Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine monohydrate

Huang Tang, Feng-Jie Cheng, Nan Li, Yan-Cheng Liu and **Zhen-Feng Chen***

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China Correspondence e-mail: chenzfgxnu@yahoo.com

Received 1 September 2009; accepted 23 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.118; data-to-parameter ratio = 6.4.

In the molecular structure of the title compound, also named penciclovir monohydrate, C₁₀H₁₅N₅O₃·H₂O, the 4-hydroxy-3hydroxymethylbut-1-yl group is connected to guanine through an N atom of the imidazole ring. Water molecules stabilize the molecular packing by forming O-H···O hydrogen bonds. A three-dimensional network is generated via intermolecular N-H···N, N-H···O, O-H···N and O-H···O hydrogen bonding.

Related literature

For the synthesis and biological properies of penciclovir, see: Harnden & Jarvest (1985a,b); Hodge et al.(1989); Boyd et al. (1987). For the medicinal applications of penciclovir, see: Abdel-Hag et al. (2006); Andrei et al. (2004); Schmid-Wendtner & Korting (2004); Smith et al. (2001).

Experimental

Crystal data

C10H15N5O3·H2O $M_r = 271.29$ Orthorhombic, Pna21 $a = 8.2020 (16) \dot{A}$ b = 13.889(3) Å c = 11.001 (2) Å

V = 1253.2 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 293 K $0.54\,\times\,0.45\,\times\,0.08~\text{mm}$

6830 measured reflections

 $R_{\rm int} = 0.075$

1193 independent reflections

1084 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.957, \ T_{\rm max} = 0.994$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.06	refinement
1193 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
186 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O4^{i}$	0.82	1.90	2.719 (3)	175
$N4 - H4 \cdots N2^{iii}$	0.82 0.96 (3)	2.24 1.86 (3)	3.052 (3) 2.816 (3)	169 176 (3)
$O4 - H4A \cdots O2^{iv}$ $O4 - H4B \cdots O1^{v}$	0.86(3) 0.84(3)	1.93(3) 2.11(5)	2.787(3) 2.842(3)	178 (3) 146 (3)
$N5-H5A\cdots O2^{i}$	0.86	2.11 (5)	2.898 (3)	146 (5)
$N5-H5B\cdotsO1^{m}$	0.86	2.11	2.931 (3)	159

Symmetry codes: (i) $-x, -y, z - \frac{1}{2}$; (ii) $-x, -y, z + \frac{1}{2}$; (iii) $-x, -y + 1, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2};$ (v) $-x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}.$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2005).

References

- Abdel-Hag, N., Chearskul, P., Al-Tatari, H. & Asmar, B. (2006). Indian J. Pediatr. 73, 313-321.
- Andrei, G., DeClercq, E. & Snoeck, R. (2004). Antiviral Res. 61, 181-187.
- Boyd, M. R., Bacon, T. H., Sutton, D. & Cole, M. (1987). Antimicrob. Agents Chemother. 31, 1238-1242.
- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harnden, M. R. & Jarvest, R. L. (1985a). Tetrahedron Lett. 26, 4265-4268.
- Harnden, M. R. & Jarvest, R. L. (1985b). Eur. Patent 0141927A.
- Hodge, R. A. V., Sutton, D., Boyd, M., Harnden, M. R. & Jarvest, R. L. (1989). Antimicrob. Agents Chemother. 33, 1765–1773.
- Schmid-Wendtner, M. H. & Korting, H. C. (2004). Skin Pharmacol. Physiol. 17 214-218
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, R. L., Morroni, J. & Wilcox, C. L. (2001). Antiviral Res. 52, 19-24.

supporting information

Acta Cryst. (2009). E65, o2878 [https://doi.org/10.1107/S1600536809043980] 9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine monohydrate

Huang Tang, Feng-Jie Cheng, Nan Li, Yan-Cheng Liu and Zhen-Feng Chen

S1. Comment

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine (I), known as penciclovir, is very effective for the treatment of herpes simplex virus, varicella zoster virus, Epstein–Barr virus, hepatitis virus and cytomegalovirus (Abdel-Hag *et al.*, 2006; Andrei *et al.*, 2004; Schmid-Wendtner and Korting, 2004; Smith *et al.*, 2001). The crystal lattice is built from molecules of (I) and waters of crystallization (Fig. 1). The guanine ring in (I) is coplanar wherein the C—N bond distances range from 1.312 (4) to 1.395 (5) Å. Three dimensional network is generated *via* N—H···N, N—H···O (2.816 (3)–2.931 (3) Å,), O—H···N(3.052 (3) Å), and O—H···O(2.719 (3)–2.842 (3) Å) hydrogen bonds from water and penciclovir molecules (Fig.2).

S2. Experimental

 $0.2 \text{ mmol } ZnCl_2 \text{ dissolved in 5 ml ethanol was added into 10 ml water containing 0.3 mmol pencicolvir. The mixture was stirred at room temperature for 5 h. The resulting solution was filtered. The filtrate was allowed to stay at ambient temperature for three weeks. Colourless block crystals were thus obtained. Yeild: 50%.$

S3. Refinement

The water H and N(4) bound H were found from a difference Fourier map and refined freely. Other H atoms were treated as riding, with C—H distances of 0.97 and 0.98 Å, N—H distances of 0.86 Å, these hydroxyl O—H distances of 0.82Å and were refined as riding with $U_{iso}(H) = 1.2U_{eq}$ (C, N and O). Since the Flack value is 0(2) even after inverting the structure, the title compound is weak anomalous scatterer and therefore, Flack is meaningless.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Three-dimensional structure of (I) along [001] direction. Hydrogen bonds are shown as dashed lines.

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine monohydrate

Crystal data

 $C_{10}H_{15}N_5O_3 \cdot H_2O$ $M_r = 271.29$ Orthorhombic, *Pna2*₁ Hall symbol: P 2c -2n a = 8.2020 (16) Å b = 13.889 (3) Å c = 11.001 (2) Å V = 1253.2 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.957, T_{\max} = 0.994$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.118$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
1193 reflections	and constrained refinement
186 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0604P)^2 + 0.3P]$
4 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.15 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

F(000) = 576

 $\theta = 3.4 - 25.2^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless $0.54 \times 0.45 \times 0.08 \text{ mm}$

6830 measured reflections 1193 independent reflections

 $\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

1084 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.075$

 $h = -8 \longrightarrow 9$ $k = -16 \longrightarrow 16$

 $l = -11 \rightarrow 13$

 $D_{\rm x} = 1.438 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1193 reflections

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
$\overline{C1}$	0.0269(5)	0 4750 (3)	0.0559(4)	0.0321 (9)	
C2	-0.0398(5)	0.3455 (3)	-0.0873(4)	0.0354 (9)	
C3	-0.0027 (5)	0.3211 (3)	0.3070 (4)	0.0374 (10)	
H3	-0.0018	0.3037	0.3886	0.045*	

C4	-0.0242 (5)	0.3102 (2)	0.1084 (4)	0.0311 (9)
C5	0.0189 (5)	-0.0152 (3)	0.2010 (4)	0.0375 (9)
Н5	-0.0741	-0.0176	0.1452	0.045*
C6	0.0126 (5)	0.4027 (3)	0.1448 (4)	0.0323 (9)
C7	-0.0735 (5)	0.1556 (3)	0.2279 (4)	0.0396 (10)
H7A	-0.1567	0.1390	0.1689	0.048*
H7B	-0.1185	0.1448	0.3083	0.048*
C8	0.0713 (5)	0.0901 (3)	0.2102 (5)	0.0383 (9)
H8A	0.1458	0.0977	0.2780	0.046*
H8B	0.1286	0.1084	0.1366	0.046*
С9	-0.0360 (6)	-0.0601 (3)	0.3195 (5)	0.0537 (13)
H9A	-0.1190	-0.0197	0.3563	0.064*
H9B	-0.0841	-0.1226	0.3032	0.064*
C10	0.1551 (5)	-0.0729 (3)	0.1431 (4)	0.0424 (11)
H10A	0.1837	-0.0435	0.0660	0.051*
H10B	0.2504	-0.0699	0.1952	0.051*
N1	-0.0334 (4)	0.2576 (2)	0.2150 (3)	0.0352 (8)
N2	0.0253 (4)	0.4092 (2)	0.2691 (3)	0.0356 (8)
N3	-0.0498 (4)	0.2759 (2)	-0.0038 (3)	0.0354 (8)
N4	-0.0054 (4)	0.4399 (2)	-0.0607 (4)	0.0359 (8)
N5	-0.0645 (5)	0.3259 (3)	-0.2040 (4)	0.0506 (10)
H5A	-0.0871	0.2680	-0.2263	0.061*
H5B	-0.0579	0.3710	-0.2573	0.061*
O1	0.0604 (4)	0.56135 (18)	0.0709 (3)	0.0396 (7)
O2	0.1144 (4)	-0.17160 (18)	0.1226 (3)	0.0485 (8)
H2	0.0219	-0.1752	0.0948	0.073*
O3	0.0950 (6)	-0.0711 (3)	0.4012 (4)	0.0760 (12)
H3A	0.0878	-0.1234	0.4354	0.114*
O4	0.1827 (4)	0.1915 (2)	0.5157 (4)	0.0518 (8)
H4	-0.017 (7)	0.489 (4)	-0.119 (6)	0.068 (17)*
H4A	0.243 (6)	0.234 (3)	0.549 (5)	0.069 (17)*
H4B	0.222 (9)	0.1362 (19)	0.527 (8)	0.14 (3)*

Atomic displacement parameters $(Å^2)$

U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
0.036 (2)	0.029 (2)	0.031 (2)	-0.0005 (16)	-0.0003 (17)	-0.0003 (17)
0.045 (2)	0.031 (2)	0.031 (2)	0.0021 (16)	0.0000 (18)	-0.0032 (19)
0.050(2)	0.032 (2)	0.030(2)	0.0036 (17)	0.0007 (19)	0.0023 (18)
0.040 (2)	0.0252 (18)	0.028 (2)	0.0044 (15)	-0.0008 (18)	-0.0019 (17)
0.043 (2)	0.031 (2)	0.039 (3)	-0.0014 (16)	0.000 (2)	0.003 (2)
0.041 (2)	0.0264 (18)	0.029 (2)	0.0027 (15)	-0.0015 (17)	-0.0031 (17)
0.051 (2)	0.0270 (19)	0.041 (3)	-0.0016 (17)	0.0036 (19)	0.0063 (19)
0.041 (2)	0.0288 (19)	0.045 (3)	-0.0016 (16)	-0.003 (2)	0.0041 (19)
0.059 (3)	0.042 (3)	0.060 (4)	-0.004 (2)	0.014 (3)	0.006 (2)
0.050(2)	0.033 (2)	0.045 (3)	-0.0005 (17)	0.008 (2)	0.0043 (19)
0.053 (2)	0.0217 (14)	0.031 (2)	0.0013 (13)	0.0017 (18)	0.0038 (15)
0.0508 (19)	0.0308 (16)	0.025 (2)	0.0009 (15)	0.0000 (16)	-0.0018 (15)
	U^{11} 0.036 (2) 0.045 (2) 0.050 (2) 0.040 (2) 0.043 (2) 0.041 (2) 0.051 (2) 0.041 (2) 0.059 (3) 0.059 (3) 0.050 (2) 0.053 (2) 0.0508 (19)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.036 (2) & 0.029 (2) \\ \hline 0.045 (2) & 0.031 (2) \\ \hline 0.050 (2) & 0.032 (2) \\ \hline 0.040 (2) & 0.0252 (18) \\ \hline 0.043 (2) & 0.031 (2) \\ \hline 0.041 (2) & 0.0264 (18) \\ \hline 0.051 (2) & 0.0270 (19) \\ \hline 0.041 (2) & 0.0288 (19) \\ \hline 0.059 (3) & 0.042 (3) \\ \hline 0.050 (2) & 0.033 (2) \\ \hline 0.053 (2) & 0.0217 (14) \\ \hline 0.0508 (19) & 0.0308 (16) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

N3	0.0492 (19)	0.0296 (17)	0.028 (2)	-0.0021 (15)	0.0012 (15)	-0.0013 (15)
N4	0.053 (2)	0.0274 (17)	0.028 (2)	-0.0031 (14)	0.0004 (16)	0.0017 (15)
N5	0.088 (3)	0.0347 (18)	0.029 (2)	-0.0071 (18)	-0.005 (2)	-0.0013 (16)
O1	0.0618 (18)	0.0260 (13)	0.0311 (18)	-0.0097 (13)	0.0054 (13)	-0.0011 (12)
O2	0.0553 (17)	0.0275 (13)	0.063 (2)	0.0027 (12)	0.0003 (17)	-0.0004 (15)
O2	0.0553 (17)	0.0275 (13)	0.063 (2)	0.0027 (12)	0.0003 (17)	-0.0004 (15)
O3	0.109 (3)	0.066 (2)	0.053 (3)	-0.018 (2)	-0.018 (2)	0.0180 (19)
O4	0.0547 (18)	0.0418 (17)	0.059 (2)	0.0001 (16)	-0.0074 (17)	0.0026 (16)

Geometric parameters (Å, °)

C1—O1	1.241 (5)	С7—С8	1.508 (6)
C1—N4	1.397 (6)	С7—Н7А	0.9700
C1—C6	1.407 (6)	С7—Н7В	0.9700
C2—N5	1.329 (6)	C8—H8A	0.9700
C2—N3	1.336 (5)	C8—H8B	0.9700
C2—N4	1.372 (5)	C9—O3	1.410 (6)
C3—N2	1.312 (5)	С9—Н9А	0.9700
C3—N1	1.366 (6)	С9—Н9В	0.9700
С3—Н3	0.9300	C10—O2	1.429 (5)
C4—N3	1.340 (5)	C10—H10A	0.9700
C4—C6	1.379 (5)	C10—H10B	0.9700
C4—N1	1.383 (5)	N4—H4	0.94 (6)
С5—С9	1.514 (7)	N5—H5A	0.8600
C5—C10	1.515 (6)	N5—H5B	0.8600
C5—C8	1.528 (5)	O2—H2	0.8200
С5—Н5	0.9800	O3—H3A	0.8200
C6—N2	1.375 (5)	O4—H4A	0.85 (5)
C7—N1	1.461 (5)	O4—H4B	0.84 (2)
O1—C1—N4	120.1 (4)	C7—C8—H8B	109.3
O1—C1—C6	128.0 (4)	C5—C8—H8B	109.3
N4—C1—C6	111.9 (3)	H8A—C8—H8B	108.0
N5—C2—N3	120.4 (4)	O3—C9—C5	111.5 (4)
N5—C2—N4	115.7 (4)	О3—С9—Н9А	109.3
N3—C2—N4	123.9 (4)	С5—С9—Н9А	109.3
N2—C3—N1	113.5 (4)	O3—C9—H9B	109.3
N2—C3—H3	123.2	С5—С9—Н9В	109.3
N1—C3—H3	123.2	H9A—C9—H9B	108.0
N3—C4—C6	129.3 (4)	O2—C10—C5	113.7 (3)
N3—C4—N1	125.8 (3)	O2—C10—H10A	108.8
C6—C4—N1	104.9 (4)	C5—C10—H10A	108.8
C9—C5—C10	111.3 (3)	O2-C10-H10B	108.8
C9—C5—C8	114.9 (4)	C5-C10-H10B	108.8
C10—C5—C8	109.1 (3)	H10A-C10-H10B	107.7
С9—С5—Н5	107.0	C3—N1—C4	106.1 (3)
С10—С5—Н5	107.0	C3—N1—C7	126.6 (4)
С8—С5—Н5	107.0	C4—N1—C7	127.3 (4)
N2—C6—C4	111.5 (4)	C3—N2—C6	104.0 (4)

