Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-(4,5-Diiodo-1,3-dithiol-2-ylidene)$4^{\prime}, 5^{\prime}$-bis(methylsulfanyl)-2,2'-bi-1,3-dithiole-4(5H)-thione

Kazumasa Ueda ${ }^{\text {a }}$ and Kenji Yoza ${ }^{\text {b }}$
${ }^{\text {a }}$ Division of Applied Science and Fundamental Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan, and ${ }^{\text {b }}$ Bruker AXS Co. Ltd., Moriya-cho 3-9, Kanagawa-ku, Kanagawa, Kanagawa 221-0022, Japan
Correspondence e-mail: tkueda@ipc.shizuoka.ac.jp

Received 6 October 2009; accepted 16 October 2009
Key indicators: single-crystal X-ray study; $T=93 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA ; R$ factor $=$ $0.038 ; w R$ factor $=0.090$; data-to-parameter ratio $=21.8$.

The molecular skeleton of the title molecule, $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{~S}_{9}$, is nearly planar [maximum deviation 0.052 (3) \AA] except for the two methyl groups. In the crystal, molecules related by translation along b axis are associated into columns through $\pi-\pi$ interactions between the five-membered rings, with a centroid-centroid distance of $3.593(5) \AA$. Interaction between adjacent columns is accomplished by short $\mathrm{S} \cdots \mathrm{I}$ contacts of 3.2099 (4) Å.

Related literature

For background to tetrathiafulvalenothioquinone-1,3-dithiolemethide derivatives, see: Iwamatsu et al. (2000); Wang et al. (2005, 2007); Hiraoka et al. (2005); Fujiwara et al. $(2006,2007)$. For details of the synthesis, see Iwamatsu et al. (1999). For intermolecular S. . I contacts, see: Ahlsen \& Strømme (1974); Herbstein \& Schwortzer (1984); Freemanm et al. (1988); Bigoli et al. (1996). For van der Waals radii, see: Bondi (1964).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{~S}_{9}$
$b=5.3543$ (13) \AA
$M_{r}=680.50$
Monoclinic, C2/c
$a=29.540$ (7) A

$$
c=25.163(6) \AA
$$

$$
\beta=103.544(3)^{\circ}
$$

$$
V=3869.2(16) \AA^{3}
$$

$Z=8$

$T=93 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=4.21 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.205, T_{\text {max }}=0.979$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
201 parameters
$w R\left(F^{2}\right)=0.090$
$S=1.07$
4387 reflections
$0.55 \times 0.18 \times 0.01 \mathrm{~mm}$

10568 measured reflections 4387 independent reflections 3536 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: XCIF (Bruker, 2001).

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2627).

References

Ahlsen, E. L. \& Strømme, K. O. (1974). Acta Chem. Scand. Ser. A, 28, 175-184. Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. \& Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583-3589. Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Freemanm, F., Ziller, J. W., Po, H. N. \& Keindl, M. C. (1988). J. Am. Chem. Soc. 110, 2586-2591.
Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T. \& Nakazumi, H. (2006). J. Low Temp. Phys. 142, 405-408.

Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T., Nakazumi, H., Teramura, M., Yokogawa, K., Yasuzuka, S. \& Murata, K. (2007). Multifunctional Conducting Molecular Materials, edited by G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz \& M. Maesato, pp. 161-164. Cambridge: RSC Publishing.
Herbstein, F. H. \& Schwortzer, W. (1984). J. Am. Chem. Soc. 106, 2367-2373.
Hiraoka, T., Kamada, Y., Matsumoto, T., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Nakzumi, H. \& Katori, H. A. (2005). J. Mater. Chem. 15, 34793487.

Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Adachi, T., Fujita, H., Yoshino, H., Mizuno, Y., Murata, K. \& Shiro, M. (2000). Inorg. Chem. 39, 3810-3815.
Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. \& Adachi, T. (1999). Chem. Lett. pp. 329-330.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (1996). SADABS. University of Götingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, M., Fujiwara, H., Sugimoto, T., Noguchi, S. \& Ishida, T. (2005). Inorg. Chem. 44, 1184-1186.
Wang, M., Xiao, X., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Mori, T. \& Katori, H. A. (2007). Inorg. Chem. 46, 3049-3056.

supporting information

Acta Cryst. (2009). E65, o2831 [https://doi.org/10.1107/S1600536809042573]

5-(4,5-Diiodo-1,3-dithiol-2-ylidene)-4',5'-bis(methylsulfanyl)-2,2'-bi-1,3-di-thiole-4(5H)-thione

Kazumasa Ueda and Kenji Yoza

S1. Comment

Charge transfer (CT) complexes of new donor molecules featuring a skeleton of tetrathiafulvalenothioquinone-1,3-dithiolemethide with magnetic metal ions are used for the preparation of magnetic molecular conductors, especially ferromagnetic semiconductors and metals (Wang et al., 2005, 2007; Hiraoka et al., 2005; Fujiwara et al., 2006, 2007). In the CT salts of an ethylendithiotetrathiafulvalenothioquinone-1,3-dithiolemethide donor with CuBr_{2}, the Cu atom (a Lewis acid) of CuBr_{2} is bound to the S atom (a Lewis base) of a $\mathrm{C}=\mathrm{S}$ group in the donor to form a new type of π / d molecular system (Iwamatsu et al., 2000). The introduction of Lewis acids, such as iodine atoms, as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of $\mathrm{S} \cdots \mathrm{I}$ contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solidstate. In this context, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylthio groups, is almost planar [maximum deviation 0.052 (3) $\AA]$. The displacements of atoms S8, S9, I1 and I2 relative to the plane of the skeleton are -0.164 (3), -0.151 (3), 0.164 (3) and 0.277 (3) \AA, respectively. The torsion angles of the two methylthio groups are -136.95° for $\mathrm{C} 10 — \mathrm{~S} 8$ - C 8 - C9 and 80.97° for C11-S9-C9-C8. In the crystal structure, two different arrangements of the molecules are present. One arrangement has a dihedral angle of 48.41° to the ac plane, while the other has a dihedral angle of 131.51° to the $a c$ plane. As a result, the molecules are stacked in the same orientations to form one-dimensional columns along the [110] and [1-10] directions (Fig. 2). Although the weak interaction between stacked molecules in the columns is accomplished through contacts between different sulfur atoms [S3 $\cdots \mathrm{S} 5^{\mathrm{i}}=3.5916$ (6) \AA; symmetry code: (i) $+x, 1+y,+z$] is shorter than the sum of van der Waals radii of two sulfur atoms ($3.60 \AA$), stacked molecules are separated by interplanar distances greater than $3.54 \AA$ and have fairly poor overlap (Bondi, 1964). However, some effective side-byside contacts are observed between molecules of adjacent columns. The interaction between columns is accomplished by contacts between sulfur and iodine atoms $\left[\mathrm{S} 3 \cdots \mathrm{I} 1^{\mathrm{ii}}=3.2099(4) \AA\right.$; symmetry code: (ii) $\left.2-x,-1+y, 1 / 2-z\right]$ along the a axis (Fig. 3). This distance is shorter than the sum of van der Waals radii of sulfur and iodine atoms ($3.78 \AA$). In the two molecules bound by sulfur-iodine interaction, the C5—S3— $11^{\mathrm{ii}}-\mathrm{C} 1{ }^{\mathrm{ii}}$ moieties are not planar and almost linear S3- $\mathrm{I} 1^{\mathrm{ii}}$ — $\mathrm{C} 1^{1 i}$ fragments lie roughly perpendicular to the molecular skeleton [torsion angle of -81.47° for $\mathrm{I} 1^{i}-\mathrm{S} 3-\mathrm{C} 5-\mathrm{S} 5$ and torsion angle of 97.60° for $\mathrm{I} 1^{\mathrm{i}}$ - $\left.\mathrm{S} 3-\mathrm{C} 5-\mathrm{C} 4\right]$, and the dihedral angle of the molecules is 83.11°. Such sulfur-iodine interactions have been observed previously (Ahlsen et al.,1974; Herbstein et al., 1984; Freemanm et al., 1988; Bigoli et al., 1996).

