metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Acetyl­phenolato)(2,2′-bi­pyridine)nitratocopper(II)

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 18 September 2009; accepted 17 October 2009; online 23 October 2009)

In the title compound, [Cu(C8H7O2)(NO3)(C10H8N2)], the CuII ion is five-coordinate in a distorted square-pyramidal geometry. The basal positions are occupied by two N atoms from a 2,2′-bipyridine ligand and two O atoms from the 2-acetyl­phenolate anion. The axial position is occupied by one O atom of a nitrate anion. In the bipyridine ligand, the two pyridine rings are slightly twisted by an angle of 3.5 (1)°. The crystal structure is stabilized by C—H⋯O hydrogen bonds

Related literature

For related structures, see: Bevan et al. (1963[Bevan, J. A., Graddon, D. P. & Mcconnel, J. F. (1963). Nature (London), 199, 373.]); Falguni et al. (1998[Falguni, B., Shie, M. P. & Samaresh, B. (1998). Polyhedron, 17, 2191-2197.]); Garland et al. (1986[Garland, M. T., Le Marouille, J. Y. & Spodine, E. (1986). Acta Cryst. C42, 1518-1520.]); Gasque et al. (1999[Gasque, L., Moreno-Esparza, R., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 1065-1067.]); Ming et al. (1995[Ming, L., Jiang, Z. Z., Zheng, X., Xiao, Z. Y. & Xiao, Y. H. (1995). Polyhedron, 14, 639-642.]); Reki et al. (1998[Reki, S., Masaaki, O., Nobuo, F., Kazahiro, T. I., Hisashi, O. & Laurencek, T. (1998). Bull. Chem. Soc. Jpn, 71, 2365-2373.]); Solans et al. (1987[Solans, X., Ruiz-Ramírez, L., Gasque, L. & Briansó, J. L. (1987). Acta Cryst. C43, 428-430.]). For the synthesis, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)(NO3)(C10H8N2)]

  • Mr = 416.87

  • Monoclinic, P 21 /n

  • a = 13.4683 (12) Å

  • b = 8.3101 (8) Å

  • c = 15.5924 (15) Å

  • β = 108.583 (1)°

  • V = 1654.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.773

  • 8261 measured reflections

  • 2917 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.03

  • 2917 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.8832 (17)
Cu1—O2 1.9307 (17)
Cu1—N2 1.9941 (19)
Cu1—N1 1.998 (2)
Cu1—O3 2.434 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.59 3.401 (4) 146
C7—H7⋯O3ii 0.93 2.51 3.343 (3) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal structures of bis(salicylaldehydato)copper(II) (Bevan et al., 1963), (1,10-phenanthroline)(salicylaldehydato)copper(II) (Solans et al., 1987), Aqua(4,7-diphenyl-1,10-phenanthroline)(salicylaldehydato)copper(II) nitrate monohydrate (Gasque et al., 1999), (2,2'-bipyridine)(salicylaldehydato)copper(II) (Garland et al., 1986), [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(ClO4)] and [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(2H2O)] (Reki et al., 1998), [Cu(salicylaldehyde)(1,10-phenanthroline)(ClO4)]2 (Ming et al., 1995). We report here the crystal structure of the title CuII complex.

In the title compound, the CuII ion is in a distorted square-pyramidal geometry (Fig. 1 and Table 1). The four basal positions are occupied by two N donor atoms from a 2,2'-bipyridine ligand and two O atoms from the 2-acetylphenolate anion. The axial position is occupied by one O atom of a nitrate anion. The Cu1 atom is displaced from the O1/O2/N1/N2 basal plane toward the O3 atom by 0.1472 (3) Å. In the pipyridine ligand, the two pyridine rings are twisted slightly by an angle of 3.5 (1)°. The N1- and N2-pyridine rings form dihedral angles of 16.2 (1) and 15.6 (1)°, respectively, with the benzene ring.

The crystal structure is stabilized by C—H···O hydrogen bonds (Table 2).

Related literature top

For related structures, see: Bevan et al. (1963); Falguni et al. (1998); Garland et al. (1986); Gasque et al. (1999); Ming et al. (1995); Reki et al. (1998); Solans et al. (1987). For the synthesis, see: Plesch et al. (1997).

Experimental top

The crystal used in this structure determination was obtained adventitiously from an attempted preparation of a copper(II)-Schiff base complex. It was synthesized as described in the literature (Plesch et al., 1997). 2-Hydroxyacetophenone (1.00 mmol) in methanol (10 ml) was added dropwise to a soltion of beta-alaine (1.00 mmol) and potassium hydroxide (1.00 mmol) in methanol (10 ml). The yellow solution was stirred for 2 h at 333 K. The resultant mixture was added dropwise to copper(II) nitrate trihydrate (1.00 mmol) and 2,2'-bipyridine (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2 h at 333 K. The dark blue solution obtained was filtered and left for several days; dark blue crystals were formed which were filtered off, washed with water, and dried under vacuum.

Refinement top

H atoms were positioned geometrically and refined as riding, with C-H = 0.93 (CH) or 0.96 Å (CH3) and Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for other H atoms.

Structure description top

Crystal structures of bis(salicylaldehydato)copper(II) (Bevan et al., 1963), (1,10-phenanthroline)(salicylaldehydato)copper(II) (Solans et al., 1987), Aqua(4,7-diphenyl-1,10-phenanthroline)(salicylaldehydato)copper(II) nitrate monohydrate (Gasque et al., 1999), (2,2'-bipyridine)(salicylaldehydato)copper(II) (Garland et al., 1986), [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(ClO4)] and [Cu(5-carborxysalicylaldehyde)(2,2'-bipyridine)(2H2O)] (Reki et al., 1998), [Cu(salicylaldehyde)(1,10-phenanthroline)(ClO4)]2 (Ming et al., 1995). We report here the crystal structure of the title CuII complex.

In the title compound, the CuII ion is in a distorted square-pyramidal geometry (Fig. 1 and Table 1). The four basal positions are occupied by two N donor atoms from a 2,2'-bipyridine ligand and two O atoms from the 2-acetylphenolate anion. The axial position is occupied by one O atom of a nitrate anion. The Cu1 atom is displaced from the O1/O2/N1/N2 basal plane toward the O3 atom by 0.1472 (3) Å. In the pipyridine ligand, the two pyridine rings are twisted slightly by an angle of 3.5 (1)°. The N1- and N2-pyridine rings form dihedral angles of 16.2 (1) and 15.6 (1)°, respectively, with the benzene ring.

The crystal structure is stabilized by C—H···O hydrogen bonds (Table 2).

For related structures, see: Bevan et al. (1963); Falguni et al. (1998); Garland et al. (1986); Gasque et al. (1999); Ming et al. (1995); Reki et al. (1998); Solans et al. (1987). For the synthesis, see: Plesch et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(2-Acetylphenolato)(2,2'-bipyridine)nitratocopper(II) top
Crystal data top
[Cu(C8H7O2)(NO3)(C10H8N2)]F(000) = 852
Mr = 416.87Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3127 reflections
a = 13.4683 (12) Åθ = 2.4–27.0°
b = 8.3101 (8) ŵ = 1.36 mm1
c = 15.5924 (15) ÅT = 296 K
β = 108.583 (1)°Block, dark green
V = 1654.2 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2917 independent reflections
Radiation source: fine-focus sealed tube2370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.686, Tmax = 0.773k = 97
8261 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.9795P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C8H7O2)(NO3)(C10H8N2)]V = 1654.2 (3) Å3
Mr = 416.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4683 (12) ŵ = 1.36 mm1
b = 8.3101 (8) ÅT = 296 K
c = 15.5924 (15) Å0.30 × 0.30 × 0.20 mm
β = 108.583 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2370 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.773Rint = 0.025
8261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2917 reflectionsΔρmin = 0.27 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77943 (2)0.96237 (4)0.03090 (2)0.03038 (11)
C10.7404 (2)1.1660 (3)0.17445 (18)0.0395 (7)
H10.80401.12680.21220.047*
C20.6852 (2)1.2727 (4)0.20915 (19)0.0453 (7)
H20.71011.30380.26960.054*
C30.5919 (2)1.3328 (4)0.1521 (2)0.0473 (7)
H30.55381.40700.17350.057*
C40.5554 (2)1.2825 (3)0.06330 (19)0.0400 (7)
H40.49241.32160.02450.048*
C50.61386 (18)1.1732 (3)0.03286 (16)0.0300 (6)
C60.58213 (18)1.1050 (3)0.05922 (16)0.0292 (6)
C70.4907 (2)1.1450 (3)0.12742 (17)0.0377 (6)
H70.44491.22100.11740.045*
C80.4688 (2)1.0699 (3)0.21052 (18)0.0418 (7)
H80.40791.09510.25720.050*
C90.5378 (2)0.9575 (3)0.22366 (17)0.0376 (6)
H90.52420.90580.27910.045*
C100.6270 (2)0.9231 (3)0.15362 (17)0.0352 (6)
H100.67330.84670.16230.042*
C110.99646 (19)0.9179 (3)0.13299 (17)0.0324 (6)
C121.08113 (19)0.9544 (3)0.21194 (18)0.0378 (6)
H121.07001.02120.25590.045*
C131.1790 (2)0.8929 (4)0.2243 (2)0.0441 (7)
H131.23340.91920.27640.053*
C141.1984 (2)0.7920 (3)0.1607 (2)0.0443 (7)
H141.26470.74820.17110.053*
C151.11933 (19)0.7571 (3)0.08252 (19)0.0384 (6)
H151.13310.69190.03920.046*
C161.01667 (18)0.8190 (3)0.06647 (17)0.0306 (6)
C170.93694 (19)0.7830 (3)0.01883 (17)0.0309 (6)
C180.9599 (2)0.6816 (3)0.08916 (19)0.0445 (7)
H18A0.89960.67880.14250.067*
H18B0.97690.57430.06640.067*
H18C1.01820.72650.10390.067*
N10.70583 (15)1.1164 (2)0.08838 (13)0.0309 (5)
N20.64940 (15)0.9956 (2)0.07351 (13)0.0285 (5)
N30.73727 (19)0.5847 (3)0.03372 (17)0.0450 (6)
O10.90495 (13)0.9788 (2)0.12828 (12)0.0381 (4)
O20.84484 (12)0.8358 (2)0.04004 (11)0.0332 (4)
O30.70722 (15)0.7105 (2)0.06448 (14)0.0491 (5)
O40.6824 (2)0.5290 (3)0.03905 (18)0.0818 (8)
O50.8215 (2)0.5239 (3)0.07571 (19)0.0848 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02264 (17)0.0360 (2)0.03004 (18)0.00320 (14)0.00488 (12)0.00188 (14)
C10.0357 (15)0.0422 (16)0.0360 (15)0.0034 (12)0.0049 (12)0.0056 (12)
C20.0476 (18)0.0519 (18)0.0375 (16)0.0052 (15)0.0152 (14)0.0125 (14)
C30.0493 (18)0.0474 (18)0.0527 (19)0.0033 (14)0.0266 (15)0.0135 (14)
C40.0335 (15)0.0429 (16)0.0458 (17)0.0060 (13)0.0156 (13)0.0001 (13)
C50.0266 (13)0.0314 (14)0.0328 (14)0.0008 (11)0.0106 (11)0.0004 (11)
C60.0250 (13)0.0294 (13)0.0342 (14)0.0003 (11)0.0107 (11)0.0023 (11)
C70.0310 (14)0.0416 (16)0.0384 (15)0.0110 (12)0.0078 (12)0.0040 (12)
C80.0319 (15)0.0528 (19)0.0341 (15)0.0050 (13)0.0010 (12)0.0070 (13)
C90.0374 (15)0.0428 (16)0.0290 (14)0.0006 (13)0.0056 (11)0.0032 (12)
C100.0315 (14)0.0380 (15)0.0350 (15)0.0028 (12)0.0093 (11)0.0061 (11)
C110.0268 (14)0.0333 (14)0.0343 (14)0.0015 (11)0.0058 (11)0.0095 (11)
C120.0303 (14)0.0448 (17)0.0347 (15)0.0050 (13)0.0052 (11)0.0065 (12)
C130.0304 (15)0.0487 (17)0.0450 (17)0.0069 (13)0.0006 (12)0.0133 (14)
C140.0233 (14)0.0453 (17)0.0602 (19)0.0046 (12)0.0076 (13)0.0179 (15)
C150.0283 (14)0.0352 (15)0.0513 (17)0.0021 (12)0.0122 (13)0.0079 (13)
C160.0254 (13)0.0304 (14)0.0345 (14)0.0004 (11)0.0073 (11)0.0066 (11)
C170.0285 (14)0.0269 (13)0.0382 (14)0.0010 (11)0.0120 (11)0.0064 (11)
C180.0360 (15)0.0458 (17)0.0486 (17)0.0083 (13)0.0094 (13)0.0072 (14)
N10.0260 (11)0.0327 (12)0.0322 (12)0.0015 (9)0.0068 (9)0.0027 (9)
N20.0228 (11)0.0312 (12)0.0303 (12)0.0001 (9)0.0066 (9)0.0001 (9)
N30.0406 (14)0.0425 (15)0.0541 (16)0.0045 (12)0.0183 (12)0.0111 (12)
O10.0268 (10)0.0503 (12)0.0340 (10)0.0036 (8)0.0052 (8)0.0058 (8)
O20.0252 (9)0.0395 (10)0.0334 (10)0.0030 (8)0.0070 (7)0.0010 (8)
O30.0493 (12)0.0463 (12)0.0590 (13)0.0069 (10)0.0275 (10)0.0012 (10)
O40.0774 (18)0.088 (2)0.0722 (18)0.0149 (15)0.0133 (15)0.0282 (15)
O50.0627 (16)0.094 (2)0.091 (2)0.0436 (15)0.0165 (15)0.0261 (16)
Geometric parameters (Å, º) top
Cu1—O11.8832 (17)C9—H90.93
Cu1—O21.9307 (17)C10—N21.332 (3)
Cu1—N21.9941 (19)C10—H100.93
Cu1—N11.998 (2)C11—O11.313 (3)
Cu1—O32.434 (2)C11—C161.416 (4)
C1—N11.338 (3)C11—C121.419 (3)
C1—C21.374 (4)C12—C131.369 (4)
C1—H10.93C12—H120.93
C2—C31.381 (4)C13—C141.386 (4)
C2—H20.93C13—H130.93
C3—C41.378 (4)C14—C151.370 (4)
C3—H30.93C14—H140.93
C4—C51.381 (4)C15—C161.421 (3)
C4—H40.93C15—H150.93
C5—N11.350 (3)C16—C171.450 (3)
C5—C61.474 (3)C17—O21.256 (3)
C6—N21.351 (3)C17—C181.492 (4)
C6—C71.387 (3)C18—H18A0.96
C7—C81.383 (4)C18—H18B0.96
C7—H70.93C18—H18C0.96
C8—C91.379 (4)N3—O51.224 (3)
C8—H80.93N3—O41.230 (3)
C9—C101.371 (3)N3—O31.269 (3)
O1—Cu1—O292.60 (7)O1—C11—C16125.4 (2)
O1—Cu1—N2167.80 (8)O1—C11—C12116.5 (2)
O2—Cu1—N292.87 (8)C16—C11—C12118.1 (2)
O1—Cu1—N192.18 (8)C13—C12—C11120.9 (3)
O2—Cu1—N1171.30 (8)C13—C12—H12119.5
N2—Cu1—N181.10 (8)C11—C12—H12119.5
O1—Cu1—O3101.92 (8)C12—C13—C14121.2 (3)
O2—Cu1—O386.63 (7)C12—C13—H13119.4
N2—Cu1—O389.28 (7)C14—C13—H13119.4
N1—Cu1—O399.49 (7)C15—C14—C13119.6 (3)
N1—C1—C2122.4 (3)C15—C14—H14120.2
N1—C1—H1118.8C13—C14—H14120.2
C2—C1—H1118.8C14—C15—C16121.1 (3)
C1—C2—C3118.3 (3)C14—C15—H15119.4
C1—C2—H2120.8C16—C15—H15119.4
C3—C2—H2120.8C11—C16—C15119.0 (2)
C4—C3—C2119.8 (3)C11—C16—C17122.2 (2)
C4—C3—H3120.1C15—C16—C17118.8 (2)
C2—C3—H3120.1O2—C17—C16123.4 (2)
C3—C4—C5119.0 (3)O2—C17—C18115.0 (2)
C3—C4—H4120.5C16—C17—C18121.6 (2)
C5—C4—H4120.5C17—C18—H18A109.5
N1—C5—C4121.1 (2)C17—C18—H18B109.5
N1—C5—C6114.3 (2)H18A—C18—H18B109.5
C4—C5—C6124.6 (2)C17—C18—H18C109.5
N2—C6—C7120.9 (2)H18A—C18—H18C109.5
N2—C6—C5114.7 (2)H18B—C18—H18C109.5
C7—C6—C5124.4 (2)C1—N1—C5119.3 (2)
C8—C7—C6118.8 (2)C1—N1—Cu1125.73 (18)
C8—C7—H7120.6C5—N1—Cu1114.92 (16)
C6—C7—H7120.6C10—N2—C6119.7 (2)
C9—C8—C7119.5 (2)C10—N2—Cu1125.48 (17)
C9—C8—H8120.2C6—N2—Cu1114.78 (16)
C7—C8—H8120.2O5—N3—O4121.3 (3)
C10—C9—C8118.9 (3)O5—N3—O3119.4 (3)
C10—C9—H9120.5O4—N3—O3119.2 (3)
C8—C9—H9120.5C11—O1—Cu1127.05 (16)
N2—C10—C9122.1 (2)C17—O2—Cu1129.18 (16)
N2—C10—H10118.9N3—O3—Cu1115.43 (16)
C9—C10—H10118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.593.401 (4)146
C7—H7···O3ii0.932.513.343 (3)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)(NO3)(C10H8N2)]
Mr416.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.4683 (12), 8.3101 (8), 15.5924 (15)
β (°) 108.583 (1)
V3)1654.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
8261, 2917, 2370
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.03
No. of reflections2917
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.8832 (17)Cu1—N11.998 (2)
Cu1—O21.9307 (17)Cu1—O32.434 (2)
Cu1—N21.9941 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.593.401 (4)146
C7—H7···O3ii0.932.513.343 (3)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+2, z.
 

Acknowledgements

This work was supported by the National Sciences Foundation of China (grant No. 20877036) and the High-Level Personnel Foundation of Pingdingshan University (grant Nos. 2009001 and 2008013).

References

First citationBevan, J. A., Graddon, D. P. & Mcconnel, J. F. (1963). Nature (London), 199, 373.  CSD CrossRef PubMed Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFalguni, B., Shie, M. P. & Samaresh, B. (1998). Polyhedron, 17, 2191–2197.  Google Scholar
First citationGarland, M. T., Le Marouille, J. Y. & Spodine, E. (1986). Acta Cryst. C42, 1518–1520.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGasque, L., Moreno-Esparza, R., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1999). Acta Cryst. C55, 1065–1067.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMing, L., Jiang, Z. Z., Zheng, X., Xiao, Z. Y. & Xiao, Y. H. (1995). Polyhedron, 14, 639–642.  Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationReki, S., Masaaki, O., Nobuo, F., Kazahiro, T. I., Hisashi, O. & Laurencek, T. (1998). Bull. Chem. Soc. Jpn, 71, 2365–2373.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolans, X., Ruiz-Ramírez, L., Gasque, L. & Briansó, J. L. (1987). Acta Cryst. C43, 428–430.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds