organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 3-[2,2-bis­­(eth­oxy­carbon­yl)vin­yl]-2-bromo­methyl-1H-indole-1-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 September 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C22H26BrNO6, the indole ring system is planar [maximum deviation 0.029 (2) Å]. The tert-butyl bound carboxyl­ate group forms a dihedral angle of 17.54 (8)° with the indole ring system. In the crystal, mol­ecules are linked into centrosymmetric R22(10) dimers by paired C—H⋯O hydrogen bonds.

Related literature

For general background to indoles, see: Gribble (1996[Gribble, G. W. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., Vol. 2, pp. 207-257. New York: Pergamon Press.]); Jing-Ru et al. (2007[Jing-Ru, W., Chen-Hsun, T., Samuel, K. K., Dasheng, W., Chia-Hui, L., Hsiao-Ching, Y., Yihui, M., Aaron, S., Chang-Fang, C., Ming-Hsui, T. & Ching-Shih, C. (2007). Cancer Res. 67, 7815-7824.]); Ximenes et al. (2005[Ximenes, V. F., Paino, I. M. M., Faria-Oliveira, O. M. M., Fonseca, L. M. & Brunetti, I. L. (2005). Braz. J. Med. Biol. Res. 38, 1575-1583.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26BrNO6

  • Mr = 480.35

  • Triclinic, [P \overline 1]

  • a = 10.8682 (3) Å

  • b = 11.1094 (4) Å

  • c = 11.5699 (6) Å

  • α = 111.984 (3)°

  • β = 105.841 (2)°

  • γ = 106.926 (2)°

  • V = 1118.51 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.603, Tmax = 0.706

  • 32165 measured reflections

  • 8669 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.01

  • 8669 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O4i 0.97 2.56 3.392 (3) 144
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole is a common motif for a drug target and, as such, the development of new diversity-tolerant routes to this previleged biological scaffold continues to be of significant benefit (Gribble et al., 1996) and forms the basis of a wide variety of drugs, including the anti-inflammatory agent indomethacin, reserpine (exploited as hypotensive agent) and sumatriptan (used for the treatment of magraine). The indole derivatives are the effective inhibitors of myeloperoxidase(MPO)-chlorinating activity (Ximenes et al., 2005). Indole-3-carbinol has emerged as a promising chemopreventive agent due to its in vivo efficacy in prostate cancer cells of various animal models (Jing-Ru et al., 2007).

The indole ring system of the title molecule (Fig.1) is planar and the bromomethyl group is oriented at an angle of 74.98 (8)°. The tert butyl carboxylate group substituted at N1 of the indole ring is in an extended conformation [N1–C10–O1–C11 = 176.24 (16)°]. Both ethoxycarbonyl groups adopt extended conformations as can be seen from torsion angles C16–C17–O3–C18 [-179.61 (16)°], C17–O3–C18–C19 [-156.5 (2)°], C16–C20–O5–C21 [179.18 (14)°] and C20–O5–C21–C22 [-177.9 (2)°]. The sum of bond angles around N1 [360.0 (4)°] indicates that atom N1 exhibits sp2 hybridization (Beddoes et al., 1986).

The crystal structure is stabilized by C–H···O hydrogen bonds. The molecules form centrosymmetric R22(10) dimers through paired C18–H18A···O4 hydrogen bonds (Fig. 2) (Bernstein et al., 1995).

Related literature top

For general background to indoles, see: Gribble et al. (1996); Jing-Ru et al. (2007); Ximenes et al. (2005). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of tert-butyl 3-(2,2-di(ethoxycarbonyl)vinyl)-2-methyl-1H-indole- 1-carboxylate (2 g, 4.98 mmol) in dry carbon tetrachloride (80 ml), azobis(isobutyronitrile)(AIBN) (0.07 g) and finely powdered N-bromosuccinimide(NBS) (0.93 g, 5.23 mmol) were added and refluxed for 2 h. Then, the reaction mixture was cooled to room temperature. The floated succinimide was filtered off and washed with carbon tetrachloride (10 ml). The combined filtrate was concentrated in vacuo to afford the title compound (1.91 g, 80%) as colourless crystals.

