Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(hydroxymethyl)benzimidazolin-2-one

H. C. Devarajegowda,^a* V. Madhura,^b B. S. Palakshamurthy,^a S. Jeyaseelan^a and Manohar V. Kulkarni^b

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and ^bDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com

Received 24 September 2009; accepted 7 October 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 14.1.

The title compound, $C_9H_{10}N_2O_3$, crystallizes with one and a half molecules in the asymmetric unit, one lying on a general position and the other on a twofold rotation axis. The dihedral angle between the two independent benzimidazole ring systems is 18.96 (5)°. In the crystal, molecules are linked into a three-dimensional network by $O-H\cdots O$ hydrogen bonding involving *N*-hydroxymethyl and carbonyl groups, and $C-H\cdots O$ hydrogen bonds.

Related literature

For general background to 2-benzimidazolones, see: Raghu *et al.* (2005); Porret & Hebermeier (1974); Habermeier (1976); Trask-Morrel *et al.* (1988); Hammach *et al.* (2006); Bansal *et al.* (1981). For related structures, see: Anklekar & Kulkarni (1995); Schwiebert *et al.* (1996). For the synthesis, see: Zinner & Spangenberg (1958).

Experimental

Crystal data

 $\begin{array}{l} C_9 H_{10} N_2 O_3 \\ M_r = 194.19 \\ \text{Monoclinic, } C2/c \\ a = 13.5515 \ (14) \ \text{\AA} \\ b = 11.0848 \ (12) \ \text{\AA} \end{array}$

c = 17.6253 (19) Å $\beta = 94.216 (2)^{\circ}$ $V = 2640.4 (5) \text{ Å}^{3}$ Z = 12Mo K α radiation organic compounds

 $0.22 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 273 K

Data collection

Bruker SMART CCD area-detector	13521 measured reflections
diffractometer	2684 independent reflections
Absorption correction: multi-scan	2395 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.025$
$T_{\rm min} = 0.976, \ T_{\rm max} = 0.986$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 191 parameters $wR(F^2) = 0.110$ H-atom parameters constrainedS = 1.10 $\Delta \rho_{max} = 0.16$ e Å $^{-3}$ 2684 reflections $\Delta \rho_{min} = -0.24$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1A···O4	0.82	1.99	2.8003 (16)	169
$O2-H2A\cdots O5^{i}$	0.82	1.93	2.7503 (18)	176
$O5-H5A\cdots O3^{ii}$	0.82	1.84	2.6551 (17)	175
C3−H3···O2 ⁱⁱⁱ	0.93	2.58	3.489 (2)	164
$C14 - H14B \cdots O1^{ii}$	0.97	2.54	3.364 (2)	143
Symmetry codes: $-x + \frac{3}{2}, -y + \frac{3}{2}, -z$	(i) $x, -y$	$+1, z-\frac{1}{2};$	(ii) $-x + \frac{1}{2}, y - \frac{1}{2}$	$-z + \frac{1}{2};$ (iii)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor T. N. Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2925).

References

Anklekar, K. Y. & Kulkarni, M. V. (1995). Indian J. Chem. Sect. B, 34, 677–678.
Bansal, P. C., Ian, H., Pitman, I. H. & Higuchi, T. (1981). J. Pharm. Sci. 70, 855–857.

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Habermeier, J. (1976). Ger. Offen. 2 453 450.
- Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). *Bioorg. Med. Chem. Lett.* 16, 6316– 6320.
- Porret, D. & Hebermeier, J. (1974). Ger. Offen. 2 342 432.
- Raghu, A. V., Gadaginamath, G. S. & Amminabhavi, T. M. (2005). J. Appl. Polym. Sci. 98, 2236–2244.
- Schwiebert, K. E., Chin, D. N., MacDonald, J. C. & Whitesides, G. M. (1996). J. Am. Chem. Soc. 118, 4018–4029.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trask-Morrel, B. J., Franklin, W. E. & Liu, R. H. (1988). *Text. Chem. Color*, pp. 20–21.
- Zinner, H. & Spangenberg, B. (1958). Chem. Ber. 91, 1432-1437.

supporting information

Acta Cryst. (2009). E65, o2735 [https://doi.org/10.1107/S1600536809040963]

1,3-Bis(hydroxymethyl)benzimidazolin-2-one

H. C. Devarajegowda, V. Madhura, B. S. Palakshamurthy, S. Jeyaseelan and Manohar V. Kulkarni

S1. Comment

1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu *et al.*, 2005; Porret *et al.*, 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel *et al.*, 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar *et al.*, 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach *et al.*, 2006) is based on the analysis of their crystal structure data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert *et al.*, 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal *et al.*, 1981) containing *N*-hydroxymethyl group, we report here the crystal structure of title compound.

The asymmetric unit of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of $18.96 (5)^{\circ}$. There are no intramolecular hydrogen bonding between *N*-hydroxymethyl and carbonyl groups.

In the crystal, O—H···O hydrogen bonding involving *N*-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert *et al.*, 1996).

S2. Experimental

The title compound was prepared by following a literature method (Zinner *et al.*, 1958). A mixture of 2-hydroxy benzimidazole (13.4 g, 0.01 *M*) and 37% formalin (30 ml, 1*M*) was refluxed for 30 minutes in presence of 100 ml water. The solid product formed was filtered and single crystals were grown by slow evaporation in water (yield 92%, m.p. 433 K). Spectral data $IRv_{CO} = 1700 \text{ cm}^{-1}$, $v_{OH} = 3300 \text{ cm}^{-1}$. ¹H NMR -(CDCl₃+DMSO-d6) δ p.p.m. - 5.3(4*H*, d, CH₂) appeared as singlet on D₂O exchange, 6.2(2*H*, t, OH) vanished on D₂O exchange, 7.4–7.8 (4H, m, Ar-H). Mass m/z = 134 (100%).

S3. Refinement

H atoms were positioned at calculated positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

1,3-Bis(hydroxymethyl)benzimidazolin-2-one

Crystal data

C₉H₁₀N₂O₃ $M_r = 194.19$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.5515 (14) Å b = 11.0848 (12) Å c = 17.6253 (19) Å $\beta = 94.216$ (2)° V = 2640.4 (5) Å³ Z = 12

Data collection

Bruker SMART CCD area-detector	13521 measured reflections
diffractometer	2684 independent reflections
Radiation source: fine-focus sealed tube	2395 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
ω and φ scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Sheldrick, 2004)	$k = -13 \rightarrow 13$
$T_{\min} = 0.976, \ T_{\max} = 0.986$	$l = -22 \rightarrow 22$

F(000) = 1224

 $\theta = 2.3 - 26.4^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 273 K

Plate, white

 $D_{\rm x} = 1.465 {\rm Mg} {\rm m}^{-3}$

Melting point: 433 K

 $0.22 \times 0.20 \times 0.10 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2684 reflections

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 1.5821P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.36019 (9)	0.44213 (11)	0.19000 (7)	0.0555 (3)
H1A	0.4009	0.3984	0.2131	0.083*
O2	0.51268 (9)	0.85515 (11)	-0.04107 (7)	0.0560 (3)
H2A	0.4597	0.8565	-0.0667	0.084*

O3	0.32846 (8)	0.69395 (11)	0.07135 (7)	0.0525 (3)
N1	0.44553 (9)	0.54147 (11)	0.09507 (7)	0.0390 (3)
N2	0.49663 (9)	0.72131 (11)	0.06132 (7)	0.0420 (3)
C1	0.61458 (12)	0.44272 (15)	0.11034 (9)	0.0469 (4)
H1	0.5932	0.3665	0.1238	0.056*
C2	0.71420 (13)	0.46756 (18)	0.10526 (10)	0.0568 (5)
H2	0.7604	0.4063	0.1146	0.068*
C3	0.74639 (13)	0.5819 (2)	0.08647 (10)	0.0582 (5)
Н3	0.8138	0.5963	0.0847	0.070*
C4	0.67978 (12)	0.67501 (17)	0.07028 (9)	0.0499 (4)
H4	0.7012	0.7516	0.0576	0.060*
C5	0.58057 (11)	0.64950 (13)	0.07380 (8)	0.0388 (3)
C6	0.54853 (11)	0.53545 (13)	0.09463 (8)	0.0372 (3)
C7	0.41401 (11)	0.65604 (14)	0.07545 (8)	0.0398 (3)
C8	0.49544 (14)	0.84582 (14)	0.03582 (10)	0.0511 (4)
H8A	0.4317	0.8813	0.0440	0.061*
H8B	0.5458	0.8909	0.0658	0.061*
C9	0.37880 (12)	0.44495 (14)	0.11304 (9)	0.0456 (4)
H9A	0.3166	0.4549	0.0827	0.055*
H9B	0.4072	0.3684	0.0993	0.055*
O4	0.5000	0.27510 (13)	0.2500	0.0467 (4)
O5	0.33811 (9)	0.12882 (13)	0.36950 (7)	0.0628 (4)
H5A	0.2848	0.1462	0.3858	0.094*
N3	0.42148 (9)	0.09011 (11)	0.26254 (7)	0.0396 (3)
C10	0.45046 (15)	-0.24348 (15)	0.25741 (9)	0.0553 (5)
H10	0.4179	-0.3167	0.2617	0.066*
C11	0.39872 (13)	-0.13699 (15)	0.26601 (9)	0.0487 (4)
H11	0.3325	-0.1370	0.2765	0.058*
C12	0.45049 (11)	-0.03066 (13)	0.25817 (8)	0.0385 (3)
C13	0.5000	0.16353 (19)	0.2500	0.0379 (4)
C14	0.32941 (11)	0.13248 (16)	0.28957 (9)	0.0468 (4)
H14A	0.3162	0.2143	0.2722	0.056*
H14B	0.2752	0.0814	0.2701	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0523 (7)	0.0567 (7)	0.0602 (7)	0.0107 (6)	0.0216 (5)	0.0184 (6)
O2	0.0488 (7)	0.0629 (8)	0.0571 (7)	0.0001 (6)	0.0090 (5)	0.0226 (6)
O3	0.0415 (6)	0.0568 (7)	0.0603 (7)	0.0122 (5)	0.0109 (5)	0.0124 (5)
N1	0.0370 (6)	0.0371 (6)	0.0436 (7)	0.0016 (5)	0.0077 (5)	0.0042 (5)
N2	0.0454 (7)	0.0366 (7)	0.0451 (7)	0.0036 (5)	0.0122 (5)	0.0077 (5)
C1	0.0514 (9)	0.0423 (8)	0.0477 (9)	0.0097 (7)	0.0092 (7)	0.0043 (7)
C2	0.0463 (10)	0.0675 (12)	0.0574 (10)	0.0190 (8)	0.0094 (8)	0.0066 (9)
C3	0.0382 (9)	0.0814 (13)	0.0561 (10)	0.0022 (8)	0.0110 (7)	0.0020 (9)
C4	0.0479 (9)	0.0547 (10)	0.0486 (9)	-0.0070 (7)	0.0143 (7)	0.0017 (7)
C5	0.0424 (8)	0.0402 (8)	0.0349 (7)	0.0031 (6)	0.0095 (6)	0.0012 (6)
C6	0.0392 (8)	0.0397 (8)	0.0335 (7)	0.0020 (6)	0.0079 (5)	-0.0001 (6)

supporting information

C7	0.0419 (8)	0.0417 (8)	0.0366 (7)	0.0048 (6)	0.0084 (6)	0.0045 (6)
C8	0.0629 (11)	0.0366 (8)	0.0547 (10)	0.0025 (7)	0.0103 (8)	0.0081 (7)
C9	0.0437 (8)	0.0404 (8)	0.0528 (9)	-0.0040 (7)	0.0052 (7)	0.0027 (7)
O4	0.0426 (8)	0.0344 (8)	0.0635 (10)	0.000	0.0068 (7)	0.000
05	0.0400 (6)	0.0918 (10)	0.0575 (7)	0.0004 (6)	0.0105 (5)	-0.0143 (7)
N3	0.0328 (6)	0.0377 (7)	0.0490 (7)	-0.0017 (5)	0.0069 (5)	-0.0008(5)
C10	0.0860 (13)	0.0370 (8)	0.0426 (9)	-0.0116 (8)	0.0021 (8)	0.0014 (7)
C11	0.0562 (10)	0.0459 (9)	0.0439 (8)	-0.0124 (7)	0.0032 (7)	0.0019 (7)
C12	0.0416 (8)	0.0376 (8)	0.0363 (7)	-0.0008 (6)	0.0020 (6)	0.0000 (6)
C13	0.0346 (10)	0.0381 (11)	0.0410 (11)	0.000	0.0025 (8)	0.000
C14	0.0329 (8)	0.0504 (9)	0.0575 (10)	0.0001 (7)	0.0052 (6)	-0.0001 (7)

Geometric parameters (Å, °)

01—C9	1.3981 (19)	C5—C6	1.395 (2)
O1—H1A	0.82	C8—H8A	0.97
O2—C8	1.396 (2)	C8—H8B	0.97
O2—H2A	0.82	С9—Н9А	0.97
O3—C7	1.2304 (18)	С9—Н9В	0.97
N1—C7	1.3759 (19)	O4—C13	1.237 (3)
N1-C6	1.3980 (19)	O5—C14	1.406 (2)
N1-C9	1.4509 (19)	O5—H5A	0.82
N2—C7	1.371 (2)	N3—C13	1.3704 (17)
N2-C5	1.3925 (19)	N3—C12	1.3990 (19)
N2—C8	1.451 (2)	N3—C14	1.4462 (19)
C1—C6	1.378 (2)	C10-C10 ⁱ	1.387 (4)
C1—C2	1.387 (2)	C10-C11	1.387 (3)
C1—H1	0.93	C11—C12	1.384 (2)
C2—C3	1.388 (3)	C11—H11	0.93
С2—Н2	0.93	C12C12 ⁱ	1.393 (3)
C3—C4	1.387 (3)	C13—N3 ⁱ	1.3704 (17)
С3—Н3	0.93	C14—H14A	0.97
C4—C5	1.380(2)	C14—H14B	0.97
C4—H4	0.93		
C9—O1—H1A	109.4	O2—C8—H8B	109.2
C8—O2—H2A	109.5	N2—C8—H8B	109.2
C7—N1—C6	109.53 (12)	H8A—C8—H8B	107.9
C7—N1—C9	123.27 (13)	O1—C9—N1	112.84 (13)
C6—N1—C9	127.20 (12)	O1—C9—H9A	109.0
C7—N2—C5	109.76 (12)	N1—C9—H9A	109.0
C7—N2—C8	124.58 (14)	O1—C9—H9B	109.0
C5—N2—C8	125.66 (13)	N1—C9—H9B	109.0
C6—C1—C2	117.39 (16)	H9A—C9—H9B	107.8
C6—C1—H1	121.3	C14—O5—H5A	109.5
C2C1H1	121.3	C13—N3—C12	109.55 (12)
C1—C2—C3	121.40 (16)	C13—N3—C14	124.00 (13)
С1—С2—Н2	119.3	C12—N3—C14	125.57 (13)

С3—С2—Н2	1193	$C10^{i}$ C10 C11	121 66 (10)
C4—C3—C2	121.16 (16)	C10 ⁱ —C10—H10	119.2
С4—С3—Н3	119.4	C11—C10—H10	119.2
С2—С3—Н3	119.4	C12—C11—C10	116.74 (16)
C5—C4—C3	117.36 (16)	C12—C11—H11	121.6
C5—C4—H4	121.3	C10—C11—H11	121.6
C3—C4—H4	121.3	C11—C12—C12 ⁱ	121.59 (10)
C4—C5—N2	131.54 (15)	C11—C12—N3	131.53 (14)
C4—C5—C6	121.39 (14)	C12 ⁱ —C12—N3	106.88 (8)
N2—C5—C6	107.05 (13)	O4—C13—N3	126.43 (9)
C1—C6—C5	121.26 (14)	O4—C13—N3 ⁱ	126.43 (9)
C1—C6—N1	131.97 (14)	N3—C13—N3 ⁱ	107.14 (18)
C5—C6—N1	106.76 (12)	O5—C14—N3	108.05 (13)
O3—C7—N2	125.99 (14)	O5—C14—H14A	110.1
O3—C7—N1	127.14 (14)	N3—C14—H14A	110.1
N2—C7—N1	106.87 (12)	O5—C14—H14B	110.1
O2—C8—N2	111.86 (14)	N3—C14—H14B	110.1
O2—C8—H8A	109.2	H14A—C14—H14B	108.4
N2—C8—H8A	109.2		
C6—C1—C2—C3	1.2 (3)	C8—N2—C7—N1	177.40 (14)
C1—C2—C3—C4	-1.5 (3)	C6—N1—C7—O3	-178.71 (15)
C2—C3—C4—C5	0.1 (3)	C9—N1—C7—O3	1.2 (2)
C3—C4—C5—N2	179.76 (16)	C6—N1—C7—N2	1.10 (16)
C3—C4—C5—C6	1.6 (2)	C9—N1—C7—N2	-178.97 (13)
C7—N2—C5—C4	-177.04 (16)	C7—N2—C8—O2	-105.28 (17)
C8—N2—C5—C4	4.1 (3)	C5—N2—C8—O2	73.5 (2)
C7—N2—C5—C6	1.36 (16)	C7—N1—C9—O1	-88.27 (17)
C8—N2—C5—C6	-177.55 (14)	C6-N1-C9-01	91.64 (17)
C2-C1-C6-C5	0.5 (2)	C10 ⁱ —C10—C11—C12	0.8 (3)
C2-C1-C6-N1	-179.32 (15)	C10-C11-C12-C12 ⁱ	0.5 (3)
C4—C5—C6—C1	-1.9 (2)	C10-C11-C12-N3	179.38 (15)
N2-C5-C6-C1	179.46 (14)	C13—N3—C12—C11	-179.51 (14)
C4—C5—C6—N1	177.94 (13)	C14—N3—C12—C11	10.9 (3)
N2-C5-C6-N1	-0.65 (16)	C13—N3—C12—C12 ⁱ	-0.50 (18)
C7—N1—C6—C1	179.60 (16)	C14—N3—C12—C12 ⁱ	-170.07 (15)
C9—N1—C6—C1	-0.3 (3)	C12—N3—C13—O4	-179.81 (7)
C7—N1—C6—C5	-0.27 (16)	C14—N3—C13—O4	-10.04 (16)
C9—N1—C6—C5	179.81 (14)	C12—N3—C13—N3 ⁱ	0.19 (7)
C5—N2—C7—O3	178.30 (15)	C14—N3—C13—N3 ⁱ	169.96 (16)
C8—N2—C7—O3	-2.8 (2)	C13—N3—C14—O5	-89.75 (16)
C5—N2—C7—N1	-1.52 (16)	C12—N3—C14—O5	78.38 (18)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O1—H1 <i>A</i> ···O4	0.82	1.99	2.8003 (16)	169

Acta Cryst. (2009). E65, o2735

supporting information

O2—H2A···O5 ⁱⁱ	0.82	1.93	2.7503 (18)	176
O5—H5 <i>A</i> ···O3 ⁱⁱⁱ	0.82	1.84	2.6551 (17)	175
C3—H3····O2 ^{iv}	0.93	2.58	3.489 (2)	164
C14—H14 <i>B</i> ····O1 ⁱⁱⁱ	0.97	2.54	3.364 (2)	143

Symmetry codes: (ii) *x*, -*y*+1, *z*-1/2; (iii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iv) -*x*+3/2, -*y*+3/2, -*z*.