metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­bromidobis(tri-p-tolyl­arsine)palladium(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: roodta.sci@ufs.ac.za

(Received 15 October 2009; accepted 21 October 2009; online 28 October 2009)

In the title compound, [PdBr2(C21H21As)2], the PdII ion, residing on a centre of symmetry, is coordinated by two As donor atoms [Pd—As = 2.4276 (2) Å] and two Br anions [Pd—Br = 2.4194 (2) Å] in a distorted square-planar geometry [Br—Pd—As = 87.786 (7)°]. A weak intra­molecular C—H⋯Br inter­action occurs. In the crystal structure, inter­molecular C—H⋯Br inter­actions are observed.

Related literature

For similar palladium complexes containing arsine and bromido derivatives, see: Kirsten & Steyl (2009[Kirsten, L. & Steyl, G. (2009). Acta Cryst. E65, m218.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C21H21As)2]

  • Mr = 962.82

  • Monoclinic, P 21 /n

  • a = 10.2435 (4) Å

  • b = 18.2139 (8) Å

  • c = 10.7509 (4) Å

  • β = 106.185 (2)°

  • V = 1926.34 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 100 K

  • 0.35 × 0.29 × 0.26 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.258, Tmax = 0.330

  • 25665 measured reflections

  • 4194 independent reflections

  • 3862 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.046

  • S = 1.04

  • 4194 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯Br 0.95 2.95 3.764 (2) 144
C35—H35⋯Bri 0.95 2.94 3.787 (2) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our study of square-planar palladium complexes containing arsine donor and bromido ligands (Kirsten & Steyl, 2009) we present here the title compound, (I).

The molecule of (I) (Fig. 1), is centrosymmetric, so pairs of equivalent arsino donor ligands lie trans to one another in a slightly distorted square-planar geometry, with the cis angles deviating from 90° by less than 3° [Br—Pd—As 87.786 (7)°]. A staggered conformation of the two triphenyl arsine moieties is observed, supported by the Br—Pd—As—Cn torsion angles of 160.99 (6)° (Cn=C11), 37.93 (6)° (Cn=C12) and -78.75 (6)° (Cn=C13), respectively.

Weak intra- and intermolecular hydrogen-bonding interactions are observed between the Br and the hydrogen atoms of the triphenylarsine ligands (Table 1). The effect of the methyl substituent on the para position of the phenyl rings has no significant effect on the crystallization mode of the complex when compared the the closely related triphenylarsine complex (Kirsten & Steyl, 2009). The rms error of 0.173 Å indicates the iso-structurality of the two complexes (the title complex superimposed with the triphenylarsine complex (Kirsten & Steyl, 2009) including all the atoms except the methyl substituents and the hydrogen atoms).

Related literature top

For similar palladium complexes containing arsine and bromido derivatives, see: Kirsten & Steyl (2009) and references therein.

Experimental top

The title compound was synthesized by the addition of As(pTol)3 (20 mg, 0.0059 mmol) to an acetone solution (15 cm3) of Pd(Br)2(COD) (10 mg, 0.027 mmol). Crystals suitable for diffraction were obtained by slow evaporation of the reaction mixture (yield 18 mg, 71%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Structure description top

In continuation of our study of square-planar palladium complexes containing arsine donor and bromido ligands (Kirsten & Steyl, 2009) we present here the title compound, (I).

The molecule of (I) (Fig. 1), is centrosymmetric, so pairs of equivalent arsino donor ligands lie trans to one another in a slightly distorted square-planar geometry, with the cis angles deviating from 90° by less than 3° [Br—Pd—As 87.786 (7)°]. A staggered conformation of the two triphenyl arsine moieties is observed, supported by the Br—Pd—As—Cn torsion angles of 160.99 (6)° (Cn=C11), 37.93 (6)° (Cn=C12) and -78.75 (6)° (Cn=C13), respectively.

Weak intra- and intermolecular hydrogen-bonding interactions are observed between the Br and the hydrogen atoms of the triphenylarsine ligands (Table 1). The effect of the methyl substituent on the para position of the phenyl rings has no significant effect on the crystallization mode of the complex when compared the the closely related triphenylarsine complex (Kirsten & Steyl, 2009). The rms error of 0.173 Å indicates the iso-structurality of the two complexes (the title complex superimposed with the triphenylarsine complex (Kirsten & Steyl, 2009) including all the atoms except the methyl substituents and the hydrogen atoms).

For similar palladium complexes containing arsine and bromido derivatives, see: Kirsten & Steyl (2009) and references therein.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (i) -x,-y,-z].. H atoms have been omitted for clarity.
trans-Dibromidobis(tri-p-tolylarsine)palladium(II) top
Crystal data top
[PdBr2(C21H21As)2]F(000) = 952
Mr = 962.82Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6121 reflections
a = 10.2435 (4) Åθ = 2.2–28.3°
b = 18.2139 (8) ŵ = 4.29 mm1
c = 10.7509 (4) ÅT = 100 K
β = 106.185 (2)°Cuboid, orange
V = 1926.34 (13) Å30.35 × 0.29 × 0.26 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4194 independent reflections
Radiation source: fine-focus sealed tube3862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 512 pixels mm-1θmax = 27.0°, θmin = 2.2°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 2323
Tmin = 0.258, Tmax = 0.330l = 1313
25665 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: riding model
wR(F2) = 0.046H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.4379P]
where P = (Fo2 + 2Fc2)/3
4194 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[PdBr2(C21H21As)2]V = 1926.34 (13) Å3
Mr = 962.82Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.2435 (4) ŵ = 4.29 mm1
b = 18.2139 (8) ÅT = 100 K
c = 10.7509 (4) Å0.35 × 0.29 × 0.26 mm
β = 106.185 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3862 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.330Rint = 0.037
25665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
4194 reflectionsΔρmin = 0.44 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50000.50000.50000.01048 (5)
Br0.691876 (19)0.534223 (11)0.679231 (18)0.01856 (6)
As0.558809 (18)0.601507 (10)0.379536 (18)0.01109 (5)
C110.48804 (19)0.60151 (10)0.19217 (18)0.0137 (4)
C120.3492 (2)0.61094 (11)0.13618 (19)0.0169 (4)
H120.28970.61560.18950.020*
C130.2977 (2)0.61356 (11)0.00240 (19)0.0182 (4)
H130.20280.62010.03510.022*
C140.3827 (2)0.60683 (10)0.07756 (19)0.0180 (4)
C150.5207 (2)0.59546 (12)0.0208 (2)0.0217 (4)
H150.57990.58900.07410.026*
C160.5730 (2)0.59340 (11)0.1131 (2)0.0192 (4)
H160.66770.58640.15070.023*
C1410.3282 (2)0.61492 (13)0.2220 (2)0.0263 (5)
H14A0.23210.60080.24890.039*
H14B0.37960.58310.26480.039*
H14C0.33720.66610.24630.039*
C210.75110 (18)0.61873 (10)0.40559 (17)0.0130 (4)
C220.8349 (2)0.56148 (11)0.3902 (2)0.0191 (4)
H220.79850.51350.37160.023*
C230.9715 (2)0.57403 (12)0.4019 (2)0.0204 (4)
H231.02700.53480.38830.025*
C241.02824 (18)0.64337 (11)0.43333 (18)0.0170 (4)
C250.9446 (2)0.69946 (11)0.4526 (2)0.0209 (4)
H250.98210.74680.47640.025*
C260.8071 (2)0.68784 (11)0.4377 (2)0.0184 (4)
H260.75120.72740.44960.022*
C2411.1756 (2)0.65736 (13)0.4429 (2)0.0242 (5)
H24A1.22740.61180.46670.036*
H24B1.21150.69480.50920.036*
H24C1.18390.67470.35910.036*
C310.50031 (18)0.69617 (10)0.42613 (18)0.0130 (4)
C320.51153 (19)0.71093 (11)0.55552 (19)0.0172 (4)
H320.53970.67340.61870.021*
C330.4816 (2)0.78054 (11)0.5922 (2)0.0202 (4)
H330.48920.79010.68080.024*
C340.44053 (19)0.83669 (11)0.5019 (2)0.0186 (4)
C350.4280 (2)0.82081 (11)0.3726 (2)0.0201 (4)
H350.39860.85810.30910.024*
C360.45788 (19)0.75149 (11)0.33475 (19)0.0168 (4)
H360.44930.74180.24600.020*