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The C18–C19 bond distance was restrained to 1.50 (5) Å.

Structure description top

Indole is a common motif for a drug target and, as such, the development of new diversity-tolerant routes to this previleged biological scaffold continues to be of significant benefit (Gribble et al., 1996) and forms the basis of a wide variety of drugs, including the anti-inflammatory agent indomethacin, reserpine (exploited as hypotensive agent) and sumatriptan (used for the treatment of magraine). The indole derivatives are the effective inhibitors of myeloperoxidase(MPO)-chlorinating activity (Ximenes et al., 2005). Indole-3-carbinol has emerged as a promising chemopreventive agent due to its in vivo efficacy in prostate cancer cells of various animal models (Jing-Ru et al., 2007).

The indole ring system of the title molecule (Fig.1) is planar and the bromomethyl group is oriented at an angle of 74.98 (8)°. The tert butyl carboxylate group substituted at N1 of the indole ring is in an extended conformation [N1–C10–O1–C11 = 176.24 (16)°]. Both ethoxycarbonyl groups adopt extended conformations as can be seen from torsion angles C16–C17–O3–C18 [-179.61 (16)°], C17–O3–C18–C19 [-156.5 (2)°], C16–C20–O5–C21 [179.18 (14)°] and C20–O5–C21–C22 [-177.9 (2)°]. The sum of bond angles around N1 [360.0 (4)°] indicates that atom N1 exhibits sp2 hybridization (Beddoes et al., 1986).

The crystal structure is stabilized by C–H···O hydrogen bonds. The molecules form centrosymmetric R22(10) dimers through paired C18–H18A···O4 hydrogen bonds (Fig. 2) (Bernstein et al., 1995).

