Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Phenylenediammonium dinitrate

Bobby Portis, ${ }^{a}$ Kalpana R. Dey, ${ }^{\text {a }}$ Musabbir A. Saeed, ${ }^{\text {a }}$ Douglas R. Powell ${ }^{\text {b }}$ and Md. Alamgir Hossain ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Department of Chemistry and Biochemistry, 1400 J. R. Lynch St, PO Box 17910, Jackson State University, Jackson, MS 39217-0510, USA, and ${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA
Correspondence e-mail: alamgir@chem.jsums.edu
Received 22 September 2009; accepted 26 September 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.092$; data-to-parameter ratio $=11.2$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$, the dication lies on a crystallographic twofold rotation axis. The nitrate ions are linked to the dications though $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to polyamines, see: Bianchi et al. (1997); Ilioudis et al. (2002); Hossain (2008). For related structures, see: Anderson et al. (2006; Gawlicka-Chruszcz \& Stadnicka (2002); Soumhi \& Jouini (1995); Wang et al. (2007).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{NO}_{3}{ }^{-}$
$M_{r}=234.18$
Monoclinic, $C 2 / c$
$V=1003.14(14) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$a=16.2548$ (12) A
$\mu=1.22 \mathrm{~mm}^{-1}$
$b=9.6212$ (8) A
$c=7.1070$ (6) \AA
$T=100 \mathrm{~K}$
$0.53 \times 0.50 \times 0.24 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.562, T_{\text {max }}=0.761$
5278 measured reflections 942 independent reflections 882 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.092$ independent and constrained refinement
942 reflections 84 parameters
$\Delta \rho_{\max }=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5A \cdots O1A	$0.94(2)$	$1.87(2)$	$2.7955(15)$	$168(2)$
N5-H5B \cdots O1A	$0.92(2)$	$1.95(2)$	$2.8416(16)$	$163(2)$
N5-H5C \cdots O3 A^{ii}	$0.92(2)$	$1.96(2)$	$2.8626(16)$	$167(2)$
Sym				

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+2$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Center for Research Resources (grant No. G12RR013459) and the National Institutes of Health (NIH) Science Education Partnership Award (SEPA) Program 'Recovery Act Administrative Supplements Providing Summer Research Research Experiences for Students and Science Educators' under contract 5R25RR020405-04S1. Funds to purchase the diffractometer used in this study were provided in part by the National Science Foundation (grant No. CHE-0130835).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2920).

References

Anderson, K. M., Goeta, K. M., Hancock, K. S. B. \& Steed, J. W. (2006). Chem. Comтии. pp. 2138-2140.
Bianchi, A., García-España, E. \& Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley-VCH.
Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
Gawlicka-Chruszcz, A. \& Stadnicka, K. (2002). Acta Cryst. C58, o416-o420.
Hossain, M. A. (2008). Curr. Org. Chem. 12, 1231-1256.
Ilioudis, C. A., Georganopoulou, D. G. \& Steed, J. W. (2002). CrystEngComm, 4, 26-36.
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soumhi, E. H. \& Jouini, T. (1995). Acta Cryst. C51, 1457-1459.
Wang, K.-W., Zhang, H. \& Shen, L.-Q. (2007). Acta Cryst. E63, o126-o128.

supporting information

Acta Cryst. (2009). E65, o2601 [https://doi.org/10.1107/S1600536809039166]

1,3-Phenylenediammonium dinitrate

Bobby Portis, Kalpana R. Dey, Musabbir A. Saeed, Douglas R. Powell and Md. Alamgir Hossain

S1. Comment

Simple polyammonium ions are known as excellent hydrogen bond donors for a variety of anions in particular for oxoanions, forming supramolecular aggregates with hydrogen bonding networks (Ilioudis et al., 2002). Indeed, a difunctional or trifunctional polyamine is widely used as an essential building block for a macrocyclic based host, and acts as major binding components for a negatively charged anion (Bianchi et al., 1997; Hossain, 2008). In this study, we used a simple 1,3-phenylenediamine to prepare an adduct with nitric acid. We report, herein, the crystal structure of the title compound in which the nitrate anions are connected to the cationic units through hydrogen bonding interactions.

