organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-*tert*-butyl cyclohex-2-ene-1,4-diyl dicarbonate

Syed Nawazish Ali,^a* Mitchell A. Winnik,^b Sabira Begum^a and Alan J. Lough^b

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: syed.nawazish@gmail.com

Received 5 September 2009; accepted 3 October 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; R factor = 0.068; wR factor = 0.191; data-to-parameter ratio = 14.1.

In the title molecule, $C_{16}H_{26}O_6$, the central cyclohexene ring is in a half-chair conformation. The carbonyl groups are in a *trans* arrangement with respect to each other and the dihedral angle between the mean planes of the carbonate groups is 10.8 (2)°.

Related literature

For synthetic applications of the title compound, see: Ali, Ghafouri *et al.* (2008). For a related structures, see: Ali, Begum *et al.* (2008); Rademeyer *et al.* (2003).

Experimental

Crystal data $C_{16}H_{26}O_6$ $M_r = 314.37$

Monoclinic, $P2_1/c$ a = 12.6548 (11) Å b = 5.8862 (6) Å c = 23.126 (2) Å $\beta = 103.147 (5)^{\circ}$ $V = 1677.5 (3) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing 1995) $T_{min} = 0.865, T_{max} = 1.00$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.191$ S = 1.002893 reflections Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 150 K $0.10 \times 0.09 \times 0.02 \text{ mm}$

9313 measured reflections 2893 independent reflections 1407 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.101$

 $\begin{array}{l} 205 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.24 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.26 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge funding from the Higher Education Commission (HEC), Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2186).

References

 Ali, S., Begum, S., Winnik, M. A. & Lough, A. J. (2008). Acta Cryst. E64, o281.
 Ali, S., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. & Winnik, M. A. (2008). Eur. Polym. J. 44, 4129–4138.

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rademeyer, M., Barkhuizen, D. A. & Maguire, G. E. M. (2003). Acta Cryst. E59, 01650–01652.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2690 [https://doi.org/10.1107/S1600536809040343]

Di-tert-butyl cyclohex-2-ene-1,4-diyl dicarbonate

Syed Nawazish Ali, Mitchell A. Winnik, Sabira Begum and Alan J. Lough

S1. Comment

The title compound (I), is a new synthetic precursor of *trans*-cyclohex-2-ene-1,4-diol which has been synthesized for plasticizing purposes in order to break the crystallinity of a number of polyformals, and polycarbonates (Ali, Ghafouri *et al.*, 2008). The molecular structure of (I) is shown in Fig. 1. Unlike the crystal structure of *trans*-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate (Ali, Begum *et al.*, 2008) the central cyclohexene ring is completely ordered.

S2. Experimental

A reaction mixture containing *trans*-cyclohex-2-ene-1,4-diol (0.59 g, 5.18 mmol), di-*tert*-butyldicarbonate (2.26 g, 10.36 mmol) and *N*,*N*-dimethylaminopyridine (DMAP) (0.80 g, 6.57 mmol) was stirred in dry dichloromethane (80 ml) at room temperature in a 250 ml round-bottom flask (see Fig. 2). After 4 h, it was transferred to a separatory funnel (250 ml) and washed with CH₃COOH (30 ml *x* 3, 0.1 *M*) to remove the excess of DMAP. The lower organic phase was removed and the aqueous phase was washed with dichloromethane (30 ml *x* 2). All the dichloromethane solutions were combined, washed with deionized water (30 ml *x* 3), and dried over anhydrous MgSO₄. After filtration, the solvent was removed by rotary evaporator. The resulting oily product was dried in vacuum oven at room temperature to obtain di-*tert*-butyl-cyclohex-2-ene-1,4-diyl dicarbonate (I, 1.14 g, 69.5%). The product was then recrystallized from a mixture of CHCl₃: MeOH (1:1) to afford needle-shaped crystals by slow evaporation of the solvent at room temperature. In addition to the X-ray structure determination, the structure was also confirmed by comparing the ¹H and ¹³C NMR data with a related t-Boc protected compound (Rademeyer *et al.*, 2003). ¹H NMR (CDCl₃, p.p.m., relative to TMS, 400 MHz): 5.98 (2*H*, br.s, CH=CH), 5.16 (2*H*, m, CH—O), 2.08 (2*H*, m, CH₂—CH₂), 1.80 (2*H*, m, CH₂—CH₂), 1.48 (18*H*, s, CH₃); ¹³C NMR (CDCl₃, p.p.m., relative to TMS, 100 MHz): 168.4 (C=O), 129.1 (CH=CH), 71.4 (2*H*, CH—O), 66.3 (C(CH₃)₃O), 25.2 (CH₂), 28.0 (CH₃)

S3. Refinement

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.95 to 1.00 Å and included in the refinement in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

The molecular structure of the title compound showing 30% probability ellipsoids.

Figure 2

Preparation of the title compound.

Di-tert-butyl cyclohex-2-ene-1,4-diyl dicarbonate

Crystal data

 $C_{16}H_{26}O_6$ $M_r = 314.37$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 12.6548 (11) Å b = 5.8862 (6) Å *c* = 23.126 (2) Å $\beta = 103.147 (5)^{\circ}$ V = 1677.5 (3) Å³ Z = 4

Data collection

Nonius KappaCCD	9313 measured reflections
diffractometer	2893 independent reflections
Radiation source: fine-focus sealed tube	1407 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.101$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
φ scans and ω scans with κ offsets	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -6 \rightarrow 6$
(SORTAV; Blessing 1995)	$l = -27 \rightarrow 27$
$T_{\min} = 0.865, \ T_{\max} = 1.00$	

F(000) = 680 $D_{\rm x} = 1.245 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9313 reflections $\theta = 2.7 - 25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.10\times0.09\times0.02~mm$

Acta Cryst. (2009). E65, o2690

Refinement

Secondary atom site location: difference Fourier
map Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.24$ e Å ⁻³ $\Delta ho_{ m min} = -0.26$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.3871 (2)	-0.2647 (5)	0.54229 (13)	0.0663 (10)
02	0.28611 (18)	-0.5049 (4)	0.48553 (11)	0.0489 (7)
O3	0.2107 (2)	-0.2869 (4)	0.54593 (11)	0.0503 (7)
O4	0.62164 (19)	0.3112 (4)	0.70717 (12)	0.0558 (8)
O5	0.72570 (17)	0.5487 (4)	0.76245 (10)	0.0448 (7)
O6	0.80169 (19)	0.2813 (4)	0.71320 (11)	0.0460 (7)
C1	0.4089 (3)	-0.0972 (7)	0.59017 (18)	0.0585 (12)
H1A	0.3386	-0.0373	0.5968	0.070*
C2	0.4714 (4)	0.0915 (7)	0.57122 (18)	0.0634 (13)
H2A	0.4502	0.1443	0.5314	0.076*
C3	0.5543 (4)	0.1881 (6)	0.60687 (19)	0.0620 (12)
H3A	0.5873	0.3142	0.5924	0.074*
C4	0.5991 (3)	0.1123 (6)	0.66812 (17)	0.0494 (11)
H4A	0.6678	0.0259	0.6699	0.059*
C5	0.5203 (3)	-0.0339 (7)	0.69112 (17)	0.0589 (12)
H5A	0.5584	-0.1110	0.7280	0.071*
H5B	0.4624	0.0625	0.7007	0.071*
C6	0.4707 (4)	-0.2079 (7)	0.64578 (17)	0.0627 (12)
H6A	0.5287	-0.3047	0.6365	0.075*
H6B	0.4213	-0.3065	0.6622	0.075*
C7	0.2865 (3)	-0.3486 (6)	0.52697 (16)	0.0449 (10)
C8	0.1825 (3)	-0.6087 (6)	0.45306 (15)	0.0405 (9)
С9	0.1263 (3)	-0.7330 (6)	0.49534 (16)	0.0555 (12)
H9A	0.1044	-0.6234	0.5223	0.083*
H9B	0.1764	-0.8441	0.5185	0.083*

H9C	0.0620	-0.8117	0.4725	0.083*
C10	0.1114 (3)	-0.4266 (6)	0.41818 (16)	0.0475 (10)
H10A	0.0908	-0.3174	0.4457	0.071*
H10B	0.0459	-0.4964	0.3938	0.071*
H10C	0.1513	-0.3480	0.3924	0.071*
C11	0.2218 (3)	-0.7736 (6)	0.41206 (17)	0.0551 (12)
H11A	0.2735	-0.8804	0.4357	0.083*
H11B	0.2575	-0.6891	0.3853	0.083*
H11C	0.1598	-0.8577	0.3886	0.083*
C12	0.7258 (3)	0.3718 (6)	0.72638 (15)	0.0387 (9)
C13	0.8304 (3)	0.6424 (6)	0.79714 (15)	0.0389 (9)
C14	0.8905 (3)	0.4608 (6)	0.83795 (16)	0.0506 (11)
H14A	0.9138	0.3407	0.8142	0.076*
H14B	0.8425	0.3961	0.8614	0.076*
H14C	0.9543	0.5278	0.8646	0.076*
C15	0.8964 (3)	0.7397 (6)	0.75658 (16)	0.0441 (10)
H15A	0.8539	0.8562	0.7312	0.066*
H15B	0.9155	0.6184	0.7318	0.066*
H15C	0.9628	0.8081	0.7804	0.066*
C16	0.7894 (3)	0.8280 (6)	0.83263 (16)	0.0498 (10)
H16A	0.7443	0.9354	0.8053	0.075*
H16B	0.8513	0.9086	0.8572	0.075*
H16C	0.7461	0.7591	0.8582	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0400 (15)	0.080 (2)	0.074 (2)	-0.0034 (15)	0.0022 (14)	-0.0451 (17)
O2	0.0407 (14)	0.0519 (16)	0.0495 (16)	-0.0001 (12)	0.0006 (12)	-0.0191 (13)
O3	0.0462 (15)	0.0593 (18)	0.0468 (18)	-0.0065 (13)	0.0135 (14)	-0.0159 (13)
O4	0.0369 (14)	0.0573 (17)	0.071 (2)	-0.0031 (13)	0.0078 (13)	-0.0341 (15)
05	0.0377 (14)	0.0478 (15)	0.0467 (16)	-0.0061 (12)	0.0049 (12)	-0.0142 (13)
O6	0.0397 (14)	0.0440 (15)	0.0536 (18)	0.0009 (12)	0.0090 (13)	-0.0072 (13)
C1	0.043 (2)	0.067 (3)	0.060 (3)	-0.002(2)	0.000(2)	-0.034 (2)
C2	0.090 (3)	0.047 (3)	0.043 (3)	0.003 (2)	-0.005 (2)	-0.002 (2)
C3	0.098 (3)	0.039 (2)	0.054 (3)	-0.014 (2)	0.027 (3)	-0.012 (2)
C4	0.043 (2)	0.052 (2)	0.053 (3)	-0.0016 (19)	0.0120 (19)	-0.022 (2)
C5	0.073 (3)	0.052 (2)	0.048 (3)	-0.011 (2)	0.006 (2)	0.003 (2)
C6	0.086 (3)	0.057 (3)	0.048 (3)	-0.028 (2)	0.022 (2)	-0.009(2)
C7	0.050 (2)	0.045 (2)	0.035 (2)	0.001 (2)	0.000(2)	-0.0070 (19)
C8	0.041 (2)	0.041 (2)	0.035 (2)	-0.0049 (17)	-0.0024 (17)	-0.0031 (17)
C9	0.065 (3)	0.052 (3)	0.045 (3)	-0.007(2)	0.003 (2)	0.001 (2)
C10	0.048 (2)	0.051 (2)	0.040(2)	-0.0012 (19)	0.0032 (18)	0.0025 (19)
C11	0.055 (2)	0.057 (3)	0.048 (3)	0.003 (2)	0.001 (2)	-0.015 (2)
C12	0.039 (2)	0.042 (2)	0.034 (2)	-0.0034 (19)	0.0052 (18)	0.0001 (18)
C13	0.038 (2)	0.039 (2)	0.035 (2)	-0.0065 (17)	0.0003 (17)	-0.0009 (17)
C14	0.060 (2)	0.044 (2)	0.043 (2)	-0.006 (2)	0.0008 (19)	0.0045 (19)
C15	0.045 (2)	0.042 (2)	0.043 (2)	-0.0025 (18)	0.0069 (18)	-0.0016 (18)

supporting information

C16	0.052 (2)	0.051 (2)	0.043 (2)	-0.010 (2)	0.0044 (19)	-0.0085 (19)
Geome	tric parameters ((Å, °)				
01—C	7	1.337 (4)	C8—C10		1.510 (4)
01—C	1	1.461 (4)	C8—C11		1.518 (5)
O2—C	27	1.328 (4))	C8—C9		1.521 (5)
02—С	8	1.486 (4)	С9—Н9А		0.9800
О3—С	7	1.197 (4)	С9—Н9В		0.9800
O4—C	12	1.340 (4)	С9—Н9С		0.9800
04—C	4	1.466 (4)	C10—H10A		0.9800
О5—С	12	1.334 (4)	C10—H10B		0.9800
О5—С	13	1.490 (4)	C10—H10C		0.9800
06—C	12	1.197 (4)	C11—H11A		0.9800
C1—C	2	1.486 (6))	C11—H11B		0.9800
C1—C	6	1.494 (5)	C11—H11C		0.9800
С1—Н	1A	1.0000		C13—C15		1.504 (5)
С2—С	3	1.307 (5))	C13—C14		1.512 (4)
С2—Н	2A	0.9500		C13—C16		1.527 (5)
С3—С	4	1.470 (5))	C14—H14A		0.9800
С3—Н	3A	0.9500		C14—H14B		0.9800
C4—C	5	1.503 (5))	C14—H14C		0.9800
С4—Н	4A	1.0000	, ,	C15—H15A		0.9800
С5—С	6	1.497 (5))	C15—H15B		0.9800
С5—Н	5A	0.9900	, ,	C15—H15C		0.9800
С5—Н	5B	0.9900		C16—H16A		0.9800
С6—Н	6A	0.9900		C16—H16B		0.9800
С6—Н	6B	0.9900		C16—H16C		0.9800
С7—О	01—C1	117.0 (3))	С8—С9—Н9В		109.5
С7—О	2—C8	120.5 (3))	Н9А—С9—Н9В		109.5
C12—0	04—C4	117.1 (3))	С8—С9—Н9С		109.5
C12—0	O5—C13	119.9 (3))	Н9А—С9—Н9С		109.5
01—C	1—C2	107.6 (3)	H9B—C9—H9C		109.5
01—C	1—C6	109.2 (3)	C8—C10—H10A		109.5
С2—С	1—C6	111.7 (3))	C8-C10-H10B		109.5
01—C	1—H1A	109.4		H10A—C10—H10E	3	109.5
С2—С	1—H1A	109.4		C8-C10-H10C		109.5
С6—С	1—H1A	109.4		H10A—C10—H10C	2	109.5
С3—С	2—C1	122.9 (4))	H10B—C10—H10C	2	109.5
С3—С	2—H2A	118.5		C8—C11—H11A		109.5
C1—C	2—H2A	118.5		C8—C11—H11B		109.5
С2—С	3—C4	123.6 (4))	H11A—C11—H11B	•	109.5
С2—С	3—НЗА	118.2		C8—C11—H11C		109.5
C4—C	3—НЗА	118.2		H11A—C11—H11C		109.5
04—C	4—C3	109.2 (3))	H11B—C11—H11C		109.5
04—C	4—C5	106.9 (3))	06—C12—O5		128.4 (3)
C3—C	4—C5	111.9 (3)		O6—C12—O4		125.7 (3)

O4—C4—H4A	109.6	O5—C12—O4	106.0 (3)
C3—C4—H4A	109.6	O5—C13—C15	110.9 (3)
C5—C4—H4A	109.6	O5—C13—C14	109.5 (3)
C6—C5—C4	110.5 (3)	C15—C13—C14	112.8 (3)
С6—С5—Н5А	109.6	O5—C13—C16	100.6 (3)
C4—C5—H5A	109.6	C15—C13—C16	111.6 (3)
С6—С5—Н5В	109.6	C14—C13—C16	110.8 (3)
C4—C5—H5B	109.6	C13—C14—H14A	109.5
H5A—C5—H5B	108.1	C13—C14—H14B	109.5
C1—C6—C5	111.0 (3)	H14A—C14—H14B	109.5
С1—С6—Н6А	109.4	C13—C14—H14C	109.5
С5—С6—Н6А	109.4	H14A—C14—H14C	109.5
С1—С6—Н6В	109.4	H14B—C14—H14C	109.5
С5—С6—Н6В	109.4	C13—C15—H15A	109.5
H6A—C6—H6B	108.0	C13—C15—H15B	109.5
O3—C7—O2	127.1 (3)	H15A—C15—H15B	109.5
O3—C7—O1	125.8 (3)	C13—C15—H15C	109.5
O2—C7—O1	107.1 (3)	H15A—C15—H15C	109.5
O2—C8—C10	109.2 (3)	H15B—C15—H15C	109.5
O2—C8—C11	101.6 (3)	C13—C16—H16A	109.5
C10-C8-C11	111.1 (3)	C13—C16—H16B	109.5
O2—C8—C9	111.1 (3)	H16A—C16—H16B	109.5
C10—C8—C9	112.1 (3)	C13—C16—H16C	109.5
С11—С8—С9	111.2 (3)	H16A—C16—H16C	109.5
С8—С9—Н9А	109.5	H16B—C16—H16C	109.5