For general background to indoles, see: Gribble et al. (1996); Jing-Ru et al. (2007); Ximenes et al. (2005). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing of molecules, showing C–H···O interactions (dashed lines), leading to dimer formation.
tert-Butyl 3-[2,2-bis(ethoxycarbonyl)vinyl]-2-bromomethyl-1H-indole-1-carboxylate top
Crystal data top
C22H26BrNO6Z = 2
Mr = 480.35F(000) = 496
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8682 (3) ÅCell parameters from 8669 reflections
b = 11.1094 (4) Åθ = 2.1–33.8°
c = 11.5699 (6) ŵ = 1.88 mm1
α = 111.984 (3)°T = 293 K
β = 105.841 (2)°Block, colourless
γ = 106.926 (2)°0.30 × 0.25 × 0.20 mm
V = 1118.51 (9) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8669 independent reflections
Radiation source: fine-focus sealed tube5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 33.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
h = 1716
Tmin = 0.603, Tmax = 0.706k = 1617
32165 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1525P]
where P = (Fo2 + 2Fc2)/3
8669 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
C22H26BrNO6γ = 106.926 (2)°
Mr = 480.35V = 1118.51 (9) Å3
Triclinic, P1Z = 2
a = 10.8682 (3) ÅMo Kα radiation
b = 11.1094 (4) ŵ = 1.88 mm1
c = 11.5699 (6) ÅT = 293 K
α = 111.984 (3)°0.30 × 0.25 × 0.20 mm
β = 105.841 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8669 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
5490 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.706Rint = 0.028
32165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
8669 reflectionsΔρmin = 0.60 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.09184 (16)0.74325 (17)1.16827 (16)0.0342 (3)
C30.07086 (19)0.8044 (2)1.28578 (19)0.0441 (4)
H30.13580.83071.37250.053*
C40.0521 (2)0.8242 (2)1.2671 (2)0.0537 (5)
H40.06940.86591.34350.064*
C50.14938 (19)0.7836 (2)1.1379 (2)0.0528 (5)
H50.22990.79971.12930.063*
C60.12946 (17)0.7201 (2)1.0217 (2)0.0427 (4)
H60.19660.69090.93490.051*
C70.00584 (15)0.70013 (16)1.03705 (17)0.0341 (3)
C80.04611 (15)0.63561 (16)0.94006 (16)0.0328 (3)
C90.17083 (15)0.63964 (16)1.01285 (15)0.0323 (3)
C100.31912 (16)0.73467 (18)1.26701 (16)0.0365 (3)
C110.51726 (16)0.67167 (19)1.32235 (17)0.0391 (3)
C120.5566 (2)0.5718 (3)1.2261 (2)0.0578 (5)
H12A0.48290.47471.17910.087*
H12B0.64480.57601.27820.087*
H12C0.56710.60101.15980.087*
C130.4815 (2)0.6177 (3)1.4162 (2)0.0565 (5)
H13A0.44950.67841.47160.085*
H13B0.56470.61991.47520.085*
H13C0.40740.52021.36160.085*
C140.6292 (2)0.8251 (2)1.3980 (2)0.0603 (5)
H14A0.64020.85601.33280.090*
H14B0.71800.83161.45170.090*
H14C0.60090.88611.45820.090*
C150.02203 (15)0.56833 (17)0.78999 (16)0.0361 (3)
H150.02460.47880.74070.043*
C160.08096 (15)0.62017 (18)0.71535 (16)0.0367 (3)