C3410.4165 (2)0.91285 (12)0.5440 (2)0.0267 (5)
H34A0.34830.93740.47410.040*
H34B0.50170.94070.56400.040*
H34C0.38380.91020.62130.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.00953 (10)0.01177 (10)0.00909 (10)0.00197 (7)0.00087 (7)0.00047 (7)
Br0.01676 (10)0.02136 (11)0.01337 (10)0.00722 (7)0.00274 (7)0.00204 (7)
As0.00983 (9)0.01240 (9)0.01058 (10)0.00086 (7)0.00209 (7)0.00121 (7)
C110.0163 (9)0.0128 (9)0.0115 (9)0.0005 (7)0.0029 (7)0.0016 (7)
C120.0168 (10)0.0186 (10)0.0159 (10)0.0005 (7)0.0056 (8)0.0011 (8)
C130.0161 (10)0.0182 (10)0.0174 (10)0.0022 (7)0.0000 (8)0.0012 (8)
C140.0259 (11)0.0130 (9)0.0129 (10)0.0014 (8)0.0020 (8)0.0013 (7)
C150.0261 (11)0.0246 (11)0.0166 (10)0.0047 (8)0.0095 (8)0.0003 (8)
C160.0165 (10)0.0216 (10)0.0193 (10)0.0046 (8)0.0047 (8)0.0015 (8)
C1410.0342 (12)0.0291 (12)0.0133 (10)0.0012 (9)0.0029 (9)0.0010 (9)
C210.0109 (9)0.0165 (9)0.0107 (9)0.0000 (7)0.0018 (7)0.0033 (7)
C220.0165 (10)0.0158 (10)0.0235 (11)0.0002 (7)0.0032 (8)0.0012 (8)
C230.0149 (10)0.0226 (11)0.0237 (11)0.0053 (8)0.0051 (8)0.0007 (9)
C240.0115 (9)0.0263 (11)0.0124 (9)0.0000 (8)0.0022 (7)0.0052 (8)
C250.0184 (10)0.0177 (10)0.0264 (11)0.0060 (8)0.0062 (8)0.0007 (9)
C260.0153 (9)0.0156 (10)0.0251 (11)0.0009 (7)0.0069 (8)0.0010 (8)
C2410.0128 (10)0.0345 (12)0.0245 (11)0.0010 (8)0.0037 (8)0.0066 (9)
C310.0087 (8)0.0140 (9)0.0162 (9)0.0007 (7)0.0030 (7)0.0008 (7)
C320.0170 (9)0.0207 (10)0.0146 (10)0.0018 (7)0.0058 (7)0.0014 (8)
C330.0198 (10)0.0243 (11)0.0175 (10)0.0034 (8)0.0072 (8)0.0045 (8)
C340.0115 (9)0.0195 (10)0.0254 (11)0.0006 (7)0.0063 (8)0.0029 (8)
C350.0195 (10)0.0192 (10)0.0207 (10)0.0040 (8)0.0042 (8)0.0030 (8)
C360.0175 (10)0.0191 (10)0.0130 (9)0.0010 (7)0.0029 (7)0.0005 (8)
C3410.0272 (12)0.0227 (11)0.0317 (13)0.0010 (9)0.0107 (10)0.0056 (9)
Geometric parameters (Å, º) top
Pd—Bri2.4194 (2)C23—C241.392 (3)
Pd—Br2.4194 (2)C23—H230.9500
Pd—Asi2.4276 (2)C24—C251.385 (3)
Pd—As2.4276 (2)C24—C2411.506 (3)
As—C211.9363 (18)C25—C261.389 (3)
As—C311.9365 (18)C25—H250.9500
As—C111.9414 (19)C26—H260.9500
C11—C161.383 (3)C241—H24A0.9800
C11—C121.392 (3)C241—H24B0.9800
C12—C131.388 (3)C241—H24C0.9800
C12—H120.9500C31—C361.390 (3)
C13—C141.389 (3)C31—C321.390 (3)
C13—H130.9500C32—C331.387 (3)
C14—C151.390 (3)C32—H320.9500
C14—C1411.503 (3)C33—C341.392 (3)
C15—C161.390 (3)C33—H330.9500
C15—H150.9500C34—C351.390 (3)
C16—H160.9500C34—C3411.501 (3)
C141—H14A0.9800C35—C361.386 (3)
C141—H14B0.9800C35—H350.9500
C141—H14C0.9800C36—H360.9500
C21—C261.386 (3)C341—H34A0.9800
C21—C221.389 (3)C341—H34B0.9800
C22—C231.389 (3)C341—H34C0.9800
C22—H220.9500
Bri—Pd—Br180.0C22—C23—C24120.89 (19)
Bri—Pd—Asi87.786 (7)C22—C23—H23119.6
Br—Pd—Asi92.214 (7)C24—C23—H23119.6
Bri—Pd—As92.214 (7)C25—C24—C23118.14 (18)
Br—Pd—As87.786 (7)C25—C24—C241120.99 (19)
Asi—Pd—As180.000 (6)C23—C24—C241120.86 (19)
C21—As—C31101.19 (8)C24—C25—C26121.34 (19)
C21—As—C11102.75 (8)C24—C25—H25119.3
C31—As—C11102.44 (8)C26—C25—H25119.3
C21—As—Pd116.10 (5)C21—C26—C25120.17 (18)
C31—As—Pd113.54 (6)C21—C26—H26119.9
C11—As—Pd118.50 (5)C25—C26—H26119.9
C16—C11—C12119.31 (18)C24—C241—H24A109.5
C16—C11—As121.36 (14)C24—C241—H24B109.5
C12—C11—As119.32 (14)H24A—C241—H24B109.5
C13—C12—C11119.97 (18)C24—C241—H24C109.5
C13—C12—H12120.0H24A—C241—H24C109.5
C11—C12—H12120.0H24B—C241—H24C109.5
C12—C13—C14121.04 (18)C36—C31—C32119.32 (18)
C12—C13—H13119.5C36—C31—As121.41 (14)
C14—C13—H13119.5C32—C31—As119.07 (14)
C13—C14—C15118.55 (18)C33—C32—C31119.87 (19)
C13—C14—C141120.90 (19)C33—C32—H32120.1
C15—C14—C141120.49 (19)C31—C32—H32120.1
C14—C15—C16120.6 (2)C32—C33—C34121.40 (19)
C14—C15—H15119.7C32—C33—H33119.3
C16—C15—H15119.7C34—C33—H33119.3
C11—C16—C15120.46 (19)C35—C34—C33118.05 (19)
C11—C16—H16119.8C35—C34—C341121.11 (19)
C15—C16—H16119.8C33—C34—C341120.79 (19)
C14—C141—H14A109.5C36—C35—C34121.10 (19)
C14—C141—H14B109.5C36—C35—H35119.4
H14A—C141—H14B109.5C34—C35—H35119.4
C14—C141—H14C109.5C35—C36—C31120.26 (18)
H14A—C141—H14C109.5C35—C36—H36119.9
H14B—C141—H14C109.5C31—C36—H36119.9
C26—C21—C22119.00 (17)C34—C341—H34A109.5
C26—C21—As121.09 (14)C34—C341—H34B109.5
C22—C21—As119.90 (14)H34A—C341—H34B109.5
C23—C22—C21120.40 (19)C34—C341—H34C109.5
C23—C22—H22119.8H34A—C341—H34C109.5
C21—C22—H22119.8H34B—C341—H34C109.5
Bri—Pd—As—C21142.07 (6)Pd—As—C21—C2252.48 (17)
Br—Pd—As—C2137.93 (6)C26—C21—C22—C232.5 (3)
Bri—Pd—As—C31101.25 (6)As—C21—C22—C23176.57 (15)
Br—Pd—As—C3178.75 (6)C21—C22—C23—C242.1 (3)
Bri—Pd—As—C1119.01 (6)C22—C23—C24—C250.0 (3)
Br—Pd—As—C11160.99 (6)C22—C23—C24—C241178.57 (19)
C21—As—C11—C1616.75 (17)C23—C24—C25—C261.7 (3)
C31—As—C11—C16121.44 (16)C241—C24—C25—C26176.82 (19)
Pd—As—C11—C16112.75 (15)C22—C21—C26—C250.8 (3)
C21—As—C11—C12162.31 (15)As—C21—C26—C25178.28 (15)
C31—As—C11—C1257.62 (16)C24—C25—C26—C211.4 (3)
Pd—As—C11—C1268.20 (16)C21—As—C31—C3689.24 (16)
C16—C11—C12—C131.3 (3)C11—As—C31—C3616.66 (17)
As—C11—C12—C13177.82 (14)Pd—As—C31—C36145.64 (14)
C11—C12—C13—C140.1 (3)C21—As—C31—C3285.50 (16)
C12—C13—C14—C151.6 (3)C11—As—C31—C32168.60 (15)
C12—C13—C14—C141175.71 (19)Pd—As—C31—C3239.62 (16)
C13—C14—C15—C162.2 (3)C36—C31—C32—C330.6 (3)
C141—C14—C15—C16175.19 (19)As—C31—C32—C33174.29 (14)
C12—C11—C16—C150.7 (3)C31—C32—C33—C340.2 (3)
As—C11—C16—C15178.33 (15)C32—C33—C34—C351.1 (3)
C14—C15—C16—C111.0 (3)C32—C33—C34—C341176.32 (19)
C31—As—C21—C265.08 (18)C33—C34—C35—C361.1 (3)
C11—As—C21—C26100.58 (17)C341—C34—C35—C36176.23 (19)
Pd—As—C21—C26128.46 (15)C34—C35—C36—C310.4 (3)
C31—As—C21—C22175.86 (16)C32—C31—C36—C350.5 (3)
C11—As—C21—C2278.48 (16)As—C31—C36—C35174.25 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···Br0.952.953.764 (2)144
C35—H35···Brii0.952.943.787 (2)149
Symmetry code: (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[PdBr2(C21H21As)2]
Mr962.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.2435 (4), 18.2139 (8), 10.7509 (4)
β (°) 106.185 (2)
V3)1926.34 (13)
Z2
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.35 × 0.29 × 0.26
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.258, 0.330
No. of measured, independent and
observed [I > 2σ(I)] reflections
25665, 4194, 3862
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.04
No. of reflections4194
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···Br0.952.953.764 (2)144.2
C35—H35···Bri0.952.943.787 (2)149.4
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKirsten, L. & Steyl, G. (2009). Acta Cryst. E65, m218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds