organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-3-[5-(3-meth­­oxy-8-methyl-4-quinol­yl)-1-phenyl-4,5-di­hydro-1H-pyrazol-3-yl]-2-methyl-4-phenyl­quinoline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 September 2009; accepted 2 October 2009; online 7 October 2009)

In the title compound, C36H29ClN4O, the dihydro­pyrazole ring adopts an envelope conformation. The two quinoline ring systems (r.m.s. deviations = 0.029 and 0.018 Å) are oriented at a dihedral angle of 71.43 (4)°. One of the quinoline rings makes a dihedral angle of 65.40 (7)° with the phenyl substituent. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular C—H⋯N hydrogen bonds. In addition, C—H⋯π and ππ [centroid–centroid distance = 3.7325 (8) Å] inter­actions are observed.

Related literature

For general background to quinoline and its derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For applications of quinolines, see: Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]); Skraup (1880[Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086-2088.]). For the synthesis of quinoline derivatives, see: Katritzky & Arend (1998[Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989-9991.]); Jiang & Si (2002[Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449-9451.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C36H29ClN4O

  • Mr = 569.08

  • Monoclinic, P 21 /c

  • a = 14.1209 (3) Å

  • b = 20.2273 (4) Å

  • c = 10.1892 (2) Å

  • β = 95.358 (1)°

  • V = 2897.6 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.65 × 0.45 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.964

  • 57308 measured reflections

  • 10615 independent reflections

  • 8632 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.135

  • S = 1.08

  • 10615 reflections

  • 495 parameters

  • All H-atom parameters refined

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N1i 0.95 (2) 2.56 (2) 3.410 (2) 149 (2)
C14—H14⋯Cg1 1.00 (2) 2.92 (2) 3.685 (2) 134 (2)
C17—H17ACg2ii 0.97 (2) 2.55 (2) 3.5018 (14) 169 (1)
C25—H25⋯Cg3iii 0.96 (2) 2.79 (2) 3.7359 (17) 169 (2)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1, Cg2 and Cg3 are centroids of the C21–C26, N1/C1/C6–C9 and C28–C33 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline and its derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title compound consists of two phenyl rings, two quinoline rings and a 4,5-dihydropyrazole ring (Fig. 1). The 4,5-dihydropyrazole ring (N2/N3/C16–C18) adopts an envelope conformation with C18 as the flap atom, and with puckering amplitude Q = 0.2121 (14) Å and φ = 256.8 (3)° (Cremer & Pople, 1975). The N1/C1–C9 quinoline ring is planar with a maximum deviation of 0.046 (1) Å for atom C8 and in the N4/C19–C27 ring atom C19 deviates a maximum of 0.034 (1) Å. The two quinoline rings (N1/C1–C9 and N4/C19–C27) are oriented at angle of 71.43 (4)°. The C10–C15 benzene ring makes a dihedral angle of 65.40 (7)° with the N1/C1–C9 quinoline ring.

In the crystal structure, molecules are linked into chains along the b axis (Fig. 2) by intermolecular C13—H13···N1 hydrogen bonds (Table 1). In addition, the structure is stabilized by the C—H···π (Table 1) and π···π interactions [Cg1···Cg1iv = 3.7325 (8) Å; Cg1 is centroid of C21–C26 ring; (iv) 1 - x, 1 - y, -z].

Related literature top

For general background to quinoline and its derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1, Cg2 and Cg3 are centroids of the C21–C26, N1/C1/C6–C9 and C28–C33 benzene rings, respectively.

Experimental top

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3- (2-chloroquinolin-2-yl)prop-2-en-1-one (0.468 g, 0.001 M) and phenyl hydrazine in (0.756 g, 0.007 M) in distilled methanol was refluxed for 8 h and the resulting mixture was concentrated to remove the methanol and then poured onto ice and neutralized with dilute HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. The resultant product was recrystallized from methanol (m.p. 456–458 K).

Refinement top

All H atoms were located in a difference Fourier map and refined freely [C–H = 0.914 (18)–1.000 (20) Å].

Structure description top

Quinoline and its derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title compound consists of two phenyl rings, two quinoline rings and a 4,5-dihydropyrazole ring (Fig. 1). The 4,5-dihydropyrazole ring (N2/N3/C16–C18) adopts an envelope conformation with C18 as the flap atom, and with puckering amplitude Q = 0.2121 (14) Å and φ = 256.8 (3)° (Cremer & Pople, 1975). The N1/C1–C9 quinoline ring is planar with a maximum deviation of 0.046 (1) Å for atom C8 and in the N4/C19–C27 ring atom C19 deviates a maximum of 0.034 (1) Å. The two quinoline rings (N1/C1–C9 and N4/C19–C27) are oriented at angle of 71.43 (4)°. The C10–C15 benzene ring makes a dihedral angle of 65.40 (7)° with the N1/C1–C9 quinoline ring.

In the crystal structure, molecules are linked into chains along the b axis (Fig. 2) by intermolecular C13—H13···N1 hydrogen bonds (Table 1). In addition, the structure is stabilized by the C—H···π (Table 1) and π···π interactions [Cg1···Cg1iv = 3.7325 (8) Å; Cg1 is centroid of C21–C26 ring; (iv) 1 - x, 1 - y, -z].

For general background to quinoline and its derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1, Cg2 and Cg3 are centroids of the C21–C26, N1/C1/C6–C9 and C28–C33 benzene rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down c axis, showing molecules linked down the b axis. Hydrogen bonds are shown as dashed lines.
6-Chloro-3-[5-(3-methoxy-8-methyl-4-quinolyl)-1-phenyl-4,5-dihydro-1H- pyrazol-3-yl]-2-methyl-4-phenylquinoline top
Crystal data top
C36H29ClN4OF(000) = 1192
Mr = 569.08Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9113 reflections
a = 14.1209 (3) Åθ = 2.3–32.7°
b = 20.2273 (4) ŵ = 0.17 mm1
c = 10.1892 (2) ÅT = 100 K
β = 95.358 (1)°Block, orange
V = 2897.6 (1) Å30.65 × 0.45 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10615 independent reflections
Radiation source: fine-focus sealed tube8632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1521
Tmin = 0.899, Tmax = 0.964k = 3027
57308 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0511P)2 + 1.8405P]
where P = (Fo2 + 2Fc2)/3
10615 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C36H29ClN4OV = 2897.6 (1) Å3
Mr = 569.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1209 (3) ŵ = 0.17 mm1
b = 20.2273 (4) ÅT = 100 K
c = 10.1892 (2) Å0.65 × 0.45 × 0.22 mm
β = 95.358 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8632 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.964Rint = 0.032
57308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.08Δρmax = 0.52 e Å3
10615 reflectionsΔρmin = 0.38 e Å3
495 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.25829 (2)0.618905 (17)0.58916 (3)0.02412 (8)
O10.74552 (8)0.56821 (5)0.26011 (9)0.0227 (2)
N11.06317 (8)0.82047 (6)0.24624 (12)0.0199 (2)
N20.79102 (8)0.76177 (5)0.05659 (10)0.0165 (2)
N30.72868 (8)0.74397 (5)0.05041 (11)0.0184 (2)
N40.67553 (8)0.50533 (6)0.10704 (11)0.0192 (2)
C11.10707 (9)0.77113 (6)0.32078 (14)0.0194 (2)
C21.18398 (11)0.78906 (8)0.41257 (17)0.0300 (3)
C31.22949 (11)0.74267 (8)0.49378 (17)0.0293 (3)
C41.19938 (9)0.67648 (7)0.48422 (13)0.0201 (2)
C51.12617 (9)0.65686 (6)0.39571 (13)0.0178 (2)
C61.07802 (9)0.70427 (6)0.31049 (12)0.0164 (2)
C70.99820 (9)0.68861 (6)0.21888 (12)0.0158 (2)
C80.95183 (9)0.73961 (6)0.14831 (12)0.0151 (2)
C90.98850 (9)0.80588 (6)0.16423 (12)0.0163 (2)
C100.96496 (10)0.61872 (6)0.20841 (13)0.0204 (3)
C111.02484 (14)0.56977 (8)0.16651 (16)0.0306 (3)
C120.99534 (18)0.50358 (8)0.16652 (19)0.0442 (5)
C130.90824 (17)0.48653 (9)0.2083 (2)0.0462 (5)
C140.84867 (14)0.53492 (8)0.24773 (19)0.0397 (5)