N2—C6—C1	129.7 (4)	C2—N3—C4	111.5 (3)
C4—C6—C1	118.8 (4)	C2—N4—C1	124.6 (4)
N1—C7—C8	113.3 (3)	C2—N4—H4	122 (4)
N1—C7—H7A	108.9	C1—N4—H4	113 (4)
С8—С7—Н7А	108.9	C2—N5—H5A	120.0
N1—C7—H7B	108.9	C2—N5—H5B	120.0
С8—С7—Н7В	108.9	H5A—N5—H5B	120.0
H7A—C7—H7B	107.7	С10—О2—Н2	109.5
C7—C8—C5	111.4 (3)	С9—О3—НЗА	109.5
С7—С8—Н8А	109.3	H4A—O4—H4B	110 (3)
С5—С8—Н8А	109.3		
N3—C4—C6—N2	178.4 (4)	N3—C4—N1—C3	-178.5 (4)
N1-C4-C6-N2	-0.4(4)	C6-C4-N1-C3	0.3 (4)
N3-C4-C6-C1	0.1 (6)	N3—C4—N1—C7	-0.5(6)
N1-C4-C6-C1	-178.6(3)	C6-C4-N1-C7	178.3 (3)
01—C1—C6—N2	2.8 (7)	C8—C7—N1—C3	-98.2(5)
N4—C1—C6—N2	-175.9 (4)	C8—C7—N1—C4	84.2 (5)
O1—C1—C6—C4	-179.3 (4)	N1—C3—N2—C6	-0.2(5)
N4—C1—C6—C4	2.0 (5)	C4—C6—N2—C3	0.3 (5)
N1—C7—C8—C5	-169.4 (4)	C1—C6—N2—C3	178.4 (4)
C9—C5—C8—C7	-72.7 (5)	N5—C2—N3—C4	-178.8 (4)
C10—C5—C8—C7	161.5 (4)	N4—C2—N3—C4	0.8 (5)
C10—C5—C9—O3	56.0 (5)	C6—C4—N3—C2	-1.6 (6)
C8—C5—C9—O3	-68.6 (5)	N1—C4—N3—C2	176.9 (4)
C9—C5—C10—O2	56.1 (5)	N5-C2-N4-C1	-178.9 (4)
C8—C5—C10—O2	-176.0 (4)	N3—C2—N4—C1	1.4 (6)
N2-C3-N1-C4	-0.1 (4)	O1—C1—N4—C2	178.4 (4)
N2—C3—N1—C7	-178.1 (3)	C6-C1-N4-C2	-2.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O2—H2···O4 ⁱ	0.82	1.90	2.719 (3)	175
O3—H3 <i>A</i> ···N3 ⁱⁱ	0.82	2.24	3.052 (3)	169
N4—H4···N2 ⁱⁱⁱ	0.96 (3)	1.86 (3)	2.816 (3)	176 (3)
O4—H4A···O2 ^{iv}	0.86(3)	1.93 (3)	2.787 (3)	178 (3)
$O4$ — $H4B$ ···· $O1^{\vee}$	0.84 (3)	2.11 (5)	2.842 (3)	146 (3)
N5—H5 A ···O2 ⁱ	0.86	2.15	2.898 (3)	146
N5—H5 <i>B</i> ····O1 ⁱⁱⁱ	0.86	2.11	2.931 (3)	159

Symmetry codes: (i) -x, -y, z-1/2; (ii) -x, -y, z+1/2; (iii) -x, -y+1, z-1/2; (iv) -x+1/2, y+1/2, z+1/2; (v) -x+1/2, y-1/2, z+1/2.