

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-methylanilinium) diaquabis-[dihydrogendiphosphato(2-)]cobaltate(II)

Ahmed Selmi,* Samah Akriche and Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia Correspondence e-mail: ahmedselmi09@yahoo.fr

Received 7 October 2009; accepted 23 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.078; data-to-parameter ratio = 24.8.

In the title cobalt(II) complex with 2-methylanilinium and diphosphate, $(C_7H_{10}N)_2[Co(H_2P_2O_7)_2(H_2O)_2]$, a three-dimensional network is built up from anionic layers of $[Co(H_2P_2O_7)_2(H_2O)_2]^{2-}$ units and 2-methylanilinium cations located between these layers. The dihydrogendiphosphate groups present a bent eclipsed conformation, while the Co^{2+} ions lie on inversion centers. An intricate network of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds is established between the different components, assuring the cohesion of the network with other interactions, being of electrostatic and van der Waals nature.

Related literature

For organic-inorganic transition metal frameworks, see: Cheetham *et al.* (1999); Clearfield (1998). For the role played by diphosphates in interactions between metal centers, see: Xu *et al.* (2008). For related structures, see: Essehli *et al.* (2006); Gharbi *et al.* (1994); Gharbi & Jouini (2004).

Experimental

Crystal data

$(C_7H_{10}N)_2[Co(H_2P_2O_7)_2(H_2O)_2]$	
$M_r = 663.19$	
Triclinic, $P\overline{1}$	
a = 7.440 (4) Å	
b = 7.455 (2) Å	
c = 11.747 (3) Å	

 $\begin{aligned} &\alpha = 91.92 \ (3)^{\circ} \\ &\beta = 94.09 \ (5)^{\circ} \\ &\gamma = 104.67 \ (2)^{\circ} \\ &V = 627.8 \ (4) \ \text{\AA}^3 \\ &Z = 1 \\ &\text{Ag } K \alpha \text{ radiation} \end{aligned}$

metal-organic compounds

 $R_{\rm int} = 0.008$

refinement $\Delta \rho_{\text{max}} = 0.43 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

 $0.33 \times 0.26 \times 0.23 \text{ mm}$

2 standard reflections

frequency: 120 min

intensity decay: 7%

3911 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.53 \text{ mm}^{-1}$ T = 298 K

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 4678 measured reflections 4486 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.084486 reflections 181 parameters 3 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} 06 - H6 \cdots O3^{i} \\ 02 - H2 \cdots O7^{ii} \\ 08 - H2 W \cdots O2^{iii} \\ 08 - H1 W \cdots O4^{i} \\ N1 - H1A \cdots O7^{iii} \\ N1 - H1B \cdots O5 \\ N1 - H1B - O1^{iv} \end{array}$	0.82 0.82 0.842 (9) 0.842 (9) 0.89 0.89 0.89	1.75 1.71 1.978 (10) 2.202 (13) 1.89 2.31 2.48	2.5712 (17) 2.522 (2) 2.8199 (18) 3.020 (2) 2.7788 (18) 3.0083 (19) 2.105 (2)	177 169 179 (3) 164 (3) 177 135
$N1 - H1C \cdots O3^{i}$	0.89	1.94	2.821 (2)	168

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1996); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2278).

References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.
- Clearfield, A. (1998). Chem. Mater. 10, 2801–2810.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Essehli, R., El Bali, B., Lachkar, M., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m538-m541.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.
- Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Xu, J. Y., Tian, J. L., Zhang, Q. W., Zhao, J., Yan, S. P. & Liao, D. Z. (2008). Inorg. Chem. Commun. 11, 69–72.

supporting information

Acta Cryst. (2009). E65, m1487 [https://doi.org/10.1107/S1600536809044079] Bis(2-methylanilinium) diaquabis[dihydrogendiphosphato(2–)]cobaltate(II) Ahmed Selmi, Samah Akriche and Mohamed Rzaigui

