

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside

Xiao-Hui Yang, Yong-Hong Zhou,* Hong-Jun Liu and Xiao-Xin Guo

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China Correspondence e-mail: yhzhou1966@yahoo.com.cn

Received 16 July 2009; accepted 30 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.156; data-to-parameter ratio = 8.1.

In the title compound, $C_{16}H_{23}N_3O_{10}$, the galactopyranoside ring adopts a chair conformation. All the non-H substituents are situated in equatorial positions. There are short intramolecular $C-H\cdots O$ contacts and an intermolecular $C-H\cdots O$ interaction in the structure.

Related literature

For renewable compounds generated by living organisms that can be turned into useful macromolecular materials, see: Gandini (2008). For industrial applications of lignin, see: Gandini & Belgacem (2002). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005).

Experimental

Crystal data C₁₆H₂₃N₃O₁₀

 $M_r = 417.37$

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10$ mm

 $\mu = 0.11 \text{ mm}^{-1}$

T = 293 K

Orthorhombic, $P2_12_12_1$ a = 6.9730 (14) Å b = 14.747 (3) Å c = 19.916 (4) Å V = 2048.0 (7) Å³

Data collection

Enraf–Nonius CAD-4	2152 independent reflections
diffractometer	1428 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.036$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.967, \ T_{\max} = 0.989$	every 200 reflections
3276 measured reflections	intensity decay: 1%

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.055 & 266 \text{ parameters} \\ wR(F^2) = 0.156 & H\text{-atom parameters constrained} \\ S = 1.06 & \Delta\rho_{\max} = 0.24 \text{ e } \text{\AA}^{-3} \\ 2152 \text{ reflections} & \Delta\rho_{\min} = -0.20 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C14−H14A…O4	0.98	2.21	2.666 (6)	107
$C15 - H15A \cdots O2$	0.98	2.32	2.723 (6)	104
$C16-H16A\cdots O7$	0.98	2.27	2.702 (6)	106
C16-H16A···O9	0.98	2.44	2.824 (5)	103
$C9-H9B\cdotsO1^{i}$	0.96	2.48	3.402 (6)	160

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2162).

References

- Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gandini, A. (2008). *Macromolecules*, **41**, 9491–9504.
- Gandini, A. & Belgacem, M. N. (2002). J. Polym. Environ. 10, 105-114.
- Hatakeyama, H. & Hatakeyama, T. (2005). *Macromol. Symp.* 224, 219–226.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2651 [https://doi.org/10.1107/S1600536809039737] **1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside**

Xiao-Hui Yang, Yong-Hong Zhou, Hong-Jun Liu and Xiao-Xin Guo

S1. Comment

The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).

In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-*O*-acetyl- β -*D*-gluco-pyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the crystal structure, the molecules are linked into chains along the *a* axis by C—H···O interactions (Fig. 2 and Tab. 1).

S2. Experimental

 β -D-glucose pentaacetate (5.0 g, 12.8 mmol) was dissolved in 25 ml of the anhydrous CH₂Cl₂. 2-azidoethanol (1.9 g, 22.3 mmol) was added to this solution by a syringe. The resulting solution was stirred under argon and cooled to 273 K. BF₃.Et₂O (2.1 ml, 16.7 mmol) was then added dropwise at 273 K. The mixture was stirred for 1 h at 273 K and then overnight at room temperature. The mixture was diluted with 50 ml CH₂Cl₂ and washed with cold water and with saturated aqueous NaHCO₃ at room temperature, dried over anhydrous sodium sulfate, and concentrated *in vacuo* to obtain a fawn crude residue that was purified by column chromatography (hexane/EtOAc 2:1) and recrystallization from the solution of hexane/EtOAc (1:1) in order to obtain a pure solid of the title compound. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation from an ethyl acetate solution of the title compound.

S3. Refinement

All the H atoms were located in a difference electron density map. Nevertheless, all the hydrogens were placed into the idealized positions and constrained by riding hydrogen approximation. C_{methyl} — H_{methyl} =0.96; $C_{methylene}$ — $H_{methylene}$ =0.97; $C_{methine}$ — H_{methyl} =1.5 $U_{eq}C_{methyl}$, $U_{iso}H_{methylene}$ =1.2 $U_{eq}C_{methylene}$, $U_{iso}H_{methyl}$ =1.2 $U_{eq}C_{methyl}$. All the methyl groups were allowed to rotate freely about their respective C—C bonds during the refinement. Only 1/8 of the reciprocal space has been measured, therefore Friedel pairs for merging were not available.