C170.06921 (18)0.76980 (19)0.77787 (18)0.0425 (4)
C180.1952 (2)0.9111 (2)0.8069 (3)0.0658 (6)
H18A0.11470.97700.89660.079*
H18B0.18640.95050.74600.079*
C190.3273 (3)0.8959 (3)0.8200 (4)0.1028 (11)
H19A0.40620.81720.73550.154*
H19B0.33670.98370.83870.154*
H19C0.32620.87660.89440.154*
C200.14814 (17)0.5379 (2)0.56162 (18)0.0428 (4)
C210.2390 (2)0.3118 (2)0.36364 (19)0.0571 (5)
H21A0.17870.34800.32450.069*
H21B0.32990.31220.32470.069*
C220.2597 (4)0.1643 (3)0.3329 (3)0.0913 (9)
H22A0.16880.16470.36880.137*
H22B0.30730.10090.23470.137*
H22C0.31650.13110.37500.137*
C230.26606 (17)0.59735 (18)0.95525 (16)0.0373 (3)
H23A0.21400.53620.85580.045*
H23B0.29970.54230.99290.045*
N10.20188 (13)0.70606 (14)1.15357 (13)0.0331 (3)
O10.38397 (12)0.65566 (13)1.22367 (11)0.0397 (2)
O20.34760 (15)0.81621 (16)1.38221 (13)0.0570 (4)
O30.19532 (13)0.77004 (13)0.75104 (14)0.0476 (3)
O40.04207 (15)0.87474 (16)0.84512 (19)0.0707 (4)
O50.17187 (14)0.40133 (14)0.51266 (12)0.0483 (3)
O60.17445 (18)0.59307 (18)0.49278 (15)0.0668 (4)
Br10.429587 (19)0.76941 (2)0.99976 (2)0.05385 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0370 (7)0.0337 (8)0.0387 (8)0.0197 (6)0.0174 (6)0.0204 (7)
C30.0481 (9)0.0488 (10)0.0408 (9)0.0256 (8)0.0221 (8)0.0219 (8)
C40.0559 (10)0.0622 (12)0.0581 (12)0.0346 (10)0.0359 (10)0.0291 (10)
C50.0445 (9)0.0635 (12)0.0712 (13)0.0335 (9)0.0335 (9)0.0392 (11)
C60.0344 (7)0.0478 (10)0.0531 (10)0.0204 (7)0.0174 (7)0.0311 (8)
C70.0342 (7)0.0320 (7)0.0414 (8)0.0164 (6)0.0152 (6)0.0224 (7)
C80.0346 (7)0.0316 (7)0.0334 (7)0.0160 (6)0.0114 (6)0.0184 (6)
C90.0361 (7)0.0323 (7)0.0299 (7)0.0182 (6)0.0112 (6)0.0163 (6)
C100.0384 (7)0.0385 (8)0.0335 (8)0.0202 (7)0.0123 (6)0.0185 (7)
C110.0334 (7)0.0500 (10)0.0342 (8)0.0223 (7)0.0086 (6)0.0221 (7)
C120.0541 (10)0.0722 (14)0.0528 (11)0.0435 (10)0.0189 (9)0.0271 (10)
C130.0495 (10)0.0813 (15)0.0576 (12)0.0335 (10)0.0208 (9)0.0497 (11)
C140.0430 (9)0.0559 (12)0.0664 (14)0.0151 (9)0.0151 (9)0.0268 (11)
C150.0340 (7)0.0369 (8)0.0340 (8)0.0155 (6)0.0096 (6)0.0181 (7)
C160.0311 (7)0.0401 (8)0.0356 (8)0.0142 (6)0.0084 (6)0.0209 (7)
C170.0402 (8)0.0410 (9)0.0419 (9)0.0148 (7)0.0079 (7)0.0256 (8)
C180.0744 (14)0.0448 (11)0.0804 (16)0.0348 (11)0.0287 (12)0.0297 (11)
C190.0846 (18)0.0762 (19)0.129 (3)0.0495 (16)0.0475 (19)0.0222 (18)
C200.0338 (7)0.0545 (11)0.0392 (9)0.0184 (7)0.0104 (7)0.0268 (8)
C210.0551 (10)0.0651 (13)0.0308 (9)0.0161 (10)0.0135 (8)0.0163 (9)
C220.129 (3)0.0657 (16)0.0488 (14)0.0332 (17)0.0320 (15)0.0117 (12)
C230.0413 (7)0.0407 (8)0.0314 (8)0.0238 (7)0.0135 (6)0.0164 (7)
N10.0359 (6)0.0358 (7)0.0297 (6)0.0204 (5)0.0115 (5)0.0165 (5)
O10.0410 (5)0.0488 (7)0.0298 (5)0.0282 (5)0.0088 (5)0.0179 (5)
O20.0569 (7)0.0709 (9)0.0311 (6)0.0389 (7)0.0105 (6)0.0118 (6)
O30.0427 (6)0.0366 (6)0.0566 (8)0.0189 (5)0.0121 (6)0.0220 (6)
O40.0441 (7)0.0440 (8)0.0922 (12)0.0081 (6)0.0071 (8)0.0281 (8)
O50.0547 (7)0.0486 (7)0.0314 (6)0.0190 (6)0.0119 (5)0.0178 (6)
O60.0823 (10)0.0742 (10)0.0452 (8)0.0385 (9)0.0118 (7)0.0387 (8)
Br10.05092 (11)0.05899 (14)0.05578 (13)0.02350 (9)0.02807 (10)0.02914 (10)
Geometric parameters (Å, º) top
C2—C31.389 (2)C14—H14A0.96
C2—C71.393 (2)C14—H14B0.96
C2—N11.4057 (17)C14—H14C0.96
C3—C41.390 (2)C15—C161.331 (2)
C3—H30.93C15—H150.93
C4—C51.383 (3)C16—C201.489 (2)
C4—H40.93C16—C171.493 (2)
C5—C61.374 (3)C17—O41.189 (2)
C5—H50.93C17—O31.321 (2)
C6—C71.399 (2)C18—C191.452 (3)
C6—H60.93C18—O31.454 (2)
C7—C81.439 (2)C18—H18A0.97
C8—C91.365 (2)C18—H18B0.97
C8—C151.458 (2)C19—H19A0.96
C9—N11.4017 (19)C19—H19B0.96
C9—C231.4701 (19)C19—H19C0.96
C10—O21.183 (2)C20—O61.198 (2)
C10—O11.3199 (18)C20—O51.318 (2)
C10—N11.409 (2)C21—O51.450 (2)
C11—O11.4929 (17)C21—C221.471 (4)
C11—C141.498 (3)C21—H21A0.97
C11—C121.504 (2)C21—H21B0.97
C11—C131.507 (2)C22—H22A0.96
C12—H12A0.96C22—H22B0.96
C12—H12B0.96C22—H22C0.96
C12—H12C0.96C23—Br11.9654 (17)
C13—H13A0.96C23—H23A0.97
C13—H13B0.96C23—H23B0.97
C13—H13C0.96
C3—C2—C7122.51 (14)H14B—C14—H14C109.5
C3—C2—N1129.77 (15)C16—C15—C8127.53 (15)
C7—C2—N1107.63 (12)C16—C15—H15116.2
C2—C3—C4116.62 (17)C8—C15—H15116.2
C2—C3—H3121.7C15—C16—C20121.44 (15)
C4—C3—H3121.7C15—C16—C17122.82 (15)
C5—C4—C3121.64 (17)C20—C16—C17115.34 (14)
C5—C4—H4119.2O4—C17—O3125.11 (17)
C3—C4—H4119.2O4—C17—C16122.78 (16)
C6—C5—C4121.34 (15)O3—C17—C16112.10 (14)
C6—C5—H5119.3C19—C18—O3109.1 (2)
C4—C5—H5119.3C19—C18—H18A109.9
C5—C6—C7118.48 (17)O3—C18—H18A109.9
C5—C6—H6120.8C19—C18—H18B109.9
C7—C6—H6120.8O3—C18—H18B109.9
C2—C7—C6119.38 (14)H18A—C18—H18B108.3
C2—C7—C8107.57 (12)C18—C19—H19A109.5
C6—C7—C8133.01 (15)C18—C19—H19B109.5
C9—C8—C7107.60 (13)H19A—C19—H19B109.5
C9—C8—C15124.17 (13)C18—C19—H19C109.5
C7—C8—C15128.12 (13)H19A—C19—H19C109.5
C8—C9—N1109.10 (12)H19B—C19—H19C109.5
C8—C9—C23125.35 (14)O6—C20—O5125.09 (17)
N1—C9—C23125.16 (13)O6—C20—C16122.46 (18)
O2—C10—O1127.84 (15)O5—C20—C16112.44 (14)
O2—C10—N1122.20 (14)O5—C21—C22107.12 (18)
O1—C10—N1109.93 (13)O5—C21—H21A110.3
O1—C11—C14110.16 (14)C22—C21—H21A110.3
O1—C11—C12101.60 (13)O5—C21—H21B110.3
C14—C11—C12111.45 (16)C22—C21—H21B110.3
O1—C11—C13108.63 (13)H21A—C21—H21B108.5
C14—C11—C13113.56 (17)C21—C22—H22A109.5
C12—C11—C13110.76 (17)C21—C22—H22B109.5
C11—C12—H12A109.5H22A—C22—H22B109.5
C11—C12—H12B109.5C21—C22—H22C109.5
H12A—C12—H12B109.5H22A—C22—H22C109.5
C11—C12—H12C109.5H22B—C22—H22C109.5
H12A—C12—H12C109.5C9—C23—Br1110.47 (11)
H12B—C12—H12C109.5C9—C23—H23A109.6
C11—C13—H13A109.5Br1—C23—H23A109.6
C11—C13—H13B109.5C9—C23—H23B109.6
H13A—C13—H13B109.5Br1—C23—H23B109.6
C11—C13—H13C109.5H23A—C23—H23B108.1
H13A—C13—H13C109.5C9—N1—C2108.08 (12)
H13B—C13—H13C109.5C9—N1—C10129.37 (12)
C11—C14—H14A109.5C2—N1—C10122.55 (13)
C11—C14—H14B109.5C10—O1—C11120.94 (12)
H14A—C14—H14B109.5C17—O3—C18116.27 (15)
C11—C14—H14C109.5C20—O5—C21116.52 (15)
H14A—C14—H14C109.5
C7—C2—C3—C41.5 (3)C17—C16—C20—O69.1 (2)
N1—C2—C3—C4177.75 (17)C15—C16—C20—O515.1 (2)
C2—C3—C4—C50.7 (3)C17—C16—C20—O5171.97 (14)
C3—C4—C5—C60.8 (3)C8—C9—C23—Br1101.19 (16)
C4—C5—C6—C71.6 (3)N1—C9—C23—Br170.93 (17)
C3—C2—C7—C60.8 (2)C8—C9—N1—C20.55 (17)
N1—C2—C7—C6177.74 (14)C23—C9—N1—C2173.76 (14)
C3—C2—C7—C8177.20 (15)C8—C9—N1—C10179.59 (15)
N1—C2—C7—C80.23 (17)C23—C9—N1—C106.4 (3)
C5—C6—C7—C20.8 (2)C3—C2—N1—C9176.49 (17)
C5—C6—C7—C8178.15 (17)C7—C2—N1—C90.18 (17)
C2—C7—C8—C90.57 (17)C3—C2—N1—C103.4 (3)
C6—C7—C8—C9177.01 (17)C7—C2—N1—C10179.95 (14)
C2—C7—C8—C15176.90 (15)O2—C10—N1—C9164.58 (17)
C6—C7—C8—C150.7 (3)O1—C10—N1—C917.1 (2)
C7—C8—C9—N10.68 (17)O2—C10—N1—C215.6 (3)
C15—C8—C9—N1177.20 (14)O1—C10—N1—C2162.71 (14)
C7—C8—C9—C23173.88 (15)O2—C10—O1—C115.6 (3)
C15—C8—C9—C239.6 (2)N1—C10—O1—C11176.24 (13)
C9—C8—C15—C16136.69 (17)C14—C11—O1—C1057.2 (2)
C7—C8—C15—C1647.5 (3)C12—C11—O1—C10175.45 (16)
C8—C15—C16—C20179.46 (14)C13—C11—O1—C1067.7 (2)
C8—C15—C16—C178.1 (3)O4—C17—O3—C181.3 (3)
C15—C16—C17—O457.9 (3)C16—C17—O3—C18179.61 (16)
C20—C16—C17—O4115.0 (2)C19—C18—O3—C17156.5 (2)
C15—C16—C17—O3121.20 (17)O6—C20—O5—C211.9 (3)
C20—C16—C17—O365.95 (19)C16—C20—O5—C21179.18 (14)
C15—C16—C20—O6163.84 (17)C22—C21—O5—C20177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O4i0.972.563.392 (3)144
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC22H26BrNO6
Mr480.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8682 (3), 11.1094 (4), 11.5699 (6)
α, β, γ (°)111.984 (3), 105.841 (2), 106.926 (2)
V3)1118.51 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS, Sheldrick, 2001)
Tmin, Tmax0.603, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
32165, 8669, 5490
Rint0.028
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.01
No. of reflections8669
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O4i0.972.563.392 (3)144
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGribble, G. W. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., Vol. 2, pp. 207–257. New York: Pergamon Press.  Google Scholar
First citationJing-Ru, W., Chen-Hsun, T., Samuel, K. K., Dasheng, W., Chia-Hui, L., Hsiao-Ching, Y., Yihui, M., Aaron, S., Chang-Fang, C., Ming-Hsui, T. & Ching-Shih, C. (2007). Cancer Res. 67, 7815–7824.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXimenes, V. F., Paino, I. M. M., Faria-Oliveira, O. M. M., Fonseca, L. M. & Brunetti, I. L. (2005). Braz. J. Med. Biol. Res. 38, 1575–1583.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds