $\beta = 114.452 \ (4)^{\circ}$ |                                   |
|                                 |                                   |

#### Data collection

Bruker CCD 1000 area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007)  $T_{\min} = 0.938, \ T_{\max} = 0.958$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.112$ S = 1.033297 reflections

7557 measured reflections 3297 independent reflections 2744 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.017$ 

286 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.22$  e Å<sup>-3</sup>

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

This work was supported by the National Research Foundation (South Africa).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2130).

#### References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Guzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Guzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715-722.
- Mohlala, M. S., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). J. Mol. Cat. Chem. A, 241, 93-100.
- Ojwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843-853.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, o2743 [https://doi.org/10.1107/S1600536809040756]

# (3,5-Dimethylpyrazol-1-yl)[5-(3,5-dimethylpyrazol-1-ylcarbonyl)-2-thienyl]methanone

#### Ilia A. Guzei, Lara C. Spencer, Mmboneni G. Tshivashe and James Darkwa

#### S1. Comment

In the course of our studies toward effective polymerization catalysts we investigated Pd complexes with pyrazolyl derivatives as ligands. Benzene carbonyl (Guzei *et al.*, 2003) and pyridine carbonyl (Mohlala *et al.*, 2005) were used as linkers between two pyrazolyl units which served as ligands that readily form complexes with palladium. During the project development the title compound (I) was serendipitously isolated. Single crystals of (I) were obtained by slow evaporation of its dichloromethane:hexane (2:1) solution.

Compound (I) crystallizes with two symmetry independent half-molecules in the asymmetric unit. Each molecule lies in a crystallographic mirror plane. Compound (I) (Fig. 1) has typical bond distances and angles as confirmed by the *Mogul* structural check (Bruno *et al.*, 2002) and a comparison to 11 related compounds in the Cambridge Structural Database (Allen, 2002). The two molecules of compound (I) present in the asymmetric unit have essentially identical geometries as illustrated in the overlay diagram (Fig. 2).

In the crystal the molecules of (I) form sheets in the *a*-*c* plane which then form stacks along the *b* axis. The molecules within the sheets are joined by a weak C—H···O hydrogen bonding interaction, C8—H8···O4. The sheets are separated by a distance equal to the length of the *b* axis. The stacking of the sheets is aided by several weak  $\pi$ - $\pi$  stacking interactions between atoms C3 and C6 (3.374 Å) and atoms C27 and C30 (3.390 Å). Two weak hydrogen bonding interactions, C21 —H21C···O3 and C16—H16B···O2, of the type C—H···O also contribute to the stacking of the sheets.

#### S2. Experimental

3,5-Dimethylpyrazole (0.63 g, 6.76 mmol) and 2 ml of Et<sub>3</sub>N were added to a solution of 2,5-thiophenedicarbonyl dichloride (0.70 g, 3.34 mmol) in toluene (40 ml), and the resultant solution was refluxed 24 h. The reaction was filtered to remove the Et<sub>3</sub>NH<sup>+</sup>Cl<sup>-</sup> by-product, and the solvent was evaporated from the filtrate to give a yellow residue. The yellow solid was purified by chromatography on silica gel using a dichloromethane:diethyl ether (8:1) mixture as eluent. Removal of the solvent from the eluent gave analytically pure product. Single crystals suitable for X-ray studies were obtained from dichloromethane:hexane(2:1) solution of (I). Yield: 0.85 g, 78%. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.24 (s, 2H, thiophene); 6.06 (s, 2H, 4-pz); 2.63 (s, 6H, 5-Mepz); 2.33 (s, 6H, 3-Mepz). <sup>13</sup>C{<sup>1</sup>H} NMR:  $\delta$  160.6, 152.5, 145.1, 142.7, 135.8, 111.6, 14.4, 13.8. IR (nulo mull):  $\mu$ (C=O) 1680 cm<sup>-1</sup>.

#### **S3. Refinement**

All H-atoms were placed in geometrically idealized locations with C—H distances of 0.96 Å to the primary and 0.93 Å to the aromatic carbon atoms. The H-atoms were refined as riding with thermal displacement coefficients  $U_{iso}(H) = 1.5$  times  $U_{eq}$  (bearing C atom). One hydrogen atom attached to carbon atoms C1, C5, C12, C16, C17, C21, C28, and C32 is equally disordered over two positions about the mirror plane.





Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are ommitted for clarity.



Figure 2

An overlap diagram of the two independent molecules of (I) in the asymmetric unit showing their differences.

(3,5-Dimethylpyrazol-1-yl)[5-(3,5-dimethylpyrazol-1-ylcarbonyl)-2- thienyl]methanone

#### Crystal data

C<sub>16</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>S  $M_r = 328.39$ Monoclinic,  $P2_1/m$ Hall symbol: -P 2yb a = 15.615 (3) Å b = 6.7153 (16) Å c = 16.803 (4) Å  $\beta = 114.452$  (4)° V = 1603.9 (6) Å<sup>3</sup> Z = 4

#### Data collection

Bruker CCD 1000 area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $0.30^{\circ} \omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007)  $T_{\min} = 0.938, T_{\max} = 0.958$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.112$ S = 1.033297 reflections 286 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 688  $D_x = 1.360 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 999 reflections  $\theta = 1.3-26.3^{\circ}$   $\mu = 0.22 \text{ mm}^{-1}$  T = 296 KBlock, colourless  $0.30 \times 0.30 \times 0.20 \text{ mm}$ 

7557 measured reflections 3297 independent reflections 2744 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.017$  $\theta_{max} = 26.3^\circ, \theta_{min} = 1.3^\circ$  $h = -18 \rightarrow 7$  $k = -8 \rightarrow 8$  $l = -18 \rightarrow 20$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0765P)^2 + 0.2093P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.33$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.22$  e Å<sup>-3</sup> Extinction correction: *SHELXTL* (Version 6.10; Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0041 (8)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у      | Z             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) | - |
|------|--------------|--------|---------------|-----------------------------|-----------|---|
| S1   | 0.76388 (4)  | 0.2500 | -0.02885 (3)  | 0.04546 (18)                |           |   |
| S2   | 0.21011 (4)  | 0.7500 | 0.46771 (3)   | 0.04529 (18)                |           |   |
| 01   | 1.02198 (12) | 0.2500 | 0.16162 (10)  | 0.0602 (5)                  |           |   |
| 02   | 0.56735 (13) | 0.2500 | -0.11813 (11) | 0.0656 (5)                  |           |   |
| 03   | 0.32829 (12) | 0.7500 | 0.37697 (10)  | 0.0598 (5)                  |           |   |
| 04   | 0.12968 (14) | 0.7500 | 0.66244 (11)  | 0.0687 (5)                  |           |   |
| N1   | 0.91549 (13) | 0.2500 | -0.06725(12)  | 0.0463 (5)                  |           |   |
| N2   | 0.98581 (13) | 0.2500 | 0.01605 (11)  | 0.0438 (4)                  |           |   |
| N3   | 0.51710 (14) | 0.2500 | -0.01002(13)  | 0.0491 (5)                  |           |   |
| N4   | 0.53697 (15) | 0.2500 | 0.07758 (13)  | 0.0538 (5)                  |           |   |
| N5   | 0.53108 (14) | 0.7500 | 0.57482 (12)  | 0.0504 (5)                  |           |   |
| N6   | 0.47457 (13) | 0.7500 | 0.48641 (12)  | 0.0454 (5)                  |           |   |
| N7   | 0.03038 (14) | 0.7500 | 0.51918 (12)  | 0.0472 (5)                  |           |   |
| N8   | 0.02073 (14) | 0.7500 | 0.43423 (13)  | 0.0499 (5)                  |           |   |
| C1   | 1.16450 (17) | 0.2500 | 0.09562 (16)  | 0.0545 (6)                  |           |   |
| H1A  | 1.1746       | 0.3792 | 0.1224        | 0.082*                      | 0.50      |   |
| H1B  | 1.2154       | 0.2187 | 0.0798        | 0.082*                      | 0.50      |   |
| H1C  | 1.1616       | 0.1521 | 0.1361        | 0.082*                      | 0.50      |   |
| C2   | 1.07409 (16) | 0.2500 | 0.01566 (15)  | 0.0440 (5)                  |           |   |
| C3   | 1.05827 (17) | 0.2500 | -0.06987 (15) | 0.0493 (6)                  |           |   |
| H3   | 1.1037       | 0.2500 | -0.0922       | 0.059*                      |           |   |
| C4   | 0.95929 (17) | 0.2500 | -0.11908(15)  | 0.0461 (5)                  |           |   |
| C5   | 0.9038 (2)   | 0.2500 | -0.21587 (16) | 0.0638 (7)                  |           |   |
| H5A  | 0.9079       | 0.1213 | -0.2389       | 0.096*                      | 0.50      |   |
| H5B  | 0.9286       | 0.3490 | -0.2418       | 0.096*                      | 0.50      |   |
| H5C  | 0.8391       | 0.2797 | -0.2291       | 0.096*                      | 0.50      |   |
| C6   | 0.96182 (16) | 0.2500 | 0.08757 (14)  | 0.0433 (5)                  |           |   |
| C7   | 0.86051 (16) | 0.2500 | 0.06999 (14)  | 0.0426 (5)                  |           |   |
| C8   | 0.83320 (18) | 0.2500 | 0.13777 (14)  | 0.0504 (6)                  |           |   |
| H8   | 0.8757       | 0.2500 | 0.1962        | 0.060*                      |           |   |
| C9   | 0.73637 (18) | 0.2500 | 0.11117 (15)  | 0.0530 (6)                  |           |   |
| H9   | 0.7073       | 0.2500 | 0.1496        | 0.064*                      |           |   |
| C10  | 0.68842 (17) | 0.2500 | 0.02215 (14)  | 0.0446 (5)                  |           |   |
| C11  | 0.58809 (18) | 0.2500 | -0.04065 (15) | 0.0498 (6)                  |           |   |
| C12  | 0.3760 (2)   | 0.2500 | -0.15831 (18) | 0.0785 (9)                  |           |   |
| H12A | 0.4051       | 0.3497 | -0.1799       | 0.118*                      | 0.50      |   |
| H12B | 0.3102       | 0.2787 | -0.1783       | 0.118*                      | 0.50      |   |
| H12C | 0.3839       | 0.1216 | -0.1795       | 0.118*                      | 0.50      |   |
| C13  | 0.42081 (18) | 0.2500 | -0.06136 (16) | 0.0544 (6)                  |           |   |
| C14  | 0.38063 (19) | 0.2500 | -0.00366 (18) | 0.0594 (7)                  |           |   |
| H14  | 0.3165       | 0.2500 | -0.0172       | 0.071*                      |           |   |
| C15  | 0.45420 (19) | 0.2500 | 0.08064 (17)  | 0.0553 (6)                  |           |   |
| C16  | 0.4463 (2)   | 0.2500 | 0.16601 (19)  | 0.0737 (9)                  |           |   |
| H16A | 0.3920       | 0.1744 | 0.1608        | 0.111*                      | 0.50      |   |
| H16B | 0.4401       | 0.3844 | 0.1823        | 0.111*                      | 0.50      |   |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H16C | 0.5017        | 0.1912 | 0.2100       | 0.111*     | 0.50 |
|------|---------------|--------|--------------|------------|------|
| C17  | 0.4882 (2)    | 0.7500 | 0.34029 (17) | 0.0690 (8) |      |
| H17A | 0.4527        | 0.8697 | 0.3183       | 0.103*     | 0.50 |
| H17B | 0.4479        | 0.6365 | 0.3181       | 0.103*     | 0.50 |
| H17C | 0.5387        | 0.7438 | 0.3218       | 0.103*     | 0.50 |
| C18  | 0.52755 (18)  | 0.7500 | 0.43745 (16) | 0.0498 (6) |      |
| C19  | 0.61859 (18)  | 0.7500 | 0.49724 (17) | 0.0552 (6) |      |
| H19  | 0.6717        | 0.7500 | 0.4853       | 0.066*     |      |
| C20  | 0.61758 (17)  | 0.7500 | 0.58059 (17) | 0.0511 (6) |      |
| C21  | 0.69948 (19)  | 0.7500 | 0.66823 (18) | 0.0696 (8) |      |
| H21A | 0.6806        | 0.8065 | 0.7109       | 0.104*     | 0.50 |
| H21B | 0.7497        | 0.8277 | 0.6653       | 0.104*     | 0.50 |
| H21C | 0.7206        | 0.6158 | 0.6845       | 0.104*     | 0.50 |
| C22  | 0.37624 (16)  | 0.7500 | 0.45456 (14) | 0.0448 (5) |      |
| C23  | 0.33142 (16)  | 0.7500 | 0.51683 (14) | 0.0447 (5) |      |
| C24  | 0.36440 (18)  | 0.7500 | 0.60527 (16) | 0.0651 (8) |      |
| H24  | 0.4280        | 0.7500 | 0.6427       | 0.078*     |      |
| C25  | 0.29274 (19)  | 0.7500 | 0.63368 (16) | 0.0659 (8) |      |
| H25  | 0.3038        | 0.7500 | 0.6925       | 0.079*     |      |
| C26  | 0.20405 (17)  | 0.7500 | 0.56718 (14) | 0.0469 (5) |      |
| C27  | 0.12019 (18)  | 0.7500 | 0.58736 (15) | 0.0488 (6) |      |
| C28  | -0.0696 (2)   | 0.7500 | 0.60687 (19) | 0.0652 (7) |      |
| H28A | -0.0307       | 0.8509 | 0.6454       | 0.098*     | 0.50 |
| H28B | -0.0525       | 0.6222 | 0.6346       | 0.098*     | 0.50 |
| H28C | -0.1344       | 0.7769 | 0.5939       | 0.098*     | 0.50 |
| C29  | -0.05587 (18) | 0.7500 | 0.52427 (17) | 0.0515 (6) |      |
| C30  | -0.12032 (19) | 0.7500 | 0.44038 (18) | 0.0578 (6) |      |
| H30  | -0.1853       | 0.7500 | 0.4215       | 0.069*     |      |
| C31  | -0.07062 (18) | 0.7500 | 0.38631 (17) | 0.0536 (6) |      |
| C32  | -0.1090 (2)   | 0.7500 | 0.28947 (18) | 0.0739 (8) |      |
| H32A | -0.0600       | 0.7157 | 0.2714       | 0.111*     | 0.50 |
| H32B | -0.1329       | 0.8800 | 0.2678       | 0.111*     | 0.50 |
| H32C | -0.1590       | 0.6543 | 0.2665       | 0.111*     | 0.50 |
|      |               |        |              |            |      |

#### Atomic displacement parameters $(Å^2)$

| <i>T</i> <sup>11</sup> | $U^{22}$                                                                                                                                  | 1 733                                                                                                                                                                                                                    | <b>r</b> 712                                                                                                                                                                                                                                                                                                                                | <b>T T</b> 12                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                           | U                                                                                                                                                                                                                        | $U^{12}$                                                                                                                                                                                                                                                                                                                                    | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| .0355 (3)              | 0.0652 (4)                                                                                                                                | 0.0380 (3)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0176 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0319 (3)              | 0.0649 (4)                                                                                                                                | 0.0372 (3)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0124 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0441 (10)             | 0.0916 (13)                                                                                                                               | 0.0403 (9)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0128 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0464 (11)             | 0.1080 (15)                                                                                                                               | 0.0426 (9)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0186 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0430 (10)             | 0.0934 (13)                                                                                                                               | 0.0402 (9)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0144 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0543 (12)             | 0.1112 (15)                                                                                                                               | 0.0454 (9)                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0256 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0349 (11)             | 0.0628 (12)                                                                                                                               | 0.0396 (10)                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0138 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0351 (10)             | 0.0561 (11)                                                                                                                               | 0.0392 (10)                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0143 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0364 (11)             | 0.0665 (13)                                                                                                                               | 0.0462 (10)                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0188 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0417 (12)             | 0.0752 (14)                                                                                                                               | 0.0492 (11)                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0233 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .0370 (11)             | 0.0640 (12)                                                                                                                               | 0.0449 (10)                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                       | 0.0117 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | 0355 (3)<br>0319 (3)<br>0441 (10)<br>0464 (11)<br>0430 (10)<br>0543 (12)<br>0349 (11)<br>0351 (10)<br>0364 (11)<br>0417 (12)<br>0370 (11) | 0355 (3)0.0652 (4)0319 (3)0.0649 (4)0441 (10)0.0916 (13)0464 (11)0.1080 (15)0430 (10)0.0934 (13)0543 (12)0.1112 (15)0349 (11)0.0628 (12)0351 (10)0.0561 (11)0364 (11)0.0665 (13)0417 (12)0.0752 (14)0370 (11)0.0640 (12) | 0355 (3)0.0652 (4)0.0380 (3)0319 (3)0.0649 (4)0.0372 (3)0441 (10)0.0916 (13)0.0403 (9)0464 (11)0.1080 (15)0.0426 (9)0430 (10)0.0934 (13)0.0402 (9)0543 (12)0.1112 (15)0.0454 (9)0349 (11)0.0628 (12)0.0396 (10)0351 (10)0.0561 (11)0.0392 (10)0364 (11)0.0665 (13)0.0462 (10)0417 (12)0.0752 (14)0.0492 (11)0370 (11)0.0640 (12)0.0449 (10) | 0355(3) $0.0652(4)$ $0.0380(3)$ $0.000$ $0319(3)$ $0.0649(4)$ $0.0372(3)$ $0.000$ $0441(10)$ $0.0916(13)$ $0.0403(9)$ $0.000$ $0464(11)$ $0.1080(15)$ $0.0426(9)$ $0.000$ $0430(10)$ $0.0934(13)$ $0.0402(9)$ $0.000$ $0543(12)$ $0.1112(15)$ $0.0454(9)$ $0.000$ $0349(11)$ $0.0628(12)$ $0.0396(10)$ $0.000$ $0351(10)$ $0.0561(11)$ $0.0392(10)$ $0.000$ $0364(11)$ $0.0665(13)$ $0.0462(10)$ $0.000$ $0370(11)$ $0.0640(12)$ $0.0449(10)$ $0.000$ | 0355 (3)0.0652 (4)0.0380 (3)0.0000.0176 (2)0319 (3)0.0649 (4)0.0372 (3)0.0000.0124 (2)0441 (10)0.0916 (13)0.0403 (9)0.0000.0128 (7)0464 (11)0.1080 (15)0.0426 (9)0.0000.0186 (8)0430 (10)0.0934 (13)0.0402 (9)0.0000.0144 (7)0543 (12)0.1112 (15)0.0454 (9)0.0000.0256 (8)0349 (11)0.0628 (12)0.0396 (10)0.0000.0138 (8)0351 (10)0.0561 (11)0.0392 (10)0.0000.0188 (8)0364 (11)0.0665 (13)0.0462 (10)0.0000.0188 (8)0417 (12)0.0752 (14)0.0492 (11)0.0000.0117 (8) |

| N6  | 0.0381 (11) | 0.0546 (11) | 0.0438 (10) | 0.000 | 0.0173 (8)  | 0.000 |
|-----|-------------|-------------|-------------|-------|-------------|-------|
| N7  | 0.0391 (11) | 0.0586 (12) | 0.0472 (11) | 0.000 | 0.0211 (9)  | 0.000 |
| N8  | 0.0360 (11) | 0.0690 (13) | 0.0442 (10) | 0.000 | 0.0162 (8)  | 0.000 |
| C1  | 0.0325 (13) | 0.0699 (16) | 0.0567 (14) | 0.000 | 0.0140 (10) | 0.000 |
| C2  | 0.0325 (12) | 0.0491 (12) | 0.0507 (13) | 0.000 | 0.0174 (9)  | 0.000 |
| C3  | 0.0399 (13) | 0.0622 (14) | 0.0517 (13) | 0.000 | 0.0249 (11) | 0.000 |
| C4  | 0.0417 (13) | 0.0548 (13) | 0.0447 (12) | 0.000 | 0.0209 (10) | 0.000 |
| C5  | 0.0570 (17) | 0.092 (2)   | 0.0424 (13) | 0.000 | 0.0205 (12) | 0.000 |
| C6  | 0.0388 (13) | 0.0516 (12) | 0.0401 (11) | 0.000 | 0.0171 (9)  | 0.000 |
| C7  | 0.0392 (12) | 0.0495 (12) | 0.0391 (11) | 0.000 | 0.0163 (9)  | 0.000 |
| C8  | 0.0455 (14) | 0.0685 (15) | 0.0383 (11) | 0.000 | 0.0186 (10) | 0.000 |
| C9  | 0.0472 (15) | 0.0761 (16) | 0.0427 (12) | 0.000 | 0.0255 (10) | 0.000 |
| C10 | 0.0400 (13) | 0.0537 (13) | 0.0447 (12) | 0.000 | 0.0223 (10) | 0.000 |
| C11 | 0.0413 (14) | 0.0624 (14) | 0.0480 (13) | 0.000 | 0.0210 (10) | 0.000 |
| C12 | 0.0435 (16) | 0.126 (3)   | 0.0563 (16) | 0.000 | 0.0109 (12) | 0.000 |
| C13 | 0.0384 (14) | 0.0671 (16) | 0.0564 (14) | 0.000 | 0.0184 (11) | 0.000 |
| C14 | 0.0359 (14) | 0.0757 (17) | 0.0704 (17) | 0.000 | 0.0256 (12) | 0.000 |
| C15 | 0.0474 (16) | 0.0678 (16) | 0.0581 (15) | 0.000 | 0.0294 (12) | 0.000 |
| C16 | 0.0614 (19) | 0.110 (2)   | 0.0636 (17) | 0.000 | 0.0393 (15) | 0.000 |
| C17 | 0.0647 (19) | 0.097 (2)   | 0.0557 (15) | 0.000 | 0.0353 (14) | 0.000 |
| C18 | 0.0462 (14) | 0.0540 (13) | 0.0554 (14) | 0.000 | 0.0273 (11) | 0.000 |
| C19 | 0.0392 (14) | 0.0632 (15) | 0.0684 (16) | 0.000 | 0.0275 (12) | 0.000 |
| C20 | 0.0337 (13) | 0.0561 (14) | 0.0593 (15) | 0.000 | 0.0151 (11) | 0.000 |
| C21 | 0.0384 (15) | 0.091 (2)   | 0.0659 (17) | 0.000 | 0.0081 (12) | 0.000 |
| C22 | 0.0381 (13) | 0.0532 (13) | 0.0427 (12) | 0.000 | 0.0161 (10) | 0.000 |
| C23 | 0.0316 (12) | 0.0543 (13) | 0.0433 (12) | 0.000 | 0.0107 (9)  | 0.000 |
| C24 | 0.0347 (13) | 0.115 (2)   | 0.0405 (12) | 0.000 | 0.0104 (10) | 0.000 |
| C25 | 0.0417 (15) | 0.117 (2)   | 0.0370 (12) | 0.000 | 0.0139 (10) | 0.000 |
| C26 | 0.0399 (13) | 0.0590 (14) | 0.0416 (12) | 0.000 | 0.0166 (10) | 0.000 |
| C27 | 0.0425 (14) | 0.0605 (14) | 0.0445 (12) | 0.000 | 0.0189 (10) | 0.000 |
| C28 | 0.0601 (18) | 0.0769 (18) | 0.0756 (18) | 0.000 | 0.0452 (15) | 0.000 |
| C29 | 0.0419 (14) | 0.0557 (14) | 0.0645 (15) | 0.000 | 0.0298 (12) | 0.000 |
| C30 | 0.0362 (14) | 0.0664 (16) | 0.0729 (17) | 0.000 | 0.0247 (12) | 0.000 |
| C31 | 0.0385 (14) | 0.0618 (14) | 0.0573 (14) | 0.000 | 0.0166 (11) | 0.000 |
| C32 | 0.0474 (16) | 0.109 (2)   | 0.0545 (15) | 0.000 | 0.0099 (12) | 0.000 |
|     |             |             |             |       |             |       |

Geometric parameters (Å, °)

| S1-C10 | 1.720 (2) | C10-C11  | 1.483 (3) |  |
|--------|-----------|----------|-----------|--|
| S1—C7  | 1.721 (2) | C12—C13  | 1.483 (4) |  |
| S2—C26 | 1.713 (2) | C12—H12A | 0.9600    |  |
| S2—C23 | 1.725 (2) | C12—H12B | 0.9600    |  |
| O1—C6  | 1.209 (3) | C12—H12C | 0.9600    |  |
| O2—C11 | 1.204 (3) | C13—C14  | 1.355 (4) |  |
| O3—C22 | 1.205 (3) | C14—C15  | 1.407 (4) |  |
| O4—C27 | 1.208 (3) | C14—H14  | 0.9300    |  |
| N1C4   | 1.311 (3) | C15—C16  | 1.490 (3) |  |
| N1—N2  | 1.376 (2) | C16—H16A | 0.9600    |  |
|        |           |          |           |  |

| N2—C2       | 1.381 (3)            | C16—H16B             | 0.9600               |
|-------------|----------------------|----------------------|----------------------|
| N2—C6       | 1.399 (3)            | C16—H16C             | 0.9600               |
| N3—N4       | 1.373 (3)            | C17—C18              | 1.487 (3)            |
| N3—C13      | 1.390 (3)            | C17—H17A             | 0.9600               |
| N3—C11      | 1.402 (3)            | С17—Н17В             | 0.9600               |
| N4—C15      | 1.315 (3)            | С17—Н17С             | 0.9600               |
| N5—C20      | 1.314 (3)            | C18—C19              | 1.359 (4)            |
| N5—N6       | 1.379 (3)            | C19—C20              | 1.407 (4)            |
| N6—C18      | 1.387 (3)            | С19—Н19              | 0.9300               |
| N6—C22      | 1.401 (3)            | C20—C21              | 1.498 (3)            |
| N7—N8       | 1.372 (3)            | C21—H21A             | 0.9600               |
| N7—C29      | 1.372(3)<br>1 384(3) | C21—H21B             | 0.9600               |
| N7—C27      | 1 396 (3)            | $C_{21}$ H21C        | 0.9600               |
| N8—C31      | 1.396(3)             | $C^{22}$ $C^{23}$    | 1480(3)              |
| C1-C2       | 1.310(3)<br>1.493(3) | $C_{22} = C_{23}$    | 1.100(3)<br>1.356(3) |
| C1H1A       | 0.9600               | $C_{23}^{}C_{25}^{}$ | 1.330(3)<br>1.387(4) |
| C1_H1B      | 0.9600               | $C_{24} = C_{23}$    | 0.0300               |
|             | 0.9000               | $C_{24} = 1124$      | 1.272(2)             |
|             | 0.9000               | $C_{25} = C_{20}$    | 1.373(3)             |
| $C_2 = C_3$ | 1.534(5)             | C25—H25              | 0.9300               |
| $C_3 = U_2$ | 1.419 (5)            | $C_{20} = C_{27}$    | 1.482 (3)            |
| C3—H3       | 0.9300               | C28-C29              | 1.489 (3)            |
| C4—C5       | 1.493 (3)            | C28—H28A             | 0.9600               |
| C5—H5A      | 0.9600               | C28—H28B             | 0.9600               |
| C5—H5B      | 0.9600               | C28—H28C             | 0.9600               |
| C5—H5C      | 0.9600               | C29—C30              | 1.351 (4)            |
| C6—C7       | 1.484 (3)            | C30—C31              | 1.418 (4)            |
| С7—С8       | 1.372 (3)            | С30—Н30              | 0.9300               |
| C8—C9       | 1.388 (4)            | C31—C32              | 1.483 (4)            |
| С8—Н8       | 0.9300               | C32—H32A             | 0.9600               |
| C9—C10      | 1.368 (3)            | C32—H32B             | 0.9600               |
| С9—Н9       | 0.9300               | С32—Н32С             | 0.9600               |
|             |                      |                      | 111 5 (0)            |
| C10—S1—C7   | 91.54 (11)           | N4—C15—C14           | 111.5 (2)            |
| C26—S2—C23  | 91.51 (11)           | N4—C15—C16           | 120.8 (3)            |
| C4—N1—N2    | 105.05 (18)          | C14—C15—C16          | 127.7 (3)            |
| N1—N2—C2    | 111.90 (17)          | C15—C16—H16A         | 109.5                |
| N1—N2—C6    | 119.30 (18)          | C15—C16—H16B         | 109.5                |
| C2—N2—C6    | 128.8 (2)            | H16A—C16—H16B        | 109.5                |
| N4—N3—C13   | 111.83 (18)          | C15—C16—H16C         | 109.5                |
| N4—N3—C11   | 122.10 (19)          | H16A—C16—H16C        | 109.5                |
| C13—N3—C11  | 126.1 (2)            | H16B—C16—H16C        | 109.5                |
| C15—N4—N3   | 104.6 (2)            | C18—C17—H17A         | 109.5                |
| C20—N5—N6   | 105.0 (2)            | С18—С17—Н17В         | 109.5                |
| N5—N6—C18   | 111.48 (19)          | H17A—C17—H17B        | 109.5                |
| N5—N6—C22   | 121.53 (19)          | С18—С17—Н17С         | 109.5                |
| C18—N6—C22  | 126.98 (19)          | H17A—C17—H17C        | 109.5                |
| N8—N7—C29   | 111.94 (19)          | H17B—C17—H17C        | 109.5                |
| N8—N7—C27   | 119.62 (19)          | C19—C18—N6           | 105.0 (2)            |

| C29—N7—C27    | 128.4 (2)   | C19—C18—C17   | 129.9 (2)   |
|---------------|-------------|---------------|-------------|
| C31—N8—N7     | 105.1 (2)   | N6-C18-C17    | 125.1 (2)   |
| C2—C1—H1A     | 109.5       | C18—C19—C20   | 107.3 (2)   |
| C2—C1—H1B     | 109.5       | C18—C19—H19   | 126.4       |
| H1A—C1—H1B    | 109.5       | C20—C19—H19   | 126.4       |
| C2—C1—H1C     | 109.5       | N5-C20-C19    | 111.2 (2)   |
| H1A—C1—H1C    | 109.5       | N5-C20-C21    | 120.4 (2)   |
| H1B—C1—H1C    | 109.5       | C19—C20—C21   | 128.4 (2)   |
| C3—C2—N2      | 105.1 (2)   | C20—C21—H21A  | 109.5       |
| C3—C2—C1      | 130.1 (2)   | C20—C21—H21B  | 109.5       |
| N2—C2—C1      | 124.7 (2)   | H21A—C21—H21B | 109.5       |
| C2—C3—C4      | 107.1 (2)   | C20—C21—H21C  | 109.5       |
| С2—С3—Н3      | 126.4       | H21A—C21—H21C | 109.5       |
| С4—С3—Н3      | 126.4       | H21B—C21—H21C | 109.5       |
| N1—C4—C3      | 110.8 (2)   | O3—C22—N6     | 120.3 (2)   |
| N1—C4—C5      | 119.7 (2)   | O3—C22—C23    | 120.1 (2)   |
| C3—C4—C5      | 129.5 (2)   | N6-C22-C23    | 119.61 (19) |
| C4—C5—H5A     | 109.5       | C24—C23—C22   | 134.3 (2)   |
| C4—C5—H5B     | 109.5       | C24—C23—S2    | 111.59 (18) |
| H5A—C5—H5B    | 109.5       | C22—C23—S2    | 114.13 (16) |
| C4—C5—H5C     | 109.5       | C23—C24—C25   | 112.5 (2)   |
| H5A—C5—H5C    | 109.5       | C23—C24—H24   | 123.8       |
| H5B—C5—H5C    | 109.5       | C25—C24—H24   | 123.8       |
| O1—C6—N2      | 120.9 (2)   | C26—C25—C24   | 113.9 (2)   |
| O1—C6—C7      | 121.0 (2)   | C26—C25—H25   | 123.0       |
| N2—C6—C7      | 118.12 (19) | C24—C25—H25   | 123.0       |
| C8—C7—C6      | 120.5 (2)   | C25—C26—C27   | 120.2 (2)   |
| C8—C7—S1      | 110.59 (18) | C25—C26—S2    | 110.47 (18) |
| C6—C7—S1      | 128.96 (17) | C27—C26—S2    | 129.35 (18) |
| С7—С8—С9      | 113.8 (2)   | O4—C27—N7     | 120.3 (2)   |
| С7—С8—Н8      | 123.1       | O4—C27—C26    | 120.1 (2)   |
| С9—С8—Н8      | 123.1       | N7—C27—C26    | 119.7 (2)   |
| C10—C9—C8     | 112.5 (2)   | C29—C28—H28A  | 109.5       |
| С10—С9—Н9     | 123.8       | C29—C28—H28B  | 109.5       |
| С8—С9—Н9      | 123.8       | H28A—C28—H28B | 109.5       |
| C9—C10—C11    | 135.8 (2)   | C29—C28—H28C  | 109.5       |
| C9—C10—S1     | 111.54 (19) | H28A—C28—H28C | 109.5       |
| C11—C10—S1    | 112.66 (16) | H28B—C28—H28C | 109.5       |
| O2—C11—N3     | 119.8 (2)   | C30—C29—N7    | 105.0 (2)   |
| O2—C11—C10    | 120.1 (2)   | C30—C29—C28   | 129.8 (3)   |
| N3—C11—C10    | 120.1 (2)   | N7—C29—C28    | 125.2 (2)   |
| C13—C12—H12A  | 109.5       | C29—C30—C31   | 107.4 (2)   |
| C13—C12—H12B  | 109.5       | С29—С30—Н30   | 126.3       |
| H12A—C12—H12B | 109.5       | С31—С30—Н30   | 126.3       |
| C13—C12—H12C  | 109.5       | N8—C31—C30    | 110.5 (2)   |
| H12A—C12—H12C | 109.5       | N8—C31—C32    | 121.0 (2)   |
| H12B—C12—H12C | 109.5       | C30—C31—C32   | 128.5 (2)   |
| C14—C13—N3    | 105.0 (2)   | C31—C32—H32A  | 109.5       |
|               |             |               |             |

| C14—C13—C12    | 129.7 (3) | C31—C32—H32B    | 109.5    |
|----------------|-----------|-----------------|----------|
| N3—C13—C12     | 125.4 (2) | H32A—C32—H32B   | 109.5    |
| C13—C14—C15    | 107.1 (2) | C31—C32—H32C    | 109.5    |
| C13—C14—H14    | 126.5     | H32A—C32—H32C   | 109.5    |
| C15—C14—H14    | 126.5     | H32B—C32—H32C   | 109.5    |
|                |           |                 |          |
| C4—N1—N2—C2    | 0.0       | N3—N4—C15—C14   | 0.0      |
| C4—N1—N2—C6    | 180.0     | N3—N4—C15—C16   | 180.0    |
| C13—N3—N4—C15  | 0.0       | C13—C14—C15—N4  | 0.0      |
| C11—N3—N4—C15  | 180.0     | C13—C14—C15—C16 | 180.0    |
| C20—N5—N6—C18  | 0.0       | N5—N6—C18—C19   | 0.000(1) |
| C20—N5—N6—C22  | 180.0     | C22—N6—C18—C19  | 180.0    |
| C29—N7—N8—C31  | 0.0       | N5—N6—C18—C17   | 180.0    |
| C27—N7—N8—C31  | 180.0     | C22—N6—C18—C17  | 0.000(1) |
| N1—N2—C2—C3    | 0.0       | N6-C18-C19-C20  | 0.0      |
| C6—N2—C2—C3    | 180.0     | C17—C18—C19—C20 | 180.0    |
| N1—N2—C2—C1    | 180.0     | N6—N5—C20—C19   | 0.0      |
| C6—N2—C2—C1    | 0.0       | N6—N5—C20—C21   | 180.0    |
| N2-C2-C3-C4    | 0.0       | C18—C19—C20—N5  | 0.0      |
| C1—C2—C3—C4    | 180.0     | C18—C19—C20—C21 | 180.0    |
| N2—N1—C4—C3    | 0.0       | N5—N6—C22—O3    | 180.0    |
| N2—N1—C4—C5    | 180.0     | C18—N6—C22—O3   | 0.000(1) |
| C2-C3-C4-N1    | 0.0       | N5—N6—C22—C23   | 0.000(1) |
| C2—C3—C4—C5    | 180.0     | C18—N6—C22—C23  | 180.0    |
| N1—N2—C6—O1    | 180.0     | O3—C22—C23—C24  | 180.0    |
| C2-N2-C6-01    | 0.0       | N6-C22-C23-C24  | 0.000(1) |
| N1—N2—C6—C7    | 0.0       | O3—C22—C23—S2   | 0.000(1) |
| C2—N2—C6—C7    | 180.0     | N6-C22-C23-S2   | 180.0    |
| O1—C6—C7—C8    | 0.0       | C26—S2—C23—C24  | 0.0      |
| N2—C6—C7—C8    | 180.0     | C26—S2—C23—C22  | 180.0    |
| O1—C6—C7—S1    | 180.0     | C22—C23—C24—C25 | 180.0    |
| N2—C6—C7—S1    | 0.0       | S2—C23—C24—C25  | 0.0      |
| C10—S1—C7—C8   | 0.0       | C23—C24—C25—C26 | 0.0      |
| C10—S1—C7—C6   | 180.0     | C24—C25—C26—C27 | 180.0    |
| C6—C7—C8—C9    | 180.0     | C24—C25—C26—S2  | 0.0      |
| S1—C7—C8—C9    | 0.0       | C23—S2—C26—C25  | 0.0      |
| C7—C8—C9—C10   | 0.0       | C23—S2—C26—C27  | 180.0    |
| C8—C9—C10—C11  | 180.0     | N8—N7—C27—O4    | 180.0    |
| C8—C9—C10—S1   | 0.0       | C29—N7—C27—O4   | 0.0      |
| C7—S1—C10—C9   | 0.0       | N8—N7—C27—C26   | 0.0      |
| C7—S1—C10—C11  | 180.0     | C29—N7—C27—C26  | 180.0    |
| N4—N3—C11—O2   | 180.0     | C25—C26—C27—O4  | 0.000(1) |
| C13—N3—C11—O2  | 0.0       | S2—C26—C27—O4   | 180.0    |
| N4—N3—C11—C10  | 0.0       | C25—C26—C27—N7  | 180.0    |
| C13—N3—C11—C10 | 180.0     | S2—C26—C27—N7   | 0.0      |
| C9—C10—C11—O2  | 180.0     | N8—N7—C29—C30   | 0.0      |
| S1—C10—C11—O2  | 0.0       | C27—N7—C29—C30  | 180.0    |
| C9—C10—C11—N3  | 0.0       | N8—N7—C29—C28   | 180.0    |

| S1—C10—C11—N3   | 180.0 | C27—N7—C29—C28  | 0.000 (1) |
|-----------------|-------|-----------------|-----------|
| N4—N3—C13—C14   | 0.0   | N7—C29—C30—C31  | 0.0       |
| C11—N3—C13—C14  | 180.0 | C28—C29—C30—C31 | 180.0     |
| N4—N3—C13—C12   | 180.0 | N7—N8—C31—C30   | 0.0       |
| C11—N3—C13—C12  | 0.0   | N7—N8—C31—C32   | 180.0     |
| N3—C13—C14—C15  | 0.0   | C29—C30—C31—N8  | 0.000 (1) |
| C12—C13—C14—C15 | 180.0 | C29—C30—C31—C32 | 180.0     |