S2. Experimental

Compound (I) was synthesized by a modification of the method used for the preparation of bis(methylthio)tetrathia-fulvalenothioquinone-1,3-dithiolemethide (Iwamatsu et al.,1999). Bis(tetraethylammonium)bis(2,3-bis(methylthio)tetra-thiafulvalenyl-6,7-dithiolato)zinc ($269 \mathrm{mg}, 0.258 \mathrm{mmol}$) was reacted with 4,5 -diiodo-2-methylthio-1,3-dithiole-2,3-dithiolium tetrafluoroborate ($535 \mathrm{mg}, 1.10 \mathrm{mmol}$) in THF-DMF $(5: 1=v / v)$ at room temperature under nitrogen, and stirring was carried out for 12 h . After separation of the reaction mixture by column chromatography on silica gel (eluent: CS_{2}) followed by recrystallization from CS_{2} / n-hexane, (I) was obtained as black needles in 72% yield.

S3. Refinement

The H atoms were geometrically positioned with $\mathrm{C}-\mathrm{H}: 0.98 \AA$, and refined as riding, with $U_{\mathrm{is} 0}(\mathrm{H})=1.5 U_{\mathrm{cq}}(\mathrm{C})$. The highest residual peak [$3.45 \mathrm{e} \AA^{-3}$] and deepest hole $\left[-2.31 \mathrm{e} \AA^{-3}\right]$ are situated $0.98 \AA$ and $0.69 \AA$ at atom I2, respectively.

Figure 1
The molecular structure of (\mathbf{I}) showing atom labelling and 50% probability displacement ellipsoids for non H -atoms.

Figure 2
Projection of the crystal packing in (I) down the $a b$ plane. The $\mathrm{S} \cdots \mathrm{S}$ (black) and $\mathrm{S} \cdots \mathrm{I}$ (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.

Figure 3
Projection of the crystal packing in (I) down the $a c$ plane. The $\mathrm{S} \cdots \mathrm{I}$ (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.

5-(4,5-Diiodo-1,3-dithiol-2-ylidene)-4',5'-bis(methylsulfanyl)-2,2'-bi-1,3-dithiole-4(5H)-thione

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{I}_{2} \mathrm{~S}_{9}$

$M_{r}=680.50$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=29.540(7) \AA$
$b=5.3543$ (13) \AA
$c=25.163(6) \AA$
$\beta=103.544$ (3) ${ }^{\circ}$
$V=3869.2(16) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: Bruker TXS fine-focus rotating anode
$F(000)=2576$
$D_{\mathrm{x}}=2.336 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2871 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=4.21 \mathrm{~mm}^{-1}$
$T=93 \mathrm{~K}$
Needle, black
$0.55 \times 0.18 \times 0.01 \mathrm{~mm}$

Bruker Helios multilayer confocal mirror monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.205, T_{\text {max }}=0.979$
10568 measured reflections
4387 independent reflections 3536 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=1.07$
4387 reflections
201 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.040 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=1.4^{\circ} \\
& h=-38 \rightarrow 36 \\
& k=-6 \rightarrow 6 \\
& l=-24 \rightarrow 32
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.028 P)^{2}+20.8292 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=3.45$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-2.31$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$1.01287(15)$	$1.3727(9)$	$0.35298(19)$	$0.0158(10)$
C2	$1.02057(16)$	$1.2692(10)$	$0.4024(2)$	$0.0198(11)$
C3	$0.94845(15)$	$1.0393(9)$	$0.34447(18)$	$0.0150(10)$
C4	$0.91248(16)$	$0.8707(9)$	$0.32900(19)$	$0.0157(10)$
C5	$0.88305(16)$	$0.8507(9)$	$0.27608(19)$	$0.0152(10)$
C6	$0.85596(16)$	$0.5009(9)$	$0.3338(2)$	$0.0177(10)$
C7	$0.83308(16)$	$0.3149(10)$	$0.35177(19)$	$0.0180(11)$
C8	$0.80459(17)$	$-0.0037(10)$	$0.4151(2)$	$0.0213(11)$
C9	$0.77585(16)$	$-0.0346(10)$	$0.3660(2)$	$0.0197(11)$
C10	$0.8099(2)$	$0.0697(12)$	$0.5245(2)$	$0.0345(14)$
H10A	0.8431	0.1096	0.5359	0.052^{*}
H10B	0.7988	0.0128	0.5562	0.052^{*}
H10C	0.7925	0.2190	0.5090	0.052^{*}
C11	$0.68641(17)$	$-0.0497(11)$	$0.3739(2)$	$0.0244(12)$
H11A	0.6975	-0.0211	0.4132	0.037^{*}
H11B	0.6563	-0.1358	0.3667	0.037^{*}
H11C	0.6828	0.110	0.3547	$0.037 *$
I1	$1.052758(10)$	$1.64937(6)$	$0.326836(12)$	$0.01695(10)$
I2	$1.075939(14)$	$1.33621(9)$	$0.468614(15)$	$0.04003(14)$

S1	$0.96539(4)$	$1.2618(2)$
S2	$0.98132(4)$	$1.0369(3)$
S3	$0.88601(4)$	$1.0394(2)$
S4	$0.90284(4)$	$0.6524(2)$
S5	$0.84272(4)$	$0.6130(2)$
S6	$0.84983(4)$	$0.2173(3)$
S7	$0.78627(4)$	$0.1484(3)$
S8	$0.80104(5)$	$-0.1743(3)$
S9	$0.72837(4)$	$-0.2411(3)$

$0.30265(5)$	$0.0163(2)$
$0.41150(5)$	$0.0202(3)$
$0.22343(5)$	$0.0186(3)$
$0.37793(5)$	$0.0196(3)$
$0.26660(5)$	$0.0194(3)$
$0.42068(5)$	$0.0217(3)$
$0.31171(5)$	$0.0200(3)$
$0.47356(5)$	$0.0231(3)$
$0.34965(5)$	$0.0200(3)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.013(2)$	$0.020(3)$	$0.015(2)$	$-0.0029(19)$	$0.0032(18)$	$-0.002(2)$
C2	$0.018(2)$	$0.023(3)$	$0.017(2)$	$-0.004(2)$	$-0.0002(19)$	$0.002(2)$
C3	$0.015(2)$	$0.017(3)$	$0.012(2)$	$0.0032(19)$	$0.0015(18)$	$-0.0001(19)$
C4	$0.015(2)$	$0.015(3)$	$0.017(2)$	$0.0032(19)$	$0.0038(18)$	$0.004(2)$
C5	$0.017(2)$	$0.016(3)$	$0.015(2)$	$0.0061(19)$	$0.0073(18)$	$-0.0025(19)$
C6	$0.017(2)$	$0.015(3)$	$0.020(3)$	$-0.0027(19)$	$0.0026(19)$	$-0.004(2)$
C7	$0.017(2)$	$0.020(3)$	$0.016(2)$	$0.000(2)$	$0.0033(19)$	$-0.003(2)$
C8	$0.018(2)$	$0.020(3)$	$0.026(3)$	$-0.004(2)$	$0.007(2)$	$-0.001(2)$
C9	$0.013(2)$	$0.020(3)$	$0.027(3)$	$-0.002(2)$	$0.0050(19)$	$-0.004(2)$
C10	$0.047(4)$	$0.035(4)$	$0.024(3)$	$-0.007(3)$	$0.015(3)$	$-0.002(3)$
C11	$0.018(2)$	$0.029(3)$	$0.026(3)$	$-0.001(2)$	$0.005(2)$	$-0.004(2)$
I1	$0.01587(16)$	$0.01857(18)$	$0.01695(17)$	$-0.00209(12)$	$0.00491(12)$	$-0.00065(13)$
I2	$0.0346(2)$	$0.0579(3)$	$0.0204(2)$	$-0.0239(2)$	$-0.00805(16)$	$0.01043(18)$
S1	$0.0161(6)$	$0.0184(6)$	$0.0143(6)$	$-0.0014(5)$	$0.0033(4)$	$0.0016(5)$
S2	$0.0195(6)$	$0.0269(7)$	$0.0133(6)$	$-0.0053(5)$	$0.0019(5)$	$0.0029(5)$
S3	$0.0198(6)$	$0.0193(7)$	$0.0160(6)$	$0.0023(5)$	$0.0027(5)$	$0.0014(5)$
S4	$0.0223(6)$	$0.0212(7)$	$0.0153(6)$	$-0.0046(5)$	$0.0046(5)$	$0.0002(5)$
S5	$0.0188(6)$	$0.0194(7)$	$0.0185(6)$	$-0.0034(5)$	$0.0014(5)$	$-0.0020(5)$
S6	$0.0208(6)$	$0.0254(8)$	$0.0182(6)$	$-0.0065(5)$	$0.0031(5)$	$-0.0005(5)$
S7	$0.0200(6)$	$0.0215(7)$	$0.0179(6)$	$-0.0040(5)$	$0.0033(5)$	$-0.0012(5)$
S8	$0.0254(7)$	$0.0233(7)$	$0.0202(7)$	$-0.0050(5)$	$0.0044(5)$	$0.0014(5)$
S9	$0.0182(6)$	$0.0207(7)$	$0.0214(6)$	$-0.0037(5)$	$0.0052(5)$	$-0.0039(5)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.331(7)$	$\mathrm{C} 7-\mathrm{S} 7$	$1.752(5)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.758(5)$	$\mathrm{C} 7-\mathrm{S} 6$	$1.767(5)$
$\mathrm{C} 1-\mathrm{I} 1$	$2.093(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.336(7)$
$\mathrm{C} 2-\mathrm{S} 2$	$1.751(5)$	$\mathrm{C} 8-\mathrm{S} 8$	$1.755(5)$
$\mathrm{C} 2-\mathrm{I} 2$	$2.074(5)$	$\mathrm{C} 8-\mathrm{S} 6$	$1.766(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.379(7)$	$\mathrm{C} 9-\mathrm{S} 9$	$1.758(5)$
$\mathrm{C} 3-\mathrm{S} 2$	$1.738(4)$	$\mathrm{C} 9-\mathrm{S} 7$	$1.766(5)$
$\mathrm{C} 3-\mathrm{S} 1$	$1.739(5)$	$\mathrm{C} 10-\mathrm{S} 8$	$1.806(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.414(6)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9800
$\mathrm{C} 4 — \mathrm{~S} 4$	$1.769(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9800

supporting information

C5-S3	1.685 (5)	C10-H10C	0.9800
C5-S5	1.721 (5)	C11-S9	1.820 (5)
C6-C7	1.340 (7)	C11-H11A	0.9800
C6-S5	1.750 (5)	C11-H11B	0.9800
C6-S4	1.758 (5)	C11-H11C	0.9800
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	117.7 (4)	C8-C9-S9	126.4 (4)
C2-C1-I1	127.1 (4)	C8-C9-S7	117.3 (4)
S1-C1-I1	115.2 (2)	S9-C9-S7	116.2 (3)
C1-C2-S2	116.4 (4)	S8-C10-H10A	109.5
C1-C2-I2	127.5 (4)	S8-C10-H10B	109.5
S2-C2-I2	116.1 (3)	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 2$	119.2 (4)	S8-C10-H10C	109.5
C4-C3-S1	126.1 (4)	H10A-C10-H10C	109.5
S2-C3-S1	114.7 (3)	H10B-C10-H10C	109.5
C3-C4-C5	125.4 (5)	S9-C11-H11A	109.5
C3-C4-S4	118.4 (4)	S9-C11-H11B	109.5
C5-C4-S4	116.2 (4)	H11A-C11-H11B	109.5
C4-C5-S3	124.2 (4)	S9-C11-H11C	109.5
C4-C5-S5	116.1 (4)	H11A-C11-H11C	109.5
S3-C5-S5	119.8 (3)	H11B-C11-H11C	109.5
C7-C6-S5	124.4 (4)	C3-S1-C1	95.1 (2)
C7-C6-S4	121.0 (4)	C3-S2-C2	96.0 (2)
S5-C6-S4	114.6 (3)	C6-S4-C4	95.5 (2)
C6-C7-S7	125.2 (4)	C5-S5-C6	97.4 (2)
C6-C7-S6	120.2 (4)	C8-S6-C7	95.0 (2)
S7-C7-S6	114.6 (3)	C7-S7-C9	95.4 (2)
C9-C8-S8	124.1 (4)	C8-S8-C10	101.0 (3)
C9-C8-S6	117.5 (4)	C9-S9-C11	97.8 (2)
S8-C8-S6	118.4 (3)		