C150.87629 (11)0.60117 (7)0.24724 (15)0.0256 (3)
C160.86764 (9)0.72709 (6)0.05412 (12)0.0155 (2)
C170.86503 (10)0.68158 (7)0.06366 (12)0.0181 (2)
C180.75850 (10)0.68279 (6)0.11310 (12)0.0172 (2)
C190.70807 (9)0.62211 (6)0.06680 (12)0.0172 (2)
C200.70797 (9)0.56215 (6)0.14227 (12)0.0182 (2)
C210.63758 (9)0.50178 (6)0.01225 (13)0.0189 (2)
C220.60415 (10)0.43954 (7)0.05349 (15)0.0223 (3)
C230.56744 (11)0.43584 (8)0.17411 (16)0.0266 (3)
C240.56202 (11)0.49167 (8)0.25571 (15)0.0278 (3)
C250.59295 (11)0.55210 (8)0.21628 (14)0.0241 (3)
C260.63158 (10)0.55810 (7)0.09349 (13)0.0195 (2)
C270.66770 (10)0.61885 (7)0.04946 (13)0.0192 (2)
C280.63772 (9)0.77074 (6)0.06672 (12)0.0171 (2)
C290.57125 (10)0.74588 (7)0.16539 (14)0.0222 (3)
C300.48047 (11)0.77291 (8)0.18384 (16)0.0269 (3)
C310.45373 (11)0.82413 (8)0.10524 (16)0.0285 (3)
C320.51985 (11)0.84924 (8)0.00833 (14)0.0265 (3)
C330.61164 (10)0.82371 (7)0.01109 (13)0.0207 (2)
C340.73866 (13)0.51077 (8)0.34404 (16)0.0292 (3)
C350.60857 (12)0.38028 (7)0.03465 (17)0.0278 (3)
C360.94255 (10)0.86304 (7)0.08870 (14)0.0204 (2)
H21.2038 (15)0.8352 (11)0.418 (2)0.039 (6)*
H31.2803 (15)0.7556 (11)0.559 (2)0.039 (6)*
H51.1052 (13)0.6108 (9)0.3924 (18)0.023 (4)*
H111.0823 (13)0.5813 (9)0.1388 (17)0.020 (4)*
H121.0391 (18)0.4749 (13)0.137 (2)0.057 (7)*
H130.8908 (16)0.4411 (12)0.208 (2)0.046 (6)*
H150.8328 (13)0.6360 (9)0.2763 (18)0.025 (5)*
H140.7855 (17)0.5205 (12)0.275 (2)0.050 (7)*
H17A0.9034 (12)0.7012 (9)0.1273 (17)0.020 (4)*
H17B0.8907 (12)0.6379 (9)0.0441 (17)0.017 (4)*
H180.7489 (12)0.6872 (8)0.2091 (17)0.017 (4)*
H220.5425 (14)0.3943 (10)0.2025 (19)0.030 (5)*
H240.5361 (15)0.4868 (11)0.339 (2)0.041 (6)*
H250.5903 (14)0.5906 (10)0.271 (2)0.031 (5)*
H270.6655 (13)0.6569 (9)0.1041 (18)0.026 (5)*
H290.5881 (13)0.7098 (10)0.2214 (19)0.028 (5)*
H300.4387 (14)0.7550 (10)0.251 (2)0.030 (5)*
H310.3914 (15)0.8436 (10)0.117 (2)0.037 (5)*
H320.5040 (14)0.8860 (10)0.0468 (19)0.029 (5)*
H330.6560 (13)0.8420 (9)0.0747 (19)0.027 (5)*
H34A0.7653 (15)0.5244 (11)0.424 (2)0.038 (6)*
H34B0.7735 (15)0.4747 (11)0.298 (2)0.037 (5)*
H34C0.6709 (15)0.4980 (10)0.365 (2)0.033 (5)*
H35A0.6724 (16)0.3750 (11)0.067 (2)0.042 (6)*
H35B0.5669 (16)0.3864 (11)0.115 (2)0.042 (6)*
H35C0.5922 (16)0.3408 (12)0.011 (2)0.044 (6)*
H36A0.9858 (14)0.8999 (10)0.0947 (19)0.027 (5)*
H36B0.9251 (13)0.8521 (9)0.0029 (19)0.027 (5)*
H36C0.8859 (14)0.8752 (9)0.127 (2)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02182 (15)0.02468 (16)0.02474 (16)0.00263 (12)0.00384 (11)0.00766 (12)
O10.0323 (5)0.0186 (5)0.0175 (4)0.0014 (4)0.0039 (4)0.0057 (3)
N10.0191 (5)0.0153 (5)0.0246 (5)0.0015 (4)0.0016 (4)0.0040 (4)
N20.0211 (5)0.0145 (5)0.0131 (4)0.0007 (4)0.0026 (4)0.0008 (3)
N30.0226 (5)0.0156 (5)0.0156 (5)0.0036 (4)0.0048 (4)0.0046 (4)
N40.0207 (5)0.0160 (5)0.0198 (5)0.0024 (4)0.0038 (4)0.0019 (4)
C10.0174 (5)0.0162 (6)0.0237 (6)0.0019 (4)0.0025 (5)0.0035 (4)
C20.0256 (7)0.0195 (7)0.0417 (9)0.0067 (5)0.0132 (6)0.0058 (6)
C30.0230 (6)0.0246 (7)0.0374 (8)0.0052 (5)0.0128 (6)0.0063 (6)
C40.0182 (5)0.0206 (6)0.0208 (6)0.0015 (5)0.0020 (4)0.0054 (5)
C50.0190 (5)0.0154 (6)0.0189 (6)0.0014 (4)0.0013 (4)0.0019 (4)
C60.0171 (5)0.0152 (5)0.0168 (5)0.0006 (4)0.0011 (4)0.0014 (4)
C70.0199 (5)0.0136 (5)0.0139 (5)0.0008 (4)0.0013 (4)0.0005 (4)
C80.0183 (5)0.0141 (5)0.0129 (5)0.0008 (4)0.0007 (4)0.0008 (4)
C90.0178 (5)0.0146 (5)0.0168 (5)0.0004 (4)0.0022 (4)0.0021 (4)
C100.0307 (7)0.0128 (5)0.0160 (5)0.0004 (5)0.0074 (5)0.0001 (4)
C110.0453 (9)0.0196 (7)0.0253 (7)0.0092 (6)0.0056 (6)0.0045 (5)
C120.0746 (14)0.0187 (7)0.0349 (9)0.0165 (8)0.0187 (9)0.0067 (6)
C130.0659 (13)0.0164 (7)0.0494 (11)0.0091 (8)0.0313 (10)0.0056 (7)
C140.0447 (10)0.0240 (8)0.0445 (10)0.0143 (7)0.0266 (8)0.0164 (7)
C150.0305 (7)0.0187 (6)0.0247 (7)0.0061 (5)0.0127 (5)0.0068 (5)
C160.0213 (5)0.0126 (5)0.0123 (5)0.0000 (4)0.0001 (4)0.0008 (4)
C170.0229 (6)0.0177 (6)0.0136 (5)0.0023 (5)0.0008 (4)0.0032 (4)
C180.0249 (6)0.0142 (5)0.0121 (5)0.0022 (4)0.0012 (4)0.0026 (4)
C190.0216 (6)0.0150 (5)0.0144 (5)0.0027 (4)0.0025 (4)0.0019 (4)
C200.0202 (6)0.0173 (6)0.0161 (5)0.0028 (4)0.0028 (4)0.0025 (4)
C210.0186 (5)0.0179 (6)0.0189 (6)0.0027 (4)0.0052 (4)0.0015 (4)
C220.0199 (6)0.0182 (6)0.0272 (7)0.0015 (5)0.0061 (5)0.0035 (5)
C230.0246 (6)0.0248 (7)0.0293 (7)0.0007 (5)0.0041 (5)0.0087 (5)
C240.0286 (7)0.0325 (8)0.0217 (7)0.0011 (6)0.0001 (5)0.0087 (6)
C250.0267 (7)0.0266 (7)0.0186 (6)0.0023 (5)0.0003 (5)0.0020 (5)
C260.0214 (6)0.0201 (6)0.0161 (5)0.0024 (5)0.0033 (4)0.0012 (4)
C270.0245 (6)0.0176 (6)0.0147 (5)0.0021 (5)0.0020 (4)0.0017 (4)
C280.0213 (6)0.0153 (5)0.0145 (5)0.0013 (4)0.0001 (4)0.0025 (4)
C290.0249 (6)0.0197 (6)0.0206 (6)0.0001 (5)0.0042 (5)0.0003 (5)
C300.0233 (6)0.0290 (7)0.0270 (7)0.0021 (6)0.0048 (5)0.0039 (6)
C310.0225 (6)0.0356 (8)0.0276 (7)0.0060 (6)0.0038 (5)0.0084 (6)
C320.0296 (7)0.0306 (8)0.0199 (6)0.0098 (6)0.0055 (5)0.0021 (5)
C330.0271 (6)0.0208 (6)0.0142 (5)0.0040 (5)0.0013 (5)0.0008 (4)
C340.0405 (9)0.0231 (7)0.0245 (7)0.0018 (6)0.0062 (6)0.0116 (5)
C350.0274 (7)0.0174 (6)0.0371 (8)0.0008 (5)0.0049 (6)0.0006 (6)
C360.0222 (6)0.0151 (6)0.0233 (6)0.0003 (5)0.0005 (5)0.0043 (5)
Geometric parameters (Å, º) top
Cl1—C41.7394 (13)C17—H17A0.968 (18)
O1—C201.3626 (16)C17—H17B0.969 (17)
O1—C341.4407 (17)C18—C191.5161 (18)
N1—C91.3163 (17)C18—H180.979 (17)
N1—C11.3673 (17)C19—C271.3633 (18)
N2—C161.2917 (17)C19—C201.4361 (17)
N2—N31.3835 (15)C21—C261.4153 (19)
N3—C281.3895 (17)C21—C221.4218 (19)
N3—C181.4722 (16)C22—C231.380 (2)
N4—C201.3001 (17)C22—C351.503 (2)
N4—C211.3753 (18)C23—C241.409 (2)
C1—C21.413 (2)C23—H220.97 (2)
C1—C61.4144 (18)C24—C251.371 (2)
C2—C31.371 (2)C24—H240.96 (2)
C2—H20.97 (2)C25—C261.4160 (19)
C3—C41.405 (2)C25—H250.96 (2)
C3—H30.97 (2)C26—C271.4193 (19)
C4—C51.3658 (19)C27—H270.952 (19)
C5—C61.4232 (18)C28—C331.4023 (18)
C5—H50.977 (18)C28—C291.4030 (19)
C6—C71.4301 (18)C29—C301.390 (2)
C7—C81.3864 (17)C29—H290.969 (19)
C7—C101.4904 (18)C30—C311.384 (2)
C8—C91.4407 (17)C30—H300.93 (2)
C8—C161.4783 (18)C31—C321.390 (2)
C9—C361.5022 (18)C31—H310.96 (2)
C10—C151.394 (2)C32—C331.392 (2)
C10—C111.395 (2)C32—H320.97 (2)
C11—C121.402 (3)C33—H330.934 (19)
C11—H110.914 (18)C34—H34A0.97 (2)
C12—C131.382 (4)C34—H34B0.97 (2)
C12—H120.92 (3)C34—H34C1.00 (2)
C13—C141.375 (3)C35—H35A0.99 (2)
C13—H130.95 (2)C35—H35B0.97 (2)
C14—C151.396 (2)C35—H35C0.96 (2)
C14—H141.00 (2)C36—H36A0.96 (2)
C15—H150.998 (19)C36—H36B0.97 (2)
C16—C171.5101 (17)C36—H36C0.96 (2)
C17—C181.5413 (19)
C20—O1—C34116.13 (11)C19—C18—H18111.1 (10)
C9—N1—C1118.93 (11)C17—C18—H18111.5 (10)
C16—N2—N3108.41 (10)C27—C19—C20116.41 (12)
N2—N3—C28120.39 (10)C27—C19—C18123.79 (11)
N2—N3—C18111.96 (10)C20—C19—C18119.61 (11)
C28—N3—C18125.06 (11)N4—C20—O1119.93 (11)
C20—N4—C21117.81 (11)N4—C20—C19125.56 (12)
N1—C1—C2117.45 (12)O1—C20—C19114.51 (11)
N1—C1—C6122.92 (12)N4—C21—C26121.64 (12)
C2—C1—C6119.62 (12)N4—C21—C22118.35 (12)
C3—C2—C1120.80 (14)C26—C21—C22120.01 (12)
C3—C2—H2120.2 (13)C23—C22—C21118.29 (13)
C1—C2—H2119.0 (13)C23—C22—C35121.95 (14)
C2—C3—C4119.24 (13)C21—C22—C35119.75 (13)
C2—C3—H3120.4 (13)C22—C23—C24121.87 (14)
C4—C3—H3120.4 (13)C22—C23—H22119.5 (12)
C5—C4—C3121.87 (12)C24—C23—H22118.6 (12)
C5—C4—Cl1120.03 (11)C25—C24—C23120.36 (14)
C3—C4—Cl1118.10 (10)C25—C24—H24120.6 (13)
C4—C5—C6119.75 (12)C23—C24—H24119.0 (13)
C4—C5—H5120.6 (11)C24—C25—C26119.67 (14)
C6—C5—H5119.7 (11)C24—C25—H25121.4 (12)
C1—C6—C5118.70 (12)C26—C25—H25118.9 (12)
C1—C6—C7117.75 (11)C21—C26—C25119.79 (13)
C5—C6—C7123.47 (12)C21—C26—C27117.97 (12)
C8—C7—C6118.62 (11)C25—C26—C27122.21 (13)
C8—C7—C10122.57 (11)C19—C27—C26120.55 (12)
C6—C7—C10118.72 (11)C19—C27—H27120.6 (11)
C7—C8—C9119.11 (11)C26—C27—H27118.8 (11)
C7—C8—C16121.43 (11)N3—C28—C33121.25 (12)
C9—C8—C16119.43 (11)N3—C28—C29119.68 (12)
N1—C9—C8122.57 (11)C33—C28—C29119.05 (12)
N1—C9—C36115.77 (11)C30—C29—C28120.18 (14)
C8—C9—C36121.66 (11)C30—C29—H29119.3 (11)
C15—C10—C11119.50 (14)C28—C29—H29120.5 (11)
C15—C10—C7120.43 (12)C31—C30—C29120.95 (14)
C11—C10—C7119.97 (14)C31—C30—H30121.8 (12)
C10—C11—C12119.29 (19)C29—C30—H30117.3 (12)
C10—C11—H11119.6 (11)C30—C31—C32118.89 (14)
C12—C11—H11121.1 (11)C30—C31—H31122.2 (13)
C13—C12—C11120.74 (18)C32—C31—H31118.9 (13)
C13—C12—H12126.1 (16)C31—C32—C33121.34 (14)
C11—C12—H12113.2 (16)C31—C32—H32121.0 (12)
C14—C13—C12119.91 (16)C33—C32—H32117.6 (12)
C14—C13—H13121.5 (14)C32—C33—C28119.55 (13)
C12—C13—H13118.5 (14)C32—C33—H33120.4 (12)
C13—C14—C15120.25 (19)C28—C33—H33120.0 (12)
C13—C14—H14117.3 (14)O1—C34—H34A105.0 (13)
C15—C14—H14122.4 (14)O1—C34—H34B108.5 (12)
C10—C15—C14120.28 (17)H34A—C34—H34B113.3 (17)
C10—C15—H15119.9 (11)O1—C34—H34C110.3 (12)
C14—C15—H15119.9 (11)H34A—C34—H34C109.5 (17)
N2—C16—C8121.23 (11)H34B—C34—H34C110.0 (17)
N2—C16—C17112.85 (11)C22—C35—H35A111.8 (13)
C8—C16—C17125.37 (11)C22—C35—H35B110.4 (13)
C16—C17—C18101.58 (10)H35A—C35—H35B103.4 (18)
C16—C17—H17A108.0 (10)C22—C35—H35C110.2 (14)
C18—C17—H17A111.4 (10)H35A—C35—H35C109.7 (18)
C16—C17—H17B114.3 (10)H35B—C35—H35C111.2 (18)
C18—C17—H17B114.6 (10)C9—C36—H36A108.8 (12)
H17A—C17—H17B106.8 (14)C9—C36—H36B112.2 (11)
N3—C18—C19112.57 (11)H36A—C36—H36B109.9 (16)
N3—C18—C17100.46 (10)C9—C36—H36C108.9 (12)
C19—C18—C17110.97 (10)H36A—C36—H36C109.1 (16)
N3—C18—H18109.8 (10)H36B—C36—H36C108.0 (16)
C16—N2—N3—C28175.71 (12)N2—N3—C18—C1997.03 (13)
C16—N2—N3—C1813.06 (14)C28—N3—C18—C1964.65 (16)
C9—N1—C1—C2176.86 (14)N2—N3—C18—C1721.06 (13)
C9—N1—C1—C62.4 (2)C28—N3—C18—C17177.26 (12)
N1—C1—C2—C3177.85 (16)C16—C17—C18—N319.72 (12)
C6—C1—C2—C31.4 (2)C16—C17—C18—C1999.54 (11)
C1—C2—C3—C40.5 (3)N3—C18—C19—C2722.39 (18)
C2—C3—C4—C50.3 (2)C17—C18—C19—C2789.31 (15)
C2—C3—C4—Cl1179.73 (14)N3—C18—C19—C20162.75 (11)
C3—C4—C5—C60.3 (2)C17—C18—C19—C2085.55 (14)
Cl1—C4—C5—C6179.75 (10)C21—N4—C20—O1179.46 (11)
N1—C1—C6—C5177.81 (12)C21—N4—C20—C190.3 (2)
C2—C1—C6—C51.4 (2)C34—O1—C20—N45.31 (18)
N1—C1—C6—C70.9 (2)C34—O1—C20—C19174.44 (12)
C2—C1—C6—C7178.31 (13)C27—C19—C20—N42.2 (2)
C4—C5—C6—C10.57 (19)C18—C19—C20—N4172.99 (12)
C4—C5—C6—C7177.28 (12)C27—C19—C20—O1177.49 (12)
C1—C6—C7—C81.97 (18)C18—C19—C20—O17.27 (17)
C5—C6—C7—C8174.77 (12)C20—N4—C21—C261.45 (19)
C1—C6—C7—C10178.68 (12)C20—N4—C21—C22178.37 (12)
C5—C6—C7—C101.95 (19)N4—C21—C22—C23179.02 (12)
