

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Dibromidobis(tri-p-tolylarsine)palladium(II)

Leo Kirsten, Gideon Steyl and Andreas Roodt*

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300. South Africa

Correspondence e-mail: roodta.sci@ufs.ac.za

Received 15 October 2009; accepted 21 October 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.046; data-to-parameter ratio = 19.3.

In the title compound, $[PdBr_2(C_{21}H_{21}As)_2]$, the Pd^{II} ion, residing on a centre of symmetry, is coordinated by two As donor atoms [Pd - As = 2.4276 (2) Å] and two Br anions [Pd - As = 2.4276 (2) Å]Br = 2.4194(2) Å] in a distorted square-planar geometry $[Br-Pd-As = 87.786 (7)^{\circ}]$. A weak intramolecular C-H...Br interaction occurs. In the crystal structure, intermolecular $C-H\cdots Br$ interactions are observed.

Related literature

For similar palladium complexes containing arsine and bromido derivatives, see: Kirsten & Steyl (2009) and references therein.

Experimental

Crystal data $[PdBr_2(C_{21}H_{21}As)_2]$

 $M_r = 962.82$

Mo $K\alpha$ radiation

 $0.35 \times 0.29 \times 0.26 \text{ mm}$

 $> 2\sigma(I)$

 $\mu = 4.29 \text{ mm}^{-1}$

T = 100 K

Z = 2

Monoclinic, $P2_1/n$ a = 10.2435 (4) Å b = 18.2139 (8) Å c = 10.7509 (4) Å $\beta = 106.185 \ (2)^{\circ}$ V = 1926.34 (13) Å³

Data collection

Bruker X8 APEXII 4K Kappa CCD	25665 measured reflections
diffractometer	4194 independent reflections
Absorption correction: multi-scan	3862 reflections with $I > 2\sigma($.
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.037$
$T_{\min} = 0.258, T_{\max} = 0.330$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	217 parameters
$vR(F^2) = 0.046$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
194 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C32 - H32 \cdots Br$ $C35 - H35 \cdots Br^{i}$	0.95 0.95	2.95 2.94	3.764 (2) 3.787 (2)	144 149
Summatur anda: (i)	1 1 3 -	1	51,67 (2)	1.0

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97.

Financial assistance from the University of the Free State is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2631).

References

Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.

Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Kirsten, L. & Steyl, G. (2009). Acta Cryst. E65, m218.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1449 [https://doi.org/10.1107/S1600536809043372]

trans-Dibromidobis(tri-p-tolylarsine)palladium(II)

Leo Kirsten, Gideon Steyl and Andreas Roodt

S1. Comment

In continuation of our study of square-planar palladium complexes containing arsine donor and bromido ligands (Kirsten & Steyl, 2009) we present here the title compound, (I).

The molecule of (I) (Fig. 1), is centrosymmetric, so pairs of equivalent arsino donor ligands lie *trans* to one another in a slightly distorted square-planar geometry, with the *cis* angles deviating from 90° by less than 3° [Br—Pd—As 87.786 (7)°]. A staggered conformation of the two triphenyl arsine moieties is observed, supported by the Br—Pd—As— C_n torsion angles of 160.99 (6)° (C_n =C11), 37.93 (6)° (C_n =C12) and -78.75 (6)° (C_n =C13), respectively.

Weak intra- and intermolecular hydrogen-bonding interactions are observed between the Br and the hydrogen atoms of the triphenylarsine ligands (Table 1). The effect of the methyl substituent on the *para* position of the phenyl rings has no significant effect on the crystallization mode of the complex when compared the the closely related triphenylarsine complex (Kirsten & Steyl, 2009). The rms error of 0.173 Å indicates the iso-structurality of the two complexes (the title complex superimposed with the triphenylarsine complex (Kirsten & Steyl, 2009) including all the atoms except the methyl substituents and the hydrogen atoms).

S2. Experimental

The title compound was synthesized by the addition of $As(pTol)_3$ (20 mg, 0.0059 mmol) to an acetone solution (15 cm³) of Pd(Br)₂(COD) (10 mg, 0.027 mmol). Crystals suitable for diffraction were obtained by slow evaporation of the reaction mixture (yield 18 mg, 71%).

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (i) -x,-y,-z].. H atoms have been omitted for clarity.

trans-Dibromidobis(tri-p-tolylarsine)palladium(II)

Crystal data

```
[PdBr_2(C_{21}H_{21}As)_2]
                                                                            F(000) = 952
M_r = 962.82
                                                                            D_{\rm x} = 1.660 {\rm Mg} {\rm m}^{-3}
Monoclinic, P2_1/n
                                                                            Mo K\alpha radiation, \lambda = 0.71073 Å
Hall symbol: -P 2yn
                                                                            Cell parameters from 6121 reflections
                                                                            \theta = 2.2 - 28.3^{\circ}
a = 10.2435 (4) Å
b = 18.2139 (8) Å
                                                                            \mu = 4.29 \text{ mm}^{-1}
c = 10.7509 (4) Å
                                                                            T = 100 \text{ K}
\beta = 106.185 \ (2)^{\circ}
                                                                            Cuboid, orange
V = 1926.34 (13) \text{ Å}^3
                                                                            0.35 \times 0.29 \times 0.26 mm
Z = 2
Data collection
Bruker X8 APEXII 4K Kappa CCD
                                                                            25665 measured reflections
                                                                            4194 independent reflections
   diffractometer
Radiation source: fine-focus sealed tube
                                                                            3862 reflections with I > 2\sigma(I)
                                                                            R_{\rm int} = 0.037
Graphite monochromator
Detector resolution: 512 pixels mm<sup>-1</sup>
                                                                            \theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}
\varphi and \omega scans
                                                                            h = -13 \rightarrow 13
Absorption correction: multi-scan
                                                                            k = -23 \rightarrow 23
   (SADABS; Bruker, 1998)
                                                                            l = -13 \rightarrow 13
T_{\rm min} = 0.258, \ T_{\rm max} = 0.330
```

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.019$	Hydrogen site location: riding model
$wR(F^2) = 0.046$	H-atom parameters constrained
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0166P)^2 + 1.4379P]$
4194 reflections	where $P = (F_o^2 + 2F_c^2)/3$
217 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.51 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Pd	0.5000	0.5000	0.5000	0.01048 (5)
Br	0.691876 (19)	0.534223 (11)	0.679231 (18)	0.01856 (6)
As	0.558809 (18)	0.601507 (10)	0.379536 (18)	0.01109 (5)
C11	0.48804 (19)	0.60151 (10)	0.19217 (18)	0.0137 (4)
C12	0.3492 (2)	0.61094 (11)	0.13618 (19)	0.0169 (4)
H12	0.2897	0.6156	0.1895	0.020*
C13	0.2977 (2)	0.61356 (11)	0.00240 (19)	0.0182 (4)
H13	0.2028	0.6201	-0.0351	0.022*
C14	0.3827 (2)	0.60683 (10)	-0.07756 (19)	0.0180 (4)
C15	0.5207 (2)	0.59546 (12)	-0.0208 (2)	0.0217 (4)
H15	0.5799	0.5890	-0.0741	0.026*
C16	0.5730 (2)	0.59340 (11)	0.1131 (2)	0.0192 (4)
H16	0.6677	0.5864	0.1507	0.023*
C141	0.3282 (2)	0.61492 (13)	-0.2220 (2)	0.0263 (5)
H14A	0.2321	0.6008	-0.2489	0.039*
H14B	0.3796	0.5831	-0.2648	0.039*
H14C	0.3372	0.6661	-0.2463	0.039*
C21	0.75110 (18)	0.61873 (10)	0.40559 (17)	0.0130 (4)
C22	0.8349 (2)	0.56148 (11)	0.3902 (2)	0.0191 (4)
H22	0.7985	0.5135	0.3716	0.023*
C23	0.9715 (2)	0.57403 (12)	0.4019 (2)	0.0204 (4)
H23	1.0270	0.5348	0.3883	0.025*
C24	1.02824 (18)	0.64337 (11)	0.43333 (18)	0.0170 (4)
C25	0.9446 (2)	0.69946 (11)	0.4526 (2)	0.0209 (4)
H25	0.9821	0.7468	0.4764	0.025*

C26	0.8071 (2)	0.68784 (11)	0.4377 (2)	0.0184 (4)	
H26	0.7512	0.7274	0.4496	0.022*	
C241	1.1756 (2)	0.65736 (13)	0.4429 (2)	0.0242 (5)	
H24A	1.2274	0.6118	0.4667	0.036*	
H24B	1.2115	0.6948	0.5092	0.036*	
H24C	1.1839	0.6747	0.3591	0.036*	
C31	0.50031 (18)	0.69617 (10)	0.42613 (18)	0.0130 (4)	
C32	0.51153 (19)	0.71093 (11)	0.55552 (19)	0.0172 (4)	
H32	0.5397	0.6734	0.6187	0.021*	
C33	0.4816 (2)	0.78054 (11)	0.5922 (2)	0.0202 (4)	
H33	0.4892	0.7901	0.6808	0.024*	
C34	0.44053 (19)	0.83669 (11)	0.5019 (2)	0.0186 (4)	
C35	0.4280 (2)	0.82081 (11)	0.3726 (2)	0.0201 (4)	
H35	0.3986	0.8581	0.3091	0.024*	
C36	0.45788 (19)	0.75149 (11)	0.33475 (19)	0.0168 (4)	
H36	0.4493	0.7418	0.2460	0.020*	
C341	0.4165 (2)	0.91285 (12)	0.5440 (2)	0.0267 (5)	
H34A	0.3483	0.9374	0.4741	0.040*	
H34B	0.5017	0.9407	0.5640	0.040*	
H34C	0.3838	0.9102	0.6213	0.040*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Pd	0.00953 (10)	0.01177 (10)	0.00909 (10)	-0.00197 (7)	0.00087 (7)	0.00047 (7)
Br	0.01676 (10)	0.02136 (11)	0.01337 (10)	-0.00722 (7)	-0.00274 (7)	0.00204 (7)
As	0.00983 (9)	0.01240 (9)	0.01058 (10)	-0.00086 (7)	0.00209 (7)	0.00121 (7)
C11	0.0163 (9)	0.0128 (9)	0.0115 (9)	-0.0005 (7)	0.0029 (7)	0.0016 (7)
C12	0.0168 (10)	0.0186 (10)	0.0159 (10)	-0.0005 (7)	0.0056 (8)	0.0011 (8)
C13	0.0161 (10)	0.0182 (10)	0.0174 (10)	-0.0022 (7)	0.0000 (8)	0.0012 (8)
C14	0.0259 (11)	0.0130 (9)	0.0129 (10)	-0.0014 (8)	0.0020 (8)	-0.0013 (7)
C15	0.0261 (11)	0.0246 (11)	0.0166 (10)	0.0047 (8)	0.0095 (8)	0.0003 (8)
C16	0.0165 (10)	0.0216 (10)	0.0193 (10)	0.0046 (8)	0.0047 (8)	0.0015 (8)
C141	0.0342 (12)	0.0291 (12)	0.0133 (10)	-0.0012 (9)	0.0029 (9)	-0.0010 (9)
C21	0.0109 (9)	0.0165 (9)	0.0107 (9)	0.0000 (7)	0.0018 (7)	0.0033 (7)
C22	0.0165 (10)	0.0158 (10)	0.0235 (11)	-0.0002 (7)	0.0032 (8)	-0.0012 (8)
C23	0.0149 (10)	0.0226 (11)	0.0237 (11)	0.0053 (8)	0.0051 (8)	0.0007 (9)
C24	0.0115 (9)	0.0263 (11)	0.0124 (9)	0.0000 (8)	0.0022 (7)	0.0052 (8)
C25	0.0184 (10)	0.0177 (10)	0.0264 (11)	-0.0060 (8)	0.0062 (8)	-0.0007 (9)
C26	0.0153 (9)	0.0156 (10)	0.0251 (11)	0.0009(7)	0.0069 (8)	-0.0010 (8)
C241	0.0128 (10)	0.0345 (12)	0.0245 (11)	-0.0010 (8)	0.0037 (8)	0.0066 (9)
C31	0.0087 (8)	0.0140 (9)	0.0162 (9)	-0.0007 (7)	0.0030 (7)	-0.0008 (7)
C32	0.0170 (9)	0.0207 (10)	0.0146 (10)	-0.0018 (7)	0.0058 (7)	0.0014 (8)
C33	0.0198 (10)	0.0243 (11)	0.0175 (10)	-0.0034 (8)	0.0072 (8)	-0.0045 (8)
C34	0.0115 (9)	0.0195 (10)	0.0254 (11)	-0.0006 (7)	0.0063 (8)	-0.0029 (8)
C35	0.0195 (10)	0.0192 (10)	0.0207 (10)	0.0040 (8)	0.0042 (8)	0.0030 (8)
C36	0.0175 (10)	0.0191 (10)	0.0130 (9)	0.0010 (7)	0.0029 (7)	0.0005 (8)
C341	0.0272 (12)	0.0227 (11)	0.0317 (13)	0.0010 (9)	0.0107 (10)	-0.0056 (9)

Geometric parameters (Å, °)

Pd—Br ⁱ	2.4194 (2)	C23—C24	1.392 (3)	
Pd—Br	2.4194 (2)	С23—Н23	0.9500	
Pd—As ⁱ	2.4276 (2)	C24—C25	1.385 (3)	
Pd—As	2.4276 (2)	C24—C241	1.506 (3)	
As—C21	1.9363 (18)	C25—C26	1.389 (3)	
As—C31	1.9365 (18)	C25—H25	0.9500	
As—C11	1.9414 (19)	C26—H26	0.9500	
C11—C16	1.383 (3)	C241—H24A	0.9800	
C11—C12	1.392 (3)	C241—H24B	0.9800	
C12—C13	1.388 (3)	C241—H24C	0.9800	
С12—Н12	0.9500	C31—C36	1.390 (3)	
C13—C14	1.389 (3)	C31—C32	1.390 (3)	
С13—Н13	0.9500	C32—C33	1.387 (3)	
C14—C15	1.390 (3)	C32—H32	0.9500	
C14—C141	1.503 (3)	C33—C34	1.392 (3)	
C15—C16	1.390 (3)	С33—Н33	0.9500	
C15—H15	0.9500	C34—C35	1.390 (3)	
C16—H16	0.9500	C34—C341	1.501 (3)	
C141—H14A	0.9800	C35—C36	1.386 (3)	
C141—H14B	0.9800	C35—H35	0.9500	
C141—H14C	0.9800	С36—Н36	0.9500	
C21—C26	1.386 (3)	C341—H34A	0.9800	
C21—C22	1.389 (3)	C341—H34B	0.9800	
C22—C23	1.389 (3)	C341—H34C	0.9800	
C22—H22	0.9500			
Br ⁱ —Pd—Br	180.0	C22—C23—C24	120.89 (19)	
Br ⁱ —Pd—As ⁱ	87.786 (7)	C22—C23—H23	119.6	
Br—Pd—As ⁱ	92.214 (7)	C24—C23—H23	119.6	
Br ⁱ —Pd—As	92.214 (7)	C25—C24—C23	118.14 (18)	
Br—Pd—As	87.786 (7)	C25—C24—C241	120.99 (19)	
As ⁱ —Pd—As	180.000 (6)	C23—C24—C241	120.86 (19)	
C21—As—C31	101.19 (8)	C24—C25—C26	121.34 (19)	
C21—As—C11	102.75 (8)	C24—C25—H25	119.3	
C31—As—C11	102.44 (8)	C26—C25—H25	119.3	
C21—As—Pd	116.10 (5)	C21—C26—C25	120.17 (18)	
C31—As—Pd	113.54 (6)	C21—C26—H26	119.9	
C11—As—Pd	118.50 (5)	C25—C26—H26	119.9	
C16-C11-C12	119.31 (18)	C24—C241—H24A	109.5	
C16-C11-As	121.36 (14)	C24—C241—H24B	109.5	
C12—C11—As	119.32 (14)	H24A—C241—H24B	109.5	
C13—C12—C11	119.97 (18)	C24—C241—H24C	109.5	
С13—С12—Н12	120.0	H24A—C241—H24C	109.5	
С11—С12—Н12	120.0	H24B—C241—H24C	109.5	
C12—C13—C14	121.04 (18)	C36—C31—C32	119.32 (18)	
С12—С13—Н13	119.5	C36—C31—As	121.41 (14)	

C14—C13—H13	119.5	C32—C31—As	119.07 (14)
C13—C14—C15	118.55 (18)	C33—C32—C31	119.87 (19)
C13—C14—C141	120.90 (19)	С33—С32—Н32	120.1
C15—C14—C141	120.49 (19)	С31—С32—Н32	120.1
C14—C15—C16	120.6 (2)	C32—C33—C34	121.40 (19)
C14—C15—H15	119.7	С32—С33—Н33	119.3
C16—C15—H15	119.7	С34—С33—Н33	119.3
C11—C16—C15	120.46 (19)	C35—C34—C33	118.05 (19)
C11—C16—H16	119.8	C35—C34—C341	121.11 (19)
C15—C16—H16	119.8	C33—C34—C341	120.79 (19)
C14—C141—H14A	109.5	$C_{36} - C_{35} - C_{34}$	121 10 (19)
C14—C141—H14B	109.5	С36—С35—Н35	119.4
H14A—C141—H14B	109.5	C34—C35—H35	119.4
C14—C141—H14C	109.5	C_{35} C_{36} C_{31}	120 26 (18)
H14A—C141—H14C	109.5	C35—C36—H36	119.9
H14B— $C141$ — $H14C$	109.5	C31—C36—H36	119.9
$C_{26} = C_{21} = C_{22}$	119.00 (17)	C34—C341—H34A	109.5
$C_{26} = C_{21} = A_{25}$	121.09(14)	C34—C341—H34B	109.5
$C_{20} = C_{21} = A_{3}$	119 90 (14)	H34A_C341_H34B	109.5
C_{23} C_{22} C_{21} C_{21}	120 40 (19)	C_{34} C_{341} H_{34C}	109.5
C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	110.8	$H_{34} = C_{341} = H_{34C}$	109.5
C_{21} C_{22} H_{22}	119.8	H34B_C341_H34C	109.5
021-022-1122	117.0		109.5
Br ⁱ —Pd—As—C21	-142.07 (6)	Pd—As—C21—C22	52.48 (17)
Br—Pd—As—C21	37.93 (6)	C26—C21—C22—C23	-2.5 (3)
Br ⁱ —Pd—As—C31	101.25 (6)	As-C21-C22-C23	176.57 (15)
Br—Pd—As—C31	-78.75 (6)	C21—C22—C23—C24	2.1 (3)
Br ⁱ —Pd—As—C11	-19.01 (6)	C22—C23—C24—C25	0.0 (3)
Br—Pd—As—C11	160.99 (6)	C22—C23—C24—C241	-178.57 (19)
C21—As—C11—C16	16.75 (17)	C23—C24—C25—C26	-1.7 (3)
C31—As—C11—C16	121.44 (16)	C241—C24—C25—C26	176.82 (19)
Pd—As—C11—C16	-112.75 (15)	C22—C21—C26—C25	0.8 (3)
C21—As—C11—C12	-162.31(15)	As-C21-C26-C25	-178.28 (15)
C31—As—C11—C12	-57.62 (16)	C24—C25—C26—C21	1.4 (3)
Pd—As—C11—C12	68.20 (16)	C21—As—C31—C36	89.24 (16)
C16—C11—C12—C13	-1.3 (3)	$C_{11} - A_{s} - C_{31} - C_{36}$	-16.66 (17)
As - C11 - C12 - C13	177.82 (14)	Pd—As—C31—C36	-145.64(14)
C11—C12—C13—C14	0.1 (3)	$C_{21} - A_{8} - C_{31} - C_{32}$	-85.50 (16)
C12—C13—C14—C15	1.6 (3)	$C_{11} = A_{s} = C_{31} = C_{32}$	168.60 (15)
C12—C13—C14—C141	-175.71 (19)	Pd—As—C31—C32	39.62 (16)
C_{13} C_{14} C_{15} C_{16}	-2.2(3)	$C_{36} - C_{31} - C_{32} - C_{33}$	-0.6(3)
C_{141} $-C_{14}$ $-C_{15}$ $-C_{16}$	175.19 (19)	As-C31-C32-C33	174.29 (14)
C12—C11—C16—C15	0.7 (3)	$C_{31} - C_{32} - C_{33} - C_{34}$	-0.2(3)
As-C11-C16-C15	-178.33 (15)	C_{32} C_{33} C_{34} C_{35}	1.1 (3)
C14-C15-C16-C11	1.0 (3)	C_{32} C_{33} C_{34} C_{341}	-176.32 (19)
C_{31} —As— C_{21} — C_{26}	-5.08 (18)	C_{33} C_{34} C_{35} C_{36}	-1.1(3)
$C_{11} - A_{8} - C_{21} - C_{26}$	100.58 (17)	$C_{341} - C_{34} - C_{35} - C_{36}$	176.23 (19)
Pd = As = C21 = C26	-12846(15)	C_{34} C_{35} C_{36} C_{31}	0.4 (3)
14 /16 021 020	120.10 (13)	031 033 030-031	U.T (3)

supporting information

C31—As—C21—C22	175.86 (16)	C32—C31—C36—C35	0.5 (3)
C11—As—C21—C22	-78.48 (16)	As-C31-C36-C35	-174.25 (15)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C32—H32…Br	0.95	2.95	3.764 (2)	144
C35—H35····Br ⁱⁱ	0.95	2.94	3.787 (2)	149

Symmetry code: (ii) x-1/2, -y+3/2, z-1/2.