Figure 1

The title molecule with the atom-labelling scheme. The displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing of the title molecules, viewed along the c axis.

1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside

Crystal data

C₁₆H₂₃N₃O₁₀ $M_r = 417.37$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.9730 (14) Å b = 14.747 (3) Å c = 19.916 (4) Å V = 2048.0 (7) Å³ Z = 4 F(000) = 880 $D_x = 1.354 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.967, T_{max} = 0.989$ 3276 measured reflections	2152 independent reflections 1428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 8$ $k = 0 \rightarrow 17$ $l = 0 \rightarrow 23$ 3 standard reflections every 200 reflections intensity decay: 1%
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier
$wR(F^2) = 0.156$	map
S = 1.06	Hydrogen site location: difference Fourier map
2152 reflections	H-atom parameters constrained
266 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0842P)^2 + 0.0427P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$

Special details

88 constraints

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.7582 (5)	0.6069 (2)	0.05712 (18)	0.0722 (10)	
N1	1.0447 (9)	0.6905 (4)	0.1458 (3)	0.0961 (17)	
N2	1.0080 (9)	0.6436 (4)	0.1911 (4)	0.0987 (18)	
N3	0.9676 (16)	0.6099 (5)	0.2393 (4)	0.167 (3)	
O2	0.3076 (8)	0.2527 (2)	0.0360 (2)	0.1001 (14)	
C1	1.0868 (10)	0.6426 (5)	0.0830(3)	0.103 (2)	
H1B	1.1128	0.5794	0.0929	0.123*	
H1C	1.2014	0.6684	0.0630	0.123*	
03	0.2457 (5)	0.40003 (19)	0.05186 (15)	0.0560 (8)	
C2	0.9245 (9)	0.6483 (5)	0.0333 (3)	0.0917 (19)	
H2A	0.8978	0.7115	0.0237	0.110*	
H2B	0.9631	0.6193	-0.0083	0.110*	
O4	0.4451 (8)	0.5373 (3)	0.18472 (18)	0.0927 (13)	
C3	0.0437 (9)	0.2978 (4)	0.1058 (3)	0.0820 (17)	
H3A	0.0147	0.2344	0.1099	0.123*	

H3B	-0.0647	0 3290	0.0872	0 123*
H3C	0.0724	0.3223	0.1493	0.123*
05	0.6040(5)	0.4482(2)	0.11247 (15)	0.0626 (9)
C4	0.2113 (9)	0.3097 (3)	0.0612 (2)	0.0647(13)
06	0.2735 (5)	0.40451 (19)	-0.09523(15)	0.0554 (8)
C5	0.6697 (10)	0.4265 (4)	0.2258 (3)	0.0854(18)
H5A	0.6339	0.4465	0.2700	0.128*
H5B	0.8048	0.4357	0.2195	0.128*
H5C	0.6403	0.3633	0.2210	0.128*
07	-0.0125 (5)	0.4706 (3)	-0.1036(2)	0.0817 (11)
C6	0.5624 (9)	0.4791 (3)	0.1751 (3)	0.0636 (13)
08	0.2457 (7)	0.6740 (3)	-0.23285 (18)	0.0903 (13)
C7	0.0537 (10)	0.3357 (4)	-0.1658 (3)	0.0838 (18)
H7A	-0.0777	0.3390	-0.1799	0.126*
H7B	0.0760	0.2789	-0.1436	0.126*
H7C	0.1360	0.3404	-0.2043	0.126*
09	0.2845 (5)	0.63294 (19)	-0.12588 (15)	0.0557 (8)
C8	0.0953 (7)	0.4111 (3)	-0.1188 (2)	0.0541 (11)
O10	0.5898 (5)	0.5863 (2)	-0.03885 (16)	0.0603 (8)
С9	0.0336 (9)	0.7316 (3)	-0.1504 (3)	0.0789 (17)
H9A	-0.0210	0.7666	-0.1863	0.118*
H9B	0.0762	0.7716	-0.1154	0.118*
H9C	-0.0614	0.6909	-0.1329	0.118*
C10	0.1978 (8)	0.6792 (3)	-0.1759 (3)	0.0626 (13)
C11	0.4448 (8)	0.5767 (3)	-0.1452 (2)	0.0636 (13)
H11A	0.5502	0.6141	-0.1608	0.076*
H11B	0.4076	0.5362	-0.1813	0.076*
C12	0.5050 (7)	0.5231 (3)	-0.0851 (2)	0.0525 (11)
H12A	0.6027	0.4791	-0.0987	0.063*
C13	0.6755 (7)	0.5413 (3)	0.0177 (2)	0.0570 (12)
H13A	0.7714	0.4970	0.0028	0.068*
C14	0.5181 (7)	0.4956 (3)	0.0570 (2)	0.0520 (11)
H14A	0.4290	0.5415	0.0740	0.062*
C15	0.4101 (7)	0.4284 (3)	0.0141 (2)	0.0509 (11)
H15A	0.4918	0.3761	0.0039	0.061*
C16	0.3439 (6)	0.4733 (3)	-0.0504 (2)	0.0492 (11)
H16A	0.2403	0.5161	-0.0403	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.061 (2)	0.093 (2)	0.063 (2)	-0.014 (2)	0.0038 (19)	-0.021 (2)
N1	0.115 (4)	0.086 (3)	0.087 (4)	-0.004(4)	-0.025 (4)	-0.003 (3)
N2	0.098 (4)	0.085 (4)	0.114 (5)	-0.005 (3)	-0.024 (4)	0.023 (3)
N3	0.200 (9)	0.142 (6)	0.158 (7)	0.013 (7)	-0.005 (8)	0.058 (6)
02	0.148 (4)	0.0562 (19)	0.097 (3)	0.010 (3)	0.026 (3)	0.005 (2)
C1	0.064 (4)	0.126 (5)	0.117 (6)	-0.009(4)	0.006 (4)	-0.040(5)
03	0.0622 (18)	0.0532 (16)	0.0526 (18)	0.0000 (16)	0.0079 (16)	-0.0005 (15)

supporting information

C2	0.071 (4)	0.127 (5)	0.077 (4)	-0.024 (4)	0.013 (4)	0.001 (4)
04	0.136 (4)	0.092 (3)	0.050 (2)	0.034 (3)	0.001 (2)	-0.016 (2)
C3	0.088 (4)	0.092 (4)	0.066 (4)	-0.022 (3)	-0.001 (3)	0.003 (3)
05	0.073 (2)	0.075 (2)	0.0399 (17)	0.0134 (19)	-0.0103 (18)	-0.0057 (15)
C4	0.093 (4)	0.054 (3)	0.047 (3)	-0.005 (3)	-0.004 (3)	0.006 (2)
O6	0.065 (2)	0.0550 (16)	0.0466 (17)	0.0097 (16)	-0.0055 (17)	-0.0104 (15)
C5	0.109 (5)	0.097 (4)	0.050 (3)	0.000 (4)	-0.011 (3)	0.006 (3)
O7	0.062 (2)	0.098 (3)	0.085 (3)	0.011 (2)	-0.016 (2)	-0.014 (2)
C6	0.077 (3)	0.064 (3)	0.049 (3)	-0.002 (3)	-0.011 (3)	-0.008 (3)
08	0.107 (3)	0.118 (3)	0.046 (2)	0.020 (3)	0.003 (2)	0.012 (2)
C7	0.106 (5)	0.090 (4)	0.055 (3)	-0.018 (4)	-0.007 (3)	-0.013 (3)
09	0.062 (2)	0.0580 (16)	0.0475 (17)	0.0098 (16)	0.0027 (16)	0.0056 (15)
C8	0.053 (3)	0.066 (3)	0.044 (3)	0.002 (3)	0.000 (2)	-0.002 (2)
O10	0.0659 (19)	0.0599 (17)	0.0551 (19)	0.0019 (17)	-0.0010 (18)	0.0001 (16)
C9	0.094 (4)	0.072 (3)	0.071 (4)	0.018 (3)	-0.011 (3)	0.004 (3)
C10	0.074 (3)	0.059 (3)	0.054 (3)	-0.004 (3)	-0.012 (3)	0.003 (3)
C11	0.072 (3)	0.069 (3)	0.051 (3)	0.002 (3)	0.014 (3)	0.001 (2)
C12	0.057 (3)	0.053 (2)	0.048 (3)	0.006 (2)	0.002 (2)	-0.007 (2)
C13	0.053 (3)	0.065 (3)	0.054 (3)	0.003 (2)	-0.006 (2)	-0.009 (2)
C14	0.055 (3)	0.063 (3)	0.039 (2)	0.008 (2)	0.000 (2)	-0.002 (2)
C15	0.052 (3)	0.055 (2)	0.046 (2)	0.011 (2)	-0.005 (2)	-0.006 (2)
C16	0.053 (2)	0.051 (2)	0.043 (3)	0.012 (2)	-0.004 (2)	-0.010 (2)

Geometric parameters (Å, °)

O1—C13	1.373 (5)	O7—C8	1.194 (5)
O1—C2	1.394 (7)	O8—C10	1.184 (6)
N1—N2	1.165 (7)	C7—C8	1.482 (6)
N1-C1	1.467 (7)	С7—Н7А	0.9600
N2—N3	1.117 (9)	С7—Н7В	0.9600
O2—C4	1.188 (6)	С7—Н7С	0.9600
C1—C2	1.505 (9)	O9—C10	1.351 (6)
C1—H1B	0.9700	O9—C11	1.445 (6)
C1—H1C	0.9700	O10—C12	1.437 (5)
O3—C4	1.366 (5)	O10-C13	1.437 (5)
O3—C15	1.433 (5)	C9—C10	1.472 (7)
C2—H2A	0.9700	С9—Н9А	0.9600
C2—H2B	0.9700	С9—Н9В	0.9600
O4—C6	1.201 (6)	С9—Н9С	0.9600
C3—C4	1.478 (8)	C11—C12	1.495 (6)
С3—НЗА	0.9600	C11—H11A	0.9700
С3—Н3В	0.9600	C11—H11B	0.9700
С3—Н3С	0.9600	C12—C16	1.509 (6)
O5—C6	1.360 (6)	C12—H12A	0.9800
O5—C14	1.439 (5)	C13—C14	1.507 (7)
O6—C8	1.332 (6)	C13—H13A	0.9800
O6—C16	1.437 (5)	C14—C15	1.509 (6)
C5—C6	1.476 (8)	C14—H14A	0.9800

supporting information

	0.0700	015 016	1 510 (()
С5—Н5А	0.9600		1.518 (6)
C5—H5B	0.9600	C15—H15A	0.9800
C5—H5C	0.9600	C16—H16A	0.9800
C13—O1—C2	117.6 (4)	C12—O10—C13	111.9 (3)
N2—N1—C1	114.7 (6)	С10—С9—Н9А	109.5
N3—N2—N1	170.0 (9)	C10-C9-H9B	109 5
N1-C1-C2	112 5 (6)	H0A (0) H0B	109.5
N1 = C1 = C2	100.1	C_{10} C_{0} H_{00}	109.5
	109.1	H_{0}	109.5
C2—CI—HIB	109.1	H9A—C9—H9C	109.5
NI-CI-HIC	109.1	Н9В—С9—Н9С	109.5
C2—C1—H1C	109.1	O8—C10—O9	123.2 (5)
H1B—C1—H1C	107.8	O8—C10—C9	125.8 (5)
C4—O3—C15	119.8 (4)	O9—C10—C9	111.0 (4)
O1—C2—C1	112.2 (5)	O9—C11—C12	107.9 (4)
O1—C2—H2A	109.2	O9-C11-H11A	110.1
C1—C2—H2A	109.2	C12—C11—H11A	110.1
01-C2-H2B	109.2	09—C11—H11B	110.1
C1 - C2 - H2B	109.2	C_{12} C_{11} H_{11B}	110.1
	107.0		109.4
$\Pi 2A - C_2 - \Pi 2B$	107.9		100.4
C4—C3—H3A	109.5		100.0 (3)
C4—C3—H3B	109.5	010-012-016	109.2 (4)
НЗА—СЗ—НЗВ	109.5	C11—C12—C16	114.5 (4)
C4—C3—H3C	109.5	O10—C12—H12A	108.8
НЗА—СЗ—НЗС	109.5	C11—C12—H12A	108.8
НЗВ—СЗ—НЗС	109.5	C16—C12—H12A	108.8
C6—O5—C14	117.0 (4)	O1-C13-O10	107.3 (4)
O2—C4—O3	122.3 (5)	O1—C13—C14	108.9 (4)
O2—C4—C3	128.1 (5)	O10-C13-C14	108.1 (4)
03-C4-C3	109.7(5)	01—C13—H13A	110.8
C_{8} C_{16} C_{16} C_{16}	1191(4)	010-C13-H13A	110.8
C6 C5 H5A	100.5	C_{14} C_{13} H_{13A}	110.0
C_{0}	109.5	05 C14 C12	100.0
	109.5	05 - 014 - 015	100.2(4)
H5A—C5—H5B	109.5	05-014-015	108.9 (3)
С6—С5—Н5С	109.5	C13—C14—C15	111.3 (4)
H5A—C5—H5C	109.5	O5—C14—H14A	109.5
H5B—C5—H5C	109.5	C13—C14—H14A	109.5
O4—C6—O5	122.0 (5)	C15—C14—H14A	109.5
O4—C6—C5	127.7 (5)	O3—C15—C14	107.1 (3)
O5—C6—C5	110.1 (5)	O3—C15—C16	109.2 (4)
С8—С7—Н7А	109.5	C14—C15—C16	110.1 (3)
С8—С7—Н7В	109.5	O3—C15—H15A	110.1
H7A—C7—H7B	109.5	C14—C15—H15A	110.1
C8-C7-H7C	109 5	C16—C15—H15A	110.1
H7A $C7$ $H7C$	100.5	06 C16 C12	108 2 (2)
H7D C7 H7C	109.5	00-010-012	100.3(3) 100.2(2)
$\Pi/D - U/- \Pi/U$	109.3		100.0(3)
C10—09—C11	116.1 (4)	C12—C16—C15	111.9 (4)
O7—C8—O6	123.5 (4)	O6—C16—H16A	109.3

