organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-6,6-di­methyl­bi­cyclo­[3.1.1]heptane-2-carboxylic acid

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: shangsb@hotmail.com

(Received 28 September 2009; accepted 10 October 2009; online 17 October 2009)

The title compound, C10H16O3, with a bicyclo­[3.1.1]heptane unit, was obtained by oxidation of β-pinene. The asymmetric unit contains two independent mol­ecules with similar geometry: the six-membered rings in both mol­ecules adopt envelope conformations. In the crystal, the independent mol­ecules exist as O—H⋯O hydrogen-bonded dimers. The dimers are linked into helical chains along the b axis by O—H⋯O hydrogen bonds.

Related literature

For the preparation of nopinone and nopinic acid, see: Winstein & Holness (1955[Winstein, S. & Holness, N. J. (1955). J. Am. Chem. Soc. 77, 3054-3061.]); Ma et al. (2007[Ma, S. Y., Shen, M. M. & Ha, C. Y. (2007). Chem. Ind. For. Prod. 27, 114-116.]). For the crystal structure of sodium nopinate [sodium (1R,2S,5S)-2-hydr­oxy-6,6-dimethyl­bicyclo­[3.1.1]heptane-2-carboxyl­ate penta­hydrate], see: Ma et al. (2008[Ma, S.-Y., Zheng, Z.-B. & Li, J.-K. (2008). Acta Cryst. E64, m92.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16O3

  • Mr = 184.23

  • Monoclinic, C 2

  • a = 26.796 (5) Å

  • b = 6.6560 (13) Å

  • c = 12.250 (3) Å

  • β = 112.23 (3)°

  • V = 2022.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.974, Tmax = 0.983

  • 2047 measured reflections

  • 2002 independent reflections

  • 1565 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.153

  • S = 1.00

  • 2002 reflections

  • 242 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.81 (3) 2.38 (8) 2.837 (5) 116 (7)
O2—H2D⋯O6 0.82 1.80 2.621 (5) 175
O4—H4C⋯O1i 0.84 (5) 2.05 (5) 2.830 (5) 156 (5)
O5—H5C⋯O3 0.82 1.88 2.704 (4) 177
Symmetry code: (i) -x, y-1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Terpenes are convenient chiral precursors due to their availability and low cost, and among them β-pinene is an important material. Many valuable chemicals were prepared from β-pinene. For instance, nopinone (Winstein & Holness, 1955) and nopinic acid were prepared by oxidation of β-pinene. Although the title compound has been prepared (Ma et al., 2007) and the crystal structure of sodium nopinate has been reported (Ma et al., 2008), the crystal structure of nopinic acid has not been reported. In this paper, we report the crystal structure of the title compound.

The asymmetric unit contains two crystallographically independent molecules (Fig. 1) with similar geometry. The six-membered rings in both the molecules adopt envelope conformations. The independent molecules are linked through a pair of O–H···O hydrogen bonds (Table 1) forming a dimer. The dimers are linked into helical chains along the b axis (Fig. 2) by O—H···O hydrogen bonds.

Related literature top

For the preparation of nopinone and nopinic acid, see: Winstein & Holness (1955); Ma et al. (2007). For the crystal structure of sodium nopinate [sodium (1R,2S,5S)-2-hydroxy-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylate pentahydrate], see: Ma et al. (2008).

Experimental top

Potassium permanganate (12.0 g) and NaOH (1.5 g) were dissolved in the mixture of water (100 ml) and t-butylalcohol (50 ml). While stirring vigorously, pure (-)-beta-pinene (5.2 g) was added. The reaction was maintained at the temperature of 288–298 K for 0.5 h. The mixture was heated to 353 K, then filtered and the precipitate was washed with hot water. After standing for 12 h at 273 K, sodium nopinate was filtered. The crude sodium nopinate was acidified with dilute hydrochloric acid and extracted with dichloromethane, then the product, crude nopinic acid was obtained. The crude nopinic acid was recrystallized from toluene. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a ethanol-toluene solution.

Refinement top

H atoms of hydroxyl groups were located in a difference map and their parameters were refined with a O-H distance restraint of 0.82 (1) Å. The remaining H atoms were positioned geometrically [O-H = 0.82 Å and C-H = 0.96–0.98 Å] and included in the refinement in the riding motion approximation, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Structure description top

Terpenes are convenient chiral precursors due to their availability and low cost, and among them β-pinene is an important material. Many valuable chemicals were prepared from β-pinene. For instance, nopinone (Winstein & Holness, 1955) and nopinic acid were prepared by oxidation of β-pinene. Although the title compound has been prepared (Ma et al., 2007) and the crystal structure of sodium nopinate has been reported (Ma et al., 2008), the crystal structure of nopinic acid has not been reported. In this paper, we report the crystal structure of the title compound.

The asymmetric unit contains two crystallographically independent molecules (Fig. 1) with similar geometry. The six-membered rings in both the molecules adopt envelope conformations. The independent molecules are linked through a pair of O–H···O hydrogen bonds (Table 1) forming a dimer. The dimers are linked into helical chains along the b axis (Fig. 2) by O—H···O hydrogen bonds.

For the preparation of nopinone and nopinic acid, see: Winstein & Holness (1955); Ma et al. (2007). For the crystal structure of sodium nopinate [sodium (1R,2S,5S)-2-hydroxy-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylate pentahydrate], see: Ma et al. (2008).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Hydroxy-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylic acid top
Crystal data top
C10H16O3F(000) = 800
Mr = 184.23Dx = 1.210 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 25 reflections
a = 26.796 (5) Åθ = 10–13°
b = 6.6560 (13) ŵ = 0.09 mm1
c = 12.250 (3) ÅT = 293 K
β = 112.23 (3)°Block, colourless
V = 2022.5 (9) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1565 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 032
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 07
Tmin = 0.974, Tmax = 0.983l = 1413
2047 measured reflections3 standard reflections every 200 reflections
2002 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2002 reflectionsΔρmax = 0.21 e Å3
242 parametersΔρmin = 0.23 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C10H16O3V = 2022.5 (9) Å3
Mr = 184.23Z = 8
Monoclinic, C2Mo Kα radiation
a = 26.796 (5) ŵ = 0.09 mm1
b = 6.6560 (13) ÅT = 293 K
c = 12.250 (3) Å0.30 × 0.20 × 0.20 mm
β = 112.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1565 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.018
Tmin = 0.974, Tmax = 0.9833 standard reflections every 200 reflections
2047 measured reflections intensity decay: 1%
2002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
2002 reflectionsΔρmin = 0.23 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03238 (12)0.4845 (8)0.2047 (3)0.0997 (14)
H1A0.021 (3)0.504 (15)0.134 (2)0.150*
C10.2225 (3)0.6237 (14)0.2710 (5)0.116 (2)
H1B0.21580.75190.29860.174*
H1C0.21710.63360.18910.174*
H1D0.25900.58360.31560.174*
O20.07227 (15)0.3644 (5)0.0307 (3)0.0842 (10)
H2D0.06770.28960.02550.126*
C20.1946 (2)0.2647 (10)0.2414 (5)0.0941 (19)
H2A0.19460.28140.16350.141*
H2B0.16720.17010.23910.141*
H2C0.22920.21570.29310.141*
O30.06567 (14)0.0776 (5)0.1168 (3)0.0724 (9)
C30.18336 (16)0.4660 (9)0.2865 (4)0.0672 (12)
C40.18223 (17)0.4726 (8)0.4114 (4)0.0681 (12)
H4A0.21640.50830.47470.082*
C50.14121 (19)0.6413 (8)0.3696 (4)0.0732 (13)
H5A0.15690.77460.37810.088*
H5B0.11300.63560.40090.088*
C60.12546 (16)0.5514 (7)0.2461 (3)0.0601 (10)
H6A0.11620.64980.18200.072*
C70.08375 (14)0.3881 (7)0.2299 (3)0.0571 (10)
C80.0964 (2)0.2662 (9)0.3430 (4)0.0835 (16)
H8A0.09010.12520.32230.100*
H8B0.07140.30560.37940.100*
C90.1543 (2)0.2906 (9)0.4343 (4)0.0841 (16)
H9A0.15330.30130.51240.101*
H9B0.17500.17160.43300.101*
C100.07381 (16)0.2592 (7)0.1207 (4)0.0542 (10)
O40.00459 (10)0.2034 (5)0.3282 (2)0.0640 (8)
H4C0.010 (2)0.270 (8)0.276 (4)0.096*
O50.05228 (13)0.1491 (5)0.0754 (2)0.0677 (8)
H5C0.05660.07690.01830.102*
O60.05719 (14)0.1444 (5)0.1566 (3)0.0714 (9)
C110.1765 (2)0.5132 (10)0.1362 (6)0.0972 (18)
H11A0.18080.52150.05490.146*
H11B0.21140.51420.14160.146*
H11C0.15590.62620.17850.146*
C120.17137 (18)0.1448 (10)0.1071 (4)0.0769 (14)
H12A0.17330.17960.02950.115*
H12B0.14950.02690.13390.115*
H12C0.20700.11860.10480.115*
C130.14673 (15)0.3165 (7)0.1904 (4)0.0591 (11)
C140.08439 (14)0.3538 (6)0.2409 (3)0.0480 (9)
H14A0.07200.45340.19780.058*
C150.08937 (19)0.4313 (7)0.3542 (4)0.0660 (11)
H15A0.05970.39330.42600.079*
H15B0.09730.57370.35320.079*
C160.13896 (18)0.2949 (7)0.3219 (4)0.0650 (12)
H16A0.16850.34840.34200.078*
C170.1211 (2)0.0838 (8)0.3660 (4)0.0675 (13)
H17A0.11740.07270.44760.081*
H17B0.14830.01150.32000.081*
C180.06712 (17)0.0321 (7)0.3564 (3)0.0599 (11)
H18A0.06810.10800.33390.072*
H18B0.03880.04640.43390.072*
C190.05197 (13)0.1576 (6)0.2696 (3)0.0461 (9)
C200.05493 (15)0.0405 (6)0.1616 (3)0.0509 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (16)0.123 (3)0.119 (3)0.014 (2)0.0179 (17)0.057 (3)
C10.100 (4)0.146 (7)0.110 (4)0.050 (5)0.050 (3)0.019 (5)
O20.131 (3)0.0553 (19)0.0582 (17)0.002 (2)0.0263 (16)0.0013 (17)
C20.056 (3)0.120 (5)0.104 (4)0.024 (3)0.028 (3)0.017 (4)
O30.099 (2)0.0558 (19)0.0706 (19)0.0094 (18)0.0413 (17)0.0104 (16)
C30.046 (2)0.084 (3)0.071 (3)0.000 (2)0.0214 (18)0.005 (3)
C40.052 (2)0.080 (3)0.058 (2)0.005 (2)0.0052 (17)0.004 (2)
C50.071 (3)0.066 (3)0.076 (3)0.005 (3)0.020 (2)0.023 (3)
C60.063 (2)0.049 (2)0.057 (2)0.010 (2)0.0102 (17)0.001 (2)
C70.042 (2)0.065 (3)0.064 (2)0.008 (2)0.0191 (16)0.013 (2)
C80.101 (4)0.093 (4)0.067 (3)0.035 (3)0.044 (3)0.019 (3)
C90.108 (4)0.085 (4)0.051 (2)0.004 (3)0.021 (2)0.007 (3)
C100.051 (2)0.055 (3)0.055 (2)0.0081 (19)0.0183 (18)0.0031 (19)
O40.0449 (14)0.072 (2)0.0648 (16)0.0111 (15)0.0095 (12)0.0054 (16)
O50.103 (2)0.0507 (17)0.0607 (16)0.0033 (17)0.0441 (15)0.0021 (15)
O60.103 (2)0.0429 (18)0.0730 (19)0.0012 (17)0.0385 (17)0.0001 (15)
C110.076 (3)0.086 (4)0.126 (5)0.022 (3)0.034 (3)0.021 (4)
C120.053 (3)0.090 (4)0.072 (3)0.004 (3)0.006 (2)0.001 (3)
C130.045 (2)0.059 (3)0.071 (2)0.003 (2)0.0190 (17)0.000 (2)
C140.051 (2)0.0404 (19)0.055 (2)0.0065 (18)0.0232 (16)0.0045 (18)
C150.083 (3)0.049 (2)0.073 (3)0.011 (2)0.037 (2)0.014 (2)
C160.070 (3)0.062 (3)0.078 (3)0.006 (2)0.046 (2)0.007 (2)
C170.085 (3)0.065 (3)0.062 (2)0.022 (2)0.038 (2)0.003 (2)
C180.069 (3)0.054 (2)0.054 (2)0.008 (2)0.0204 (18)0.007 (2)
C190.0426 (18)0.047 (2)0.0460 (18)0.0062 (17)0.0140 (14)0.0038 (17)
C200.049 (2)0.046 (3)0.059 (2)0.0046 (18)0.0217 (17)0.0058 (19)
Geometric parameters (Å, º) top
O1—C71.442 (5)O4—C191.443 (4)
O1—H1A0.82 (2)O4—H4C0.84 (5)
C1—C31.546 (8)O5—C201.303 (5)
C1—H1B0.96O5—H5C0.82
C1—H1C0.96O6—C201.232 (5)
C1—H1D0.96C11—C131.547 (8)
O2—C101.294 (5)C11—H11A0.96
O2—H2D0.82C11—H11B0.96
C2—C31.523 (8)C11—H11C0.96
C2—H2A0.96C12—C131.508 (7)
C2—H2B0.96C12—H12A0.96
C2—H2C0.96C12—H12B0.96
O3—C101.226 (6)C12—H12C0.96
C3—C41.542 (6)C13—C161.550 (6)
C3—C61.547 (6)C13—C141.566 (5)
C4—C91.505 (8)C14—C151.533 (5)
C4—C51.518 (7)C14—C191.534 (5)
C4—H4A0.98C14—H14A0.98
C5—C61.530 (6)C15—C161.533 (6)
C5—H5A0.97C15—H15A0.97
C5—H5B0.97C15—H15B0.97
C6—C71.517 (6)C16—C171.517 (7)
C6—H6A0.98C16—H16A0.98
C7—C101.526 (6)C17—C181.533 (6)
C7—C81.529 (7)C17—H17A0.97
C8—C91.540 (7)C17—H17B0.97
C8—H8A0.97C18—C191.523 (5)
C8—H8B0.97C18—H18A0.97
C9—H9A0.97C18—H18B0.97
C9—H9B0.97C19—C201.512 (5)
C7—O1—H1A103 (6)C19—O4—H4C100 (4)
C3—C1—H1B109.5C20—O5—H5C109.5
C3—C1—H1C109.5C13—C11—H11A109.5
H1B—C1—H1C109.5C13—C11—H11B109.5
C3—C1—H1D109.5H11A—C11—H11B109.5
H1B—C1—H1D109.5C13—C11—H11C109.5
H1C—C1—H1D109.5H11A—C11—H11C109.5
C10—O2—H2D109.5H11B—C11—H11C109.5
C3—C2—H2A109.5C13—C12—H12A109.5
C3—C2—H2B109.5C13—C12—H12B109.5
H2A—C2—H2B109.5H12A—C12—H12B109.5
C3—C2—H2C109.5C13—C12—H12C109.5
H2A—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
C2—C3—C4117.8 (5)C12—C13—C11109.2 (4)
C2—C3—C1108.4 (4)C12—C13—C16119.0 (4)
C4—C3—C1111.8 (4)C11—C13—C16111.6 (4)
C2—C3—C6121.3 (4)C12—C13—C14121.0 (4)
C4—C3—C685.0 (3)C11—C13—C14109.6 (4)
C1—C3—C6110.9 (5)C16—C13—C1484.3 (3)
C9—C4—C5108.1 (4)C15—C14—C19108.3 (3)
C9—C4—C3111.1 (4)C15—C14—C1388.0 (3)
C5—C4—C388.3 (3)C19—C14—C13112.5 (3)
C9—C4—H4A115.4C15—C14—H14A115.0
C5—C4—H4A115.4C19—C14—H14A115.0
C3—C4—H4A115.4C13—C14—H14A115.0
C4—C5—C686.4 (3)C14—C15—C1686.0 (3)
C4—C5—H5A114.2C14—C15—H15A114.3
C6—C5—H5A114.2C16—C15—H15A114.3
C4—C5—H5B114.2C14—C15—H15B114.3
C6—C5—H5B114.2C16—C15—H15B114.3
H5A—C5—H5B111.4H15A—C15—H15B111.5
C7—C6—C5108.9 (4)C17—C16—C15109.3 (4)
C7—C6—C3112.2 (4)C17—C16—C13110.8 (4)
C5—C6—C387.7 (3)C15—C16—C1388.6 (3)
C7—C6—H6A115.0C17—C16—H16A115.1
C5—C6—H6A115.0C15—C16—H16A115.1
C3—C6—H6A115.0C13—C16—H16A115.1
O1—C7—C6107.8 (4)C16—C17—C18111.1 (4)
O1—C7—C10103.1 (3)C16—C17—H17A109.4
C6—C7—C10113.1 (3)C18—C17—H17A109.4
O1—C7—C8107.2 (4)C16—C17—H17B109.4
C6—C7—C8111.2 (3)C18—C17—H17B109.4
C10—C7—C8113.7 (4)H17A—C17—H17B108.0
C7—C8—C9114.7 (4)C19—C18—C17116.0 (4)
C7—C8—H8A108.6C19—C18—H18A108.3
C9—C8—H8A108.6C17—C18—H18A108.3
C7—C8—H8B108.6C19—C18—H18B108.3
C9—C8—H8B108.6C17—C18—H18B108.3
H8A—C8—H8B107.6H18A—C18—H18B107.4
C4—C9—C8112.7 (4)O4—C19—C20104.0 (3)
C4—C9—H9A109.1O4—C19—C18106.0 (3)
C8—C9—H9A109.1C20—C19—C18112.9 (3)
C4—C9—H9B109.1O4—C19—C14109.3 (3)
C8—C9—H9B109.1C20—C19—C14113.6 (3)
H9A—C9—H9B107.8C18—C19—C14110.5 (3)
O3—C10—O2123.6 (4)O6—C20—O5122.0 (4)
O3—C10—C7123.9 (4)O6—C20—C19122.9 (4)
O2—C10—C7112.4 (4)O5—C20—C19115.0 (3)
C2—C3—C4—C940.5 (5)C12—C13—C14—C15147.2 (4)
C1—C3—C4—C9167.1 (5)C11—C13—C14—C1584.4 (4)
C6—C3—C4—C982.4 (4)C16—C13—C14—C1526.6 (3)
C2—C3—C4—C5149.2 (4)C12—C13—C14—C1938.2 (5)
C1—C3—C4—C584.2 (5)C11—C13—C14—C19166.6 (4)
C6—C3—C4—C526.3 (3)C16—C13—C14—C1982.4 (3)
C9—C4—C5—C685.0 (4)C19—C14—C15—C1686.2 (3)
C3—C4—C5—C626.6 (3)C13—C14—C15—C1626.9 (3)
C4—C5—C6—C786.2 (4)C14—C15—C16—C1784.5 (4)
C4—C5—C6—C326.5 (4)C14—C15—C16—C1327.2 (3)
C2—C3—C6—C736.3 (5)C12—C13—C16—C1739.0 (5)
C4—C3—C6—C783.3 (4)C11—C13—C16—C17167.6 (4)
C1—C3—C6—C7165.2 (4)C14—C13—C16—C1783.5 (4)
C2—C3—C6—C5145.8 (5)C12—C13—C16—C15149.1 (4)
C4—C3—C6—C526.1 (4)C11—C13—C16—C1582.2 (4)
C1—C3—C6—C585.4 (4)C14—C13—C16—C1526.6 (3)
C5—C6—C7—O178.6 (4)C15—C16—C17—C1835.4 (5)
C3—C6—C7—O1174.0 (3)C13—C16—C17—C1860.7 (4)
C5—C6—C7—C10168.0 (4)C16—C17—C18—C1920.9 (5)
C3—C6—C7—C1072.7 (4)C17—C18—C19—O4137.5 (4)
C5—C6—C7—C838.6 (5)C17—C18—C19—C20109.3 (4)
C3—C6—C7—C856.7 (5)C17—C18—C19—C1419.2 (5)
O1—C7—C8—C9134.0 (5)C15—C14—C19—O477.7 (3)
C6—C7—C8—C916.4 (6)C13—C14—C19—O4173.3 (3)
C10—C7—C8—C9112.7 (5)C15—C14—C19—C20166.6 (3)
C5—C4—C9—C838.3 (6)C13—C14—C19—C2071.0 (4)
C3—C4—C9—C857.0 (6)C15—C14—C19—C1838.6 (4)
C7—C8—C9—C416.9 (7)C13—C14—C19—C1857.0 (4)
O1—C7—C10—O3101.6 (5)O4—C19—C20—O699.0 (5)
C6—C7—C10—O3142.3 (5)C18—C19—C20—O615.5 (5)
C8—C7—C10—O314.1 (6)C14—C19—C20—O6142.2 (4)
O1—C7—C10—O275.2 (5)O4—C19—C20—O577.9 (4)
C6—C7—C10—O240.9 (5)C18—C19—C20—O5167.7 (3)
C8—C7—C10—O2169.1 (4)C14—C19—C20—O540.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.81 (3)2.38 (8)2.837 (5)116 (7)
O2—H2D···O60.821.802.621 (5)175
O4—H4C···O1i0.84 (5)2.05 (5)2.830 (5)156 (5)
O5—H5C···O30.821.882.704 (4)177
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H16O3
Mr184.23
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)26.796 (5), 6.6560 (13), 12.250 (3)
β (°) 112.23 (3)
V3)2022.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2047, 2002, 1565
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 1.00
No. of reflections2002
No. of parameters242
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.81 (3)2.38 (8)2.837 (5)116 (7)
O2—H2D···O60.821.802.621 (5)175
O4—H4C···O1i0.84 (5)2.05 (5)2.830 (5)156 (5)
O5—H5C···O30.821.882.704 (4)177
Symmetry code: (i) x, y1, z.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMa, S. Y., Shen, M. M. & Ha, C. Y. (2007). Chem. Ind. For. Prod. 27, 114–116.  CAS Google Scholar
First citationMa, S.-Y., Zheng, Z.-B. & Li, J.-K. (2008). Acta Cryst. E64, m92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinstein, S. & Holness, N. J. (1955). J. Am. Chem. Soc. 77, 3054–3061.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds