Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[bis[μ_{3}-2-(1H-tetrazol-1-yl)acetato]cadmium(II)]

Li-Xia Xie,* Xian-Fu Zheng, Hui Su and Qiu Jin

College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002,
People's Republic of China
Correspondence e-mail: toxielix@163.com

Received 12 October 2009; accepted 16 October 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.017 ; w R$ factor $=0.049$; data-to-parameter ratio $=16.7$.

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion, located on a twofold rotation axis, is six-coordinated by two N atoms $[\mathrm{Cd}-\mathrm{N}=2.368(2) \AA]$ and four O atoms $[\mathrm{Cd}-\mathrm{O}=$ 2.300 (1) and 2.260 (1) A] from six 2-(1H-tetrazol-1-yl)acetate (L) ligands in a distorted octahedral geometry. The metal centres are connected via the tridentate L ligands into a threedimensional polymeric structure.

Related literature

For related structures, see: Du et al. (2007); Lee et al. (2005); Won et al. (2007); Yang et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=366.60$
Monoclinic, $C 2 / c$
$a=14.750$ (3) A
$b=8.857$ (2) A
$c=9.503$ (2) \AA
$\beta=118.42(3)^{\circ}$

$$
\begin{aligned}
& V=1091.8(4) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.03 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.20 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.666, T_{\text {max }}=0.673$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$	87 parameters
$w R\left(F^{2}\right)=0.049$	H-atom parameters constrained
$S=0.94$	$\Delta \rho_{\max }=0.38 \mathrm{e}^{-3}$
1452 reflections	$\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}$

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was sponsored by the start-up fund of Henan Agricultural University (grant No. 30700061).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2629).

References

Du, M., Zhang, Z. H., Tang, L. F., Wang, X. G., Zhao, X. J. \& Batten, S. R. (2007). Chem. Eur. J. 13, 2578-2586.

Lee, E. Y., Jang, S. Y. \& Suh, M. P. (2005). J. Am. Chem. Soc. 127, 6374-6381.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Won, T. J., Clegg, J. K., Lindoy, L. F. \& McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972-979.
Yang, H. Y., Li, L. K., Wu, J., Hou, H. W., Xiao, B. \& Fan, Y. T. (2009). Chem. Eur. J. 15, 4049-4056.

supporting information

Acta Cryst. (2009). E65, m1414 [https://doi.org/10.1107/S160053680904255X]

Poly[bis[μ_{3}-2-(1 H-tetrazol-1-yl)acetato]cadmium(II)]

Li-Xia Xie, Xian-Fu Zheng, Hui Su and Qiu Jin

S1. Comment

Multidentate ligands containing rich coordination sites (N and/or O donors) are often employed to produce polymeric networks with structural diversity owing to their various coordination modes (Won et al., 2007; Lee et al., 2005; Du et al., 2007). As ligands with multiple coordination site, tetrazole and its derivatives have been shown to be good organic linker in generation of structurally versatile metal-organic frameworks since it can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized materials (Yang et al., 2009). Here, we report the synthesis and crystal structure of the title compound, (I).
In (I) (Fig. 1), each $\mathrm{Cd}^{\mathrm{II}}$ ion located on a twofold rotation axis is six-coordinated by two tetrazole nitrogen atoms (N4) and four carboxylate group oxygen atoms (O 1 and O 2) from six distinct ligands. The coordination bond lengths $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{O}$ are 2.368 (2), 2.300 (1) $\AA \AA$ and 2.260 (1) \AA, respectively. The coordination geometry around $\mathrm{Cd}^{\text {II }}$ can be described as a distorted octahedron - the $\mathrm{Cd}^{\mathrm{II}}$ coordination angles are in the range $83.34(6)^{\circ}-177.16(7)^{\circ}$. Each fully deprotonated L ligand serves as a tridentate bridging ligand via one nitrogen atom at the 5-position of the tetrazole ring while the nitrogen atoms at 3,4-positions remain uncoordinated, and two carboxylate O atoms. In this way two metal atoms and two carboxylate form a 8 -membered $\left[M_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$ metallocyclic ring, the $\mathrm{Cd} \cdots \mathrm{Cd}$ distance is $4.793 \AA$. The $\mathrm{Cd} \cdots \mathrm{Cd}$ distance linked by the bridged L ligand is $8.603 \AA$. Thus each $\mathrm{Cd}^{\text {II }}$ centers are linked together by six L ligands into a three-dimensional polymeric structure (Fig. 2).

S2. Experimental

All solvents and chemicals were of analytical grade and were used without further purification. The compound $\left[\mathrm{Cd} L_{2}\right]_{\mathrm{n}}$ was synthesized as follows: $2-(1 \mathrm{H}-$ tetrazol $-1-\mathrm{yl})$ acetic acid $(1.0 \mathrm{mmol})$ was added to $5 \mathrm{~cm}^{3}$ water and the resulting solution was adjusted pH to 7.0 by NaOH aqueous. $\mathrm{Then} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}(0.5 \mathrm{mmol})$ was added to the above solution, and the mixture was stirred for 30 min and filtered. After two days, colourless single crystals suitable for X-ray analysis were obtained. Anal. Calcd (\%) for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CdN}_{8} \mathrm{O}_{4}$: C, 19.66; H, 1.65; N, 30.57. Found (\%): C, 19.79; H, 1.45; N, 30.46.

S3. Refinement

The H atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.93 \AA$ for the tetrazole and $0.97 \AA$ for the methylene H atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
A portion of the crystal structure of (I) showing 30% probability displacement ellipsoids and the atomic labeling [symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $-x,-y+1,-z$; (iii) $x,-y+1, z+1 / 2$; (iv) $x-1 / 2, y+1 / 2, z$; (v) $-x+1 / 2, y+1 / 2$, $-z+1 / 2]$.

Figure 2
The crystal packing viewed along the b axis. H atoms omitted for clarity.

Poly[bis[μ_{3}-2-(1H-tetrazol-1-yl)acetato]cadmium(II)]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=366.60$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=14.750$ (3) \AA
$b=8.857$ (2) \AA
$c=9.503(2) \AA$

$$
\begin{aligned}
& \beta=118.42(3)^{\circ} \\
& V=1091.8(4) \AA^{3} \\
& Z=4 \\
& F(000)=712 \\
& D_{\mathrm{x}}=2.230 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2016 \text { reflections }
\end{aligned}
$$

$$
\begin{aligned}
\theta & =2.4-29.1^{\circ} \\
\mu & =2.03 \mathrm{~mm}^{-1} \\
T & =293 \mathrm{~K}
\end{aligned}
$$

Data collection

Rigaku Mercury CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.666, T_{\text {max }}=0.673$

Prism, colourless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

6805 measured reflections
1452 independent reflections
1441 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=29.1^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-20 \rightarrow 19$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0394 P)^{2}+0.8 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.44$ e \AA^{-3}

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Cd1	0.0000	$0.535583(15)$	0.2500	$0.01857(7)$
O1	$-0.03228(9)$	$0.34712(15)$	$0.06557(14)$	$0.0254(2)$
O2	$0.05506(13)$	$0.28052(17)$	$-0.06267(17)$	$0.0377(3)$
N3	$0.25046(14)$	$-0.05131(19)$	$0.0670(2)$	$0.0335(4)$
N4	$0.32460(13)$	$0.02896(15)$	$0.1891(2)$	$0.0257(3)$
C3	$0.27659(12)$	$0.1113(2)$	$0.24775(19)$	$0.0260(3)$
H3A	0.3077	0.1781	0.3332	0.031^{*}
N1	$0.17630(10)$	$0.08377(16)$	$0.16511(16)$	$0.0205(2)$
C1	$0.03356(12)$	$0.27150(17)$	$0.04894(17)$	$0.0208(3)$
C2	$0.09014(12)$	$0.15137(19)$	$0.17684(18)$	$0.0222(3)$
H2A	0.1155	0.1969	0.2817	0.027^{*}
H2B	0.0418	0.0726	0.1669	0.027^{*}
N2	$0.16106(13)$	$-0.01883(19)$	$0.0519(2)$	$0.0329(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.01602(10)$	$0.02182(10)$	$0.01872(10)$	0.000	$0.00896(7)$	0.000
O1	$0.0187(5)$	$0.0290(6)$	$0.0235(5)$	$0.0055(4)$	$0.0058(4)$	$-0.0047(4)$
O2	$0.0526(9)$	$0.0394(7)$	$0.0324(7)$	$0.0211(6)$	$0.0295(7)$	$0.0158(6)$
N3	$0.0222(8)$	$0.0369(8)$	$0.0392(9)$	$0.0018(6)$	$0.0127(7)$	$-0.0138(6)$
N4	$0.0177(7)$	$0.0329(8)$	$0.0255(7)$	$0.0025(5)$	$0.0093(6)$	$-0.0021(5)$
C3	$0.0172(7)$	$0.0354(8)$	$0.0217(7)$	$0.0015(6)$	$0.0064(6)$	$-0.0056(6)$
N1	$0.0168(6)$	$0.0234(6)$	$0.0203(6)$	$0.0022(5)$	$0.0081(5)$	$-0.0005(5)$
C1	$0.0198(7)$	$0.0219(6)$	$0.0182(6)$	$0.0018(5)$	$0.0070(5)$	$-0.0005(5)$
C2	$0.0178(6)$	$0.0298(7)$	$0.0212(7)$	$0.0061(5)$	$0.0111(5)$	$0.0048(6)$
N2	$0.0222(8)$	$0.0339(8)$	$0.0397(10)$	$-0.0015(6)$	$0.0124(7)$	$-0.0153(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cd} 1-\mathrm{O}^{\text {i }}$	2.2595 (14)	N3-N4	1.356 (2)
$\mathrm{Cd} 1-\mathrm{O}^{\text {ii }}$	2.2595 (14)	N4-C3	1.311 (2)
Cd1-O1	2.3000 (13)	N4- $\mathrm{Cd1}^{\text {vi }}$	2.3678 (17)
$\mathrm{Cd} 1-\mathrm{Ol}^{\text {iii }}$	2.3000 (13)	C3-N1	1.326 (2)
$\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {iv }}$	2.3678 (17)	C3-H3A	0.9300
$\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {v }}$	2.3678 (17)	N1-N2	1.343 (2)
O1-C1	1.2502 (19)	N1-C2	1.4564 (19)
$\mathrm{O} 2-\mathrm{C} 1$	1.246 (2)	C1-C2	1.530 (2)
$\mathrm{O} 2-\mathrm{Cd} 1^{\text {ii }}$	2.2595 (14)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
N3-N2	1.289 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2^{\mathrm{ii}}$	87.75 (8)	C3-N4-Cd1 ${ }^{\text {vi }}$	129.09 (12)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 1$	171.86 (5)	N3-N4-Cd1 ${ }^{\text {vi }}$	124.37 (12)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 1$	93.23 (6)	N4-C3-N1	108.77 (15)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	93.23 (6)	N4-C3-H3A	125.6
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	171.86 (5)	N1-C3-H3A	125.6
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1^{\text {iii }}$	86.94 (7)	C3-N1-N2	108.25 (14)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {iv }}$	98.72 (6)	C3-N1-C2	130.32 (14)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {iv }}$	83.34 (6)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	121.34 (14)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 4^{\text {iv }}$	89.42 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	126.95 (15)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {iv }}$	88.52 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.22 (14)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 4^{\text {v }}$	83.34 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.79 (13)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{N} 4^{\mathrm{v}}$	98.72 (6)	N1-C2-C1	113.02 (12)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 4^{\text {v }}$	88.52 (5)	N1-C2-H2A	109.0
$\mathrm{O} 1^{\text {iiii- }} \mathrm{Cd} 1-\mathrm{N} 4^{\text {v }}$	89.42 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{N} 4^{\text {iv- }}$ - $\mathrm{Cd} 1-\mathrm{N} 4{ }^{\text {v }}$	177.16 (7)	N1-C2-H2B	109.0
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1$	126.41 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cd} 1{ }^{\text {ii }}$	125.12 (11)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.8
N2-N3-N4	110.14 (16)	N3-N2-N1	106.81 (15)
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{N} 3$	106.04 (15)		
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	12.4 (4)	$\mathrm{Cd} 1{ }^{\text {ii- }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	10.9 (3)

$\mathrm{O} 2 \mathrm{ii}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	109.08 (14)	$\mathrm{Cd} 1{ }^{\text {ii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	-171.73 (11)
O1 ${ }^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	-79.07 (13)	$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-108.22 (18)
$\mathrm{N} 4{ }^{\text {iv }}-\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	-167.62 (14)	$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	74.34 (18)
N4 ${ }^{\text {v }}$ - $\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{C} 1$	10.43 (14)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	100.0 (2)
N2-N3-N4-C3	0.1 (2)	N2-N1-C2-C1	-76.1 (2)
N2-N3-N4-Cd1 ${ }^{\text {vi }}$	-172.37 (14)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	11.3 (2)
N3-N4-C3-N1	-0.2 (2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-171.02 (14)
Cd1 ${ }^{\text {vi }}$-N4-C3-N1	171.87 (11)	N4-N3-N2-N1	-0.1 (2)
N4-C3-N1-N2	0.1 (2)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	0.0 (2)
N4-C3-N1-C2	-176.36 (15)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	176.83 (16)

Symmetry codes: (i) $x,-y+1, z+1 / 2$; (ii) $-x,-y+1,-z$; (iii) $-x, y,-z+1 / 2$; (iv) $x-1 / 2, y+1 / 2, z$; (v) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (vi) $x+1 / 2, y-1 / 2, z$.