X-ray analysis of the nitrate salt reveals that both amino groups are protonated to form a dication and crystallized with two nitrate anions. In the crystal lattice, each diaction is surrounded by two symmetry related nitrate anions (Fig. 1). Each amino group is engaged in coordinating nitrate anions through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds ranging from 2.7955 (15) to 2.8626 (16) \AA (see Table 1). The crystal structure viewed along the b axis shows that the cations are arranged antiparallel to one another along the c axis in which two adjacent aromatic units are separated at $7.024 \AA$ (Fig. 2). Therefore, there is no $\pi-\pi$ stacking involved. The nitrates serve as linkers of the two adjacent aromatic units by hydrogen bonding networks along the b axis.

S2. Experimental

To a solution of 1,3-phenylenediamine $(0.1 \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{ml})$ was added a few drop of nitric acid. The white precipitate formed immediately was filtered and washed with diethyl ether. Yield: 80%. M.P. $150.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, TSP): $\delta 7.15(\mathrm{~m}, J=4 \mathrm{~Hz}, 1 H, \operatorname{Ar} H), 6.68(\mathrm{~d}, J=8 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.62(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$. Crystals suitable for X-ray crystallography were obtained by recystallization from a methanolic solution of the salt and isolated after seven days keeping the solution under $\mathrm{Et}_{2} \mathrm{O}$ diffusion in a desiccator.

S3. Refinement

H atoms bonded to carbons were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bonded to N atoms were located in a difference map and their positional parameters were refined, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$.

Figure 1
The formula unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonding interactions. Symmetry code: (i) $-x, y, 1 / 2-z$.

Figure 2
Crystal packing of the title compound, viewed along the b axis.

1,3-Phenylenediammonium dinitrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+}$. $2 \mathrm{NO}_{3}{ }^{-}$
$M_{r}=234.18$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=16.2548$ (12) \AA

$$
\begin{aligned}
b & =9.6212(8) \AA \\
c & =7.1070(6) \AA \\
\beta & =115.506(6)^{\circ} \\
V & =1003.14(14) \AA^{3} \\
Z & =4
\end{aligned}
$$

$F(000)=488$
$D_{\mathrm{x}}=1.551 \mathrm{Mg} \mathrm{m}^{-3}$
Cu K α radiation, $\lambda=1.54178 \AA$
Cell parameters from 3468 reflections
$\theta=5.5-69.5^{\circ}$

Data collection

Bruker APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.562, T_{\text {max }}=0.761$
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.53 \times 0.50 \times 0.24 \mathrm{~mm}$

5278 measured reflections
942 independent reflections
882 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=69.5^{\circ}, \theta_{\text {min }}=5.5^{\circ}$
$h=-19 \rightarrow 18$
$k=-11 \rightarrow 11$
$l=-8 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.01$
942 reflections
84 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.054 P)^{2}+1.07 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0046 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1A	$0.16571(7)$	$0.19642(12)$	$1.08086(17)$	$0.0129(3)$
O1A	$0.11343(7)$	$0.11334(11)$	$0.94063(14)$	$0.0171(3)$
O2A	$0.17425(7)$	$0.31761(10)$	$1.03487(16)$	$0.0205(3)$
O3A	$0.20794(7)$	$0.15171(11)$	$1.26369(14)$	$0.0170(3)$
C1	0.0000	$0.16909(19)$	0.2500	$0.0119(4)$
H1	0.0000	0.0703	0.2500	0.014^{*}
C2	$0.06684(9)$	$0.24329(14)$	$0.40956(19)$	$0.0125(3)$
C3	$0.06855(9)$	$0.38745(15)$	$0.4119(2)$	$0.0148(3)$
H3	0.1156	0.4364	0.5218	0.018^{*}
C4	0.0000	$0.4588(2)$	0.2500	$0.0167(4)$
H4	0.0000	0.5575	0.2500	0.020^{*}
N5	$0.13746(8)$	$0.16679(12)$	$0.58086(17)$	$0.0136(3)$
H5A	$0.1261(12)$	$0.1620(17)$	$0.700(3)$	0.016^{*}
H5B	$0.1409(11)$	$0.079(2)$	$0.535(3)$	0.016^{*}
H5C	$0.1918(13)$	$0.2147(19)$	$0.624(3)$	0.016^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	$0.0125(6)$	$0.0140(6)$	$0.0121(6)$	$0.0001(4)$	$0.0053(4)$	$-0.0013(4)$
O1A	$0.0187(5)$	$0.0179(5)$	$0.0115(5)$	$-0.0058(4)$	$0.0034(4)$	$-0.0038(4)$
O2A	$0.0234(6)$	$0.0108(5)$	$0.0243(6)$	$-0.0001(4)$	$0.0075(4)$	$0.0016(4)$
O3A	$0.0154(5)$	$0.0232(6)$	$0.0100(5)$	$-0.0005(4)$	$0.0032(4)$	$0.0017(4)$
C1	$0.0139(9)$	$0.0107(9)$	$0.0117(9)$	0.000	$0.0062(7)$	0.000
C2	$0.0122(7)$	$0.0161(7)$	$0.0097(6)$	$0.0005(5)$	$0.0053(5)$	$0.0011(5)$
C3	$0.0157(7)$	$0.0151(7)$	$0.0138(7)$	$-0.0031(5)$	$0.0065(6)$	$-0.0034(5)$
C4	$0.0215(10)$	$0.0119(9)$	$0.0191(9)$	0.000	$0.0112(8)$	0.000
N5	$0.0133(6)$	$0.0149(6)$	$0.0098(6)$	$-0.0005(4)$	$0.0022(5)$	$-0.0005(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1A-O2A	1.2348 (16)	C3-C4	1.3901 (16)
N1A-O3A	1.2556 (15)	C3-H3	0.95
N1A-O1A	1.2747 (15)	C4-H4	0.95
C1-C2	1.3838 (16)	N5-H5A	0.943 (19)
C1-H1	0.95	N5-H5B	0.92 (2)
C2-C3	1.387 (2)	N5-H5C	0.924 (19)
C2-N5	1.4621 (16)		
$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}$	121.59 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	119.88 (11)	C3i-C4-C3	120.83 (18)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	118.53 (11)	C3-C4-H4	119.6
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2$	117.89 (17)	$\mathrm{C} 2-\mathrm{N} 5-\mathrm{H} 5 \mathrm{~A}$	112.7 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	121.1	C2-N5-H5B	108.4 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	122.02 (12)	H5A-N5-H5B	109.8 (14)
C1-C2-N5	118.72 (13)	C2-N5-H5C	108.7 (11)
C3-C2-N5	119.26 (11)	H5A-N5-H5C	104.8 (15)
C2-C3-C4	118.62 (12)	H5B-N5-H5C	112.5 (15)
C2-C3-H3	120.7		
C2 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.49 (9)	N5-C2-C3-C4	-178.80 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 5$	179.28 (13)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	-0.47 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.97 (17)		

Symmetry code: (i) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5 — \mathrm{H} 5 A \cdots \mathrm{O} 1 A$	$0.94(2)$	$1.87(2)$	$2.7955(15)$	$168(2)$
$\mathrm{N} 5 — \mathrm{H} 5 B \cdots \mathrm{O} 1 A^{\mathrm{ii}}$	$0.92(2)$	$1.95(2)$	$2.8416(16)$	$163(2)$
$\mathrm{N} 5 — \mathrm{H} 5 C \cdots \mathrm{O} 3 A^{\mathrm{iii}}$	$0.92(2)$	$1.96(2)$	$2.8626(16)$	$167(2)$

[^0]
[^0]: Symmetry codes: (ii) $x,-y, z-1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z+2$.