O7—C8—C7 O6—C8—C7	126.0 (5) 110.5 (5)	C12—C16—H16A C15—C16—H16A	109.3 109.3
$\begin{array}{c} 07-0.8-0.7\\ 06-0.8-0.7\\ 06-0.8-0.7\\ 06-0.8-0.7\\ 06-0.8-0.7\\ 01-0.2-0.1\\ 01-0.2-0.1\\ 01-0.2-0.1\\ 01-0.2\\$	$\begin{array}{c} -175 \ (5) \\ 110.5 \ (5) \\ \hline \\ -175 \ (5) \\ 104.9 \ (7) \\ -125.6 \ (6) \\ -62.8 \ (8) \\ \hline \\ -4.1 \ (7) \\ 175.6 \ (4) \\ \hline \\ 7.2 \ (7) \\ \hline \\ -176.9 \ (4) \\ \hline \\ -1.7 \ (7) \\ 177.9 \ (4) \\ 1.2 \ (7) \\ 178.3 \ (4) \\ \hline \\ -173.2 \ (4) \\ \hline \\ -172.7 \ (4) \\ \hline \\ 63.1 \ (5) \\ \hline \\ -69.9 \ (5) \\ 51.0 \ (5) \\ \hline \\ -72.1 \ (6) \\ 171.2 \ (4) \\ 177.7 \ (3) \end{array}$	C12C16H16A $C15C16H16A$ $C6O5C14C15$ $O1C13C14O5$ $O1C13C14O5$ $O1C13C14C15$ $O10C13C14C15$ $C4O3C15C14$ $C4O3C15C16$ $O5C14C15O3$ $O5C14C15O3$ $O5C14C15C16$ $C13C14C15C16$ $C13C14C15C16$ $C13C14C15C16$ $C13C16C12$ $C8O6C16C12$ $C8O6C16C12$ $C8O6C16C15$ $O10C12C16O6$ $O10C12C16O6$ $O10C12C16O6$ $C14C15C16O6$ $C15C16C12C15C16C12$ $C15C16C12C15C16C12$	$\begin{array}{c} -125.1 \ (4) \\ -65.4 \ (5) \\ 178.3 \ (3) \\ 175.0 \ (4) \\ 58.7 \ (5) \\ -127.5 \ (4) \\ 113.3 \ (4) \\ 70.1 \ (4) \\ -170.6 \ (3) \\ -171.2 \ (3) \\ -52.0 \ (5) \\ -114.6 \ (4) \\ 123.6 \ (4) \\ -174.5 \ (3) \\ 66.0 \ (4) \\ -54.6 \ (4) \\ -174.1 \ (4) \\ -73.1 \ (4) \\ 169.5 \ (3) \\ 167.2 \ (3) \end{array}$
C12O10C13O1 C12O10C13C14 C6O5C14C13	-65.0 (5) 113.7 (5)	C14—C15—C16—C12	49.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C14—H14 <i>A</i> …O4	0.98	2.21	2.666 (6)	107
C15—H15A····O2	0.98	2.32	2.723 (6)	104
C16—H16A…O7	0.98	2.27	2.702 (6)	106
C16—H16A····O9	0.98	2.44	2.824 (5)	103
C9—H9 <i>B</i> ···O1 ⁱ	0.96	2.48	3.402 (6)	160

Symmetry code: (i) x-1/2, -y+3/2, -z.