S1. Comment

Organic inorganic transition metal frameworks can be usefully employed in diverse areas, such as shape selective catalysis or adsorption (Cheetham *et al.*, 1999; Clearfield, 1998). In such compounds the transition metal plays a key role for building interesting topologies with one-, two- or three-dimensional networks. In these atomic arrangements, the transition element is coordinated generally to ligands *via* several donor atoms such as oxygen or nitrogen. In recent years, many researchers have focused on diphosphates because they are powerful ligands that can link metal ions through their oxygen atoms, and can play an essential role in the interaction between the metallic centers (Xu *et al.*, 2008).

The title compound, is built up from a diaquabis[dihydrogendiphosphato(2)]cobaltate(II) anion and two organic 2methylanilinium cations (Fig. 1). A half of the complex anion and one organic cation constitute the asymmetric unit of (I).

The metal complex anions, interconnected *via* hydrogen bonds involving the two hydroxyl groups of $H_2P_2O_7^{2-}$ and the water molecule, develop a thick bi-dimensional layer of formula $[Co(H_2P_2O_7)_2(H_2O)_2]^{2n-}$ perpendicular to the *c* axis (Fig. 2). The protonated organic cations 2-CH₃C₆H₄NH₃⁺ are anchored between these layers .

With regard to the inorganic arrangement, the Co atom is located on an inversion center and is surrounded by two symmetry related dihydrogendiphosphate ligands with a bent eclipsed conformation as seen by the P1—O4—P2 angle of 129.26 (7)%, and two water molecules in an octahedral coordination. Four external O atoms, OE, in the basal plane from two bidendate $[H_2P_2O_7]$ groups and the two remaining O atoms, OW, in the apical positions from the water molecule give a slightly distorted CoO₆ octahedron. Within this octahedron, the Co—O distances range from 2.057 (1) to 2.149 (1) Å with Cu—OW distances longer than those of Co—OE. A similar coordination geometry around the central atom has also been observed in other $M^{II}O_6$ octahedra, M^{II} = Co or Ni, in organic diphosphate compounds (Essehli *et al.*, 2006; Gharbi *et al.*, 1994; Gharbi *et al.*, 2004).

Analysis of hydrogen bonds within (I), revealed an intricate network of O—H…O and N—H…O bonds which along with other interactions (electrostatic and Van der Waals) stabilize the whole structure. The O—H…O contacts, with O—H…O distances ranging from 2.522 (2) to 3.020 (2) Å, link the complex anions while the N—H…O bonds linking the anions and cations are weaker since the N—H…O distances are longer, ranging from 2.779 (2) to 3.105 (2) Å. These H-bonds (Table 1) participate in the cohesion of the three-dimensional network (Fig 2).

S2. Experimental

Crystals of the title compound were prepared by adding an ethanol solution (10 ml) of 2-methylaniline (7.52 mmol) dropwise to a mixture of $H_4P_2O_7$ (3.75 mmol) and $CoCl_2$ (1.88 mmol) in water (20 ml). Good quality green prisms were obtained after a slow evaporation during few days at ambient temperature. The diphosphoric acid, $H_4P_2O_7$, was produced from $Na_4P_2O_7$ by using an ion-exchange resin (Amberlite IR 120).

Figure 1

An *ORTEP* view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.[Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

Bis(2-methylanilinium) diaquabis[dihydrogendiphosphato(2-)]cobaltate(II)

Crystal data

 $\begin{array}{l} (C_7H_{10}N)_2[Co(H_2P_2O_7)_2(H_2O)_2]\\ M_r = 663.19\\ \text{Triclinic, } P\overline{1}\\ a = 7.440 \ (4) \ \text{\AA}\\ b = 7.455 \ (2) \ \text{\AA}\\ c = 11.747 \ (3) \ \text{\AA}\\ a = 91.92 \ (3)^\circ\\ \beta = 94.09 \ (5)^\circ\\ \gamma = 104.67 \ (2)^\circ\\ V = 627.8 \ (4) \ \text{\AA}^3 \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator Non–profiled ω scans 4678 measured reflections 4486 independent reflections 3911 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.028$ Hydrogen site location: inferred from $wR(F^2) = 0.078$ neighbouring sites S = 1.08H atoms treated by a mixture of independent 4486 reflections and constrained refinement 181 parameters $w = 1/[\sigma^2(F_0^2) + (0.0409P)^2 + 0.209P]$ 3 restraints where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 1F(000) = 341

 $\theta = 9-11^{\circ}$

T = 298 K

Prism, pink

 $R_{\rm int} = 0.008$

 $h = -11 \rightarrow 11$

 $k = -11 \rightarrow 11$

 $l = 0 \rightarrow 17$

 $\mu = 0.53 \text{ mm}^{-1}$

 $D_{\rm x} = 1.754 {\rm Mg} {\rm m}^{-3}$

 $0.33 \times 0.26 \times 0.23$ mm

 $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$

intensity decay: 7%

Ag *K* α radiation, $\lambda = 0.56085$ Å

Cell parameters from 25 reflections

2 standard reflections every 120 min

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.5000	0.5000	0.5000	0.01548 (6)	
P1	0.21765 (4)	0.73669 (4)	0.39318 (3)	0.01617 (7)	
P2	0.27309 (4)	0.74457 (4)	0.64170 (3)	0.01643 (7)	

O1	0.37007 (14)	0.64107 (14)	0.38682 (8)	0.02204 (18)
O2	0.29044 (15)	0.94783 (14)	0.37491 (11)	0.0272 (2)
H2	0.4017	0.9718	0.3647	0.041*
O3	0.04241 (14)	0.65899 (15)	0.31845 (9)	0.0253 (2)
O4	0.15097 (14)	0.73056 (16)	0.52080 (9)	0.02389 (19)
O5	0.39173 (14)	0.61111 (14)	0.63563 (8)	0.02138 (18)
O6	0.11785 (15)	0.68728 (15)	0.72493 (9)	0.0258 (2)
H6	0.0630	0.5776	0.7116	0.039*
O7	0.37403 (15)	0.94287 (14)	0.67018 (10)	0.0275 (2)
08	0.25633 (15)	0.27064 (15)	0.49415 (11)	0.0291 (2)
N1	0.29299 (18)	0.25923 (18)	0.76160 (10)	0.0234 (2)
H1A	0.3161	0.1554	0.7340	0.035*
H1B	0.3821	0.3566	0.7445	0.035*
H1C	0.1832	0.2687	0.7308	0.035*
C1	0.2890 (2)	0.2541 (2)	0.88612 (12)	0.0242 (3)
C2	0.4492 (2)	0.2523 (2)	0.95316 (14)	0.0313 (3)
C3	0.4354 (3)	0.2471 (3)	1.07075 (16)	0.0469 (5)
Н3	0.5407	0.2471	1.1184	0.056*
C4	0.2716 (4)	0.2419 (4)	1.11818 (16)	0.0550 (6)
H4	0.2668	0.2390	1.1970	0.066*
C5	0.1146 (3)	0.2411 (4)	1.04945 (18)	0.0579 (6)
Н5	0.0026	0.2356	1.0815	0.069*
C6	0.1229 (3)	0.2486 (3)	0.93204 (15)	0.0439 (5)
H6A	0.0173	0.2499	0.8849	0.053*
C7	0.6297 (3)	0.2562 (4)	0.90335 (19)	0.0530 (6)
H7A	0.6174	0.1429	0.8587	0.079*
H7B	0.7264	0.2685	0.9639	0.079*
H7C	0.6609	0.3596	0.8555	0.079*
H2W	0.266 (3)	0.174 (2)	0.458 (2)	0.052 (7)*
H1W	0.149 (2)	0.287 (4)	0.481 (2)	0.070 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01533 (10)	0.01613 (11)	0.01672 (11)	0.00681 (8)	0.00249 (8)	0.00182 (8)
P1	0.01346 (13)	0.01654 (13)	0.01897 (14)	0.00477 (10)	0.00046 (10)	0.00225 (10)
P2	0.01503 (13)	0.01627 (13)	0.01831 (14)	0.00417 (10)	0.00368 (10)	-0.00060 (10)
O1	0.0232 (4)	0.0268 (5)	0.0211 (4)	0.0146 (4)	0.0039 (3)	0.0048 (3)
O2	0.0226 (5)	0.0166 (4)	0.0435 (6)	0.0046 (3)	0.0094 (4)	0.0045 (4)
O3	0.0192 (4)	0.0266 (5)	0.0276 (5)	0.0033 (4)	-0.0058 (4)	0.0029 (4)
O4	0.0175 (4)	0.0356 (5)	0.0208 (4)	0.0104 (4)	0.0031 (3)	0.0036 (4)
O5	0.0249 (4)	0.0240 (4)	0.0188 (4)	0.0124 (4)	0.0029 (3)	0.0005 (3)
O6	0.0244 (5)	0.0267 (5)	0.0252 (5)	0.0023 (4)	0.0113 (4)	-0.0023 (4)
O7	0.0236 (5)	0.0172 (4)	0.0402 (6)	0.0018 (4)	0.0081 (4)	-0.0043 (4)
08	0.0194 (5)	0.0226 (5)	0.0449 (6)	0.0051 (4)	0.0037 (4)	-0.0048 (4)
N1	0.0260 (5)	0.0274 (6)	0.0187 (5)	0.0100 (4)	0.0022 (4)	0.0020 (4)
C1	0.0268 (6)	0.0295 (7)	0.0181 (5)	0.0105 (5)	0.0013 (5)	0.0029 (5)
C2	0.0302 (7)	0.0405 (8)	0.0249 (7)	0.0136 (6)	-0.0025 (5)	0.0005 (6)

supporting information

C3	0.0520 (11)	0.0671 (14)	0.0254 (8)	0.0252 (10)	-0.0082 (7)	0.0032 (8)
C4	0.0703 (15)	0.0815 (17)	0.0207 (7)	0.0315 (13)	0.0095 (8)	0.0077 (9)
C5	0.0507 (12)	0.101 (2)	0.0299 (9)	0.0290 (13)	0.0178 (8)	0.0089 (11)
C6	0.0314 (8)	0.0799 (15)	0.0262 (7)	0.0233 (9)	0.0067 (6)	0.0074 (8)
C7	0.0297 (9)	0.0902 (18)	0.0426 (10)	0.0239 (10)	-0.0023 (8)	-0.0015 (11)

Geometric parameters (Å, °)

Co1-01	2.0574 (12)	N1—C1	1.4667 (18)
Co1—O1 ⁱ	2.0574 (12)	N1—H1A	0.8900
Co1—O5	2.0752 (12)	N1—H1B	0.8900
Co1—O5 ⁱ	2.0752 (12)	N1—H1C	0.8900
Co1—O8	2.1491 (14)	C1—C6	1.375 (2)
Co1—O8 ⁱ	2.1491 (14)	C1—C2	1.384 (2)
P101	1.4892 (11)	C2—C3	1.394 (2)
P1—O3	1.4919 (14)	C2—C7	1.496 (3)
P1—O2	1.5570 (11)	C3—C4	1.368 (3)
P1—O4	1.6108 (12)	С3—Н3	0.9300
P2—O5	1.4909 (11)	C4—C5	1.371 (3)
P2—O7	1.4933 (12)	C4—H4	0.9300
P2—O6	1.5529 (13)	C5—C6	1.387 (3)
P2—O4	1.6160 (13)	С5—Н5	0.9300
O2—H2	0.8200	С6—Н6А	0.9300
O6—H6	0.8200	C7—H7A	0.9600
O8—H2W	0.842 (9)	С7—Н7В	0.9600
O8—H1W	0.842 (9)	C7—H7C	0.9600
01-Co1-01 ⁱ	180.00 (4)	Co1—O8—H1W	121 (2)
01—Co1—O5	90.50 (5)	H2W—O8—H1W	111 (2)
Ol ⁱ —Col—O5	89.50 (5)	C1—N1—H1A	109.5
O1—Co1—O5 ⁱ	89.50 (5)	C1—N1—H1B	109.5
$O1^i$ —Co1—O5 ⁱ	90.50 (5)	H1A—N1—H1B	109.5
O5-Co1-O5 ⁱ	180.00 (3)	C1—N1—H1C	109.5
01—Co1—O8	91.82 (6)	H1A—N1—H1C	109.5
O1 ⁱ —Co1—O8	88.18 (6)	H1B—N1—H1C	109.5
O5—Co1—O8	86.64 (6)	C6—C1—C2	122.21 (15)
O5 ⁱ —Co1—O8	93.36 (6)	C6—C1—N1	118.02 (14)
01-Co1-08 ⁱ	88.18 (6)	C2-C1-N1	119.77 (14)
01 ⁱ —Co1—O8 ⁱ	91.82 (6)	C1—C2—C3	116.73 (17)
O5-Co1-O8 ⁱ	93.36 (6)	C1—C2—C7	122.34 (15)
O5 ⁱ —Co1—O8 ⁱ	86.64 (6)	C3—C2—C7	120.94 (17)
O8—Co1—O8 ⁱ	180.0	C4—C3—C2	122.00 (18)
O1—P1—O3	117.53 (7)	C4—C3—H3	119.0
01—P1—O2	110.90 (7)	С2—С3—Н3	119.0
O3—P1—O2	109.47 (7)	C3—C4—C5	119.95 (18)
O1—P1—O4	109.65 (7)	C3—C4—H4	120.0
O3—P1—O4	104.33 (7)	C5—C4—H4	120.0
O2—P1—O4	103.91 (7)	C4—C5—C6	119.9 (2)

supporting information

O5—P2—O7	115.99 (7)	С4—С5—Н5	120.1
O5—P2—O6	112.76 (7)	С6—С5—Н5	120.1
O7—P2—O6	108.25 (7)	C1—C6—C5	119.22 (18)
O5—P2—O4	108.51 (6)	C1—C6—H6A	120.4
O7—P2—O4	108.93 (7)	С5—С6—Н6А	120.4
O6—P2—O4	101.36 (7)	С2—С7—Н7А	109.5
P1	134.55 (7)	С2—С7—Н7В	109.5
Р1—О2—Н2	109.5	H7A—C7—H7B	109.5
P1—O4—P2	129.26 (7)	С2—С7—Н7С	109.5
P2	132.40 (6)	H7A—C7—H7C	109.5
Р2—О6—Н6	109.5	H7B—C7—H7C	109.5
Co1—O8—H2W	114.2 (17)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
06—H6…O3 ⁱⁱ	0.82	1.75	2.5712 (17)	177
O2—H2…O7 ⁱⁱⁱ	0.82	1.71	2.522 (2)	169
$O8$ — $H2W$ ··· $O2^{iv}$	0.84(1)	1.98 (1)	2.8199 (18)	179 (3)
O8—H1 <i>W</i> ···O4 ⁱⁱ	0.84 (1)	2.20(1)	3.020 (2)	164 (3)
N1—H1A····O7 ^{iv}	0.89	1.89	2.7788 (18)	177
N1—H1 <i>B</i> …O5	0.89	2.31	3.0083 (19)	135
N1—H1 <i>B</i> ···O1 ⁱ	0.89	2.48	3.105 (2)	127
N1—H1 <i>C</i> ···O3 ⁱⁱ	0.89	1.94	2.821 (2)	168

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*, *y*-1, *z*.