C6—C7—C8—C93.31 (17)C26—C21—C22—C230.81 (19)
C10—C7—C8—C9179.89 (12)N4—C21—C22—C351.63 (19)
C6—C7—C8—C16178.70 (11)C26—C21—C22—C35178.54 (12)
C10—C7—C8—C162.12 (19)C21—C22—C23—C240.3 (2)
C1—N1—C9—C80.94 (19)C35—C22—C23—C24179.01 (14)
C1—N1—C9—C36178.32 (12)C22—C23—C24—C250.5 (2)
C7—C8—C9—N11.94 (19)C23—C24—C25—C260.8 (2)
C16—C8—C9—N1179.96 (12)N4—C21—C26—C25179.30 (12)
C7—C8—C9—C36178.85 (12)C22—C21—C26—C250.52 (19)
C16—C8—C9—C360.82 (18)N4—C21—C26—C271.13 (19)
C8—C7—C10—C1563.05 (17)C22—C21—C26—C27178.69 (12)
C6—C7—C10—C15113.53 (14)C24—C25—C26—C210.3 (2)
C8—C7—C10—C11120.55 (15)C24—C25—C26—C27177.82 (14)
C6—C7—C10—C1162.87 (17)C20—C19—C27—C262.46 (19)
C15—C10—C11—C121.1 (2)C18—C19—C27—C26172.55 (12)
C7—C10—C11—C12175.28 (14)C21—C26—C27—C190.95 (19)
C10—C11—C12—C130.4 (3)C25—C26—C27—C19177.18 (13)
C11—C12—C13—C141.4 (3)N2—N3—C28—C3310.38 (19)
C12—C13—C14—C150.8 (3)C18—N3—C28—C33170.62 (12)
C11—C10—C15—C141.8 (2)N2—N3—C28—C29171.60 (12)
C7—C10—C15—C14174.63 (13)C18—N3—C28—C2911.36 (19)
C13—C14—C15—C100.8 (2)N3—C28—C29—C30179.09 (13)
N3—N2—C16—C8173.70 (11)C33—C28—C29—C301.0 (2)
N3—N2—C16—C171.81 (15)C28—C29—C30—C310.5 (2)
C7—C8—C16—N2131.09 (13)C29—C30—C31—C321.1 (2)
C9—C8—C16—N250.93 (17)C30—C31—C32—C330.3 (2)
C7—C8—C16—C1758.08 (17)C31—C32—C33—C281.3 (2)
C9—C8—C16—C17119.90 (14)N3—C28—C33—C32179.91 (13)
N2—C16—C17—C1814.56 (14)C29—C28—C33—C321.9 (2)
C8—C16—C17—C18173.95 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.95 (2)2.56 (2)3.410 (2)149 (2)
C14—H14···Cg11.00 (2)2.92 (2)3.685 (2)134 (2)
C17—H17A···Cg2ii0.97 (2)2.55 (2)3.5018 (14)169 (1)
C25—H25···Cg3iii0.96 (2)2.79 (2)3.7359 (17)169 (2)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC36H29ClN4O
Mr569.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1209 (3), 20.2273 (4), 10.1892 (2)
β (°) 95.358 (1)
V3)2897.6 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.65 × 0.45 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.899, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
57308, 10615, 8632
Rint0.032
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.135, 1.08
No. of reflections10615
No. of parameters495
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N1i0.95 (2)2.56 (2)3.410 (2)149 (2)
C14—H14···Cg11.00 (2)2.92 (2)3.685 (2)134 (2)
C17—H17A···Cg2ii0.97 (2)2.55 (2)3.5018 (14)169 (1)
C25—H25···Cg3iii0.96 (2)2.79 (2)3.7359 (17)169 (2)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449–9451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991.  Web of Science CrossRef CAS Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds