metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium hexa­cyanidoferrate(III) bis­­(di­aqua­{6,6′-dimeth­­oxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}manganese(III))–methanol–ethanol (1/2/2)

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiejm391@sohu.com

(Received 19 July 2009; accepted 16 September 2009; online 17 October 2009)

In the title compound, (C8H20N)[Mn(C22H18N2O4)(H2O)2][Fe(CN)6]·2CH3OH·2C2H5OH or [NEt4][Mn(3-Meosalophen)(H2O)2]2[Fe(CN)6]·2CH3OH·2C2H5OH, the asymmetric unit consists of one half of an [NEt4]+ cation disordered around a twofold axis, the [Mn(3-Meosalophen)(H2O)2]+ coordination cation, one half of a C2 symmetric [Fe(CN)6]3− anion and disordered methanol and ethanol solvent mol­ecules that are equally populated at two different sites. The MnIII atom chelated by the 3-Meosalophen ligand adopts a slightly distorted MnN2O4 octa­hedral geometry with the coordination completed by two water mol­ecules. The [Mn(3-Meosalophen)(H2O)2]+ cations, [Fe(CN)6]3- anions and solvent mol­ecules are connected into a zigzag chain through hydrogen-bonding inter­actions.

Related literature

For related structures, see: Li et al. (2001[Li, S. N., Li, J., Tang, Z. X. & Zhou, Z. Y. (2001). Acta Chim. Sin. 59, 78-83.]). For the preparation of the precursors, [Mn(3-Meosalphen)(H2O)(CH3OH)]ClO4 and [NEt4]3[Fe(CN)6], see: Matsumoto et al. (1988[Matsumoto, N., Takemoto, A., Ohyoshi, A. & Okawa, H. (1988). Bull. Chem. Soc. Jpn, 61, 2984-2986.]); Mascharak et al.(1986[Mascharak, P. K. (1986). Inorg. Chem. 25, 245-247.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Mn(C22H18N2O4)(H2O)2][Fe(CN)6]·2CH4O·2C2H6O

  • Mr = 1429.15

  • Monoclinic, C 2/c

  • a = 24.83 (2) Å

  • b = 12.467 (11) Å

  • c = 22.915 (19) Å

  • β = 98.077 (12)°

  • V = 7024 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 296 K

  • 0.22 × 0.22 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.910

  • 29161 measured reflections

  • 8077 independent reflections

  • 4987 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.05

  • 8077 reflections

  • 483 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 1.880 (2)
Mn1—O1 1.884 (2)
Mn1—N5 1.996 (2)
Mn1—N4 1.996 (3)
Mn1—O2W 2.210 (3)
Mn1—O1W 2.274 (2)
Fe1—C24 1.945 (3)
Fe1—C23 1.953 (3)
Fe1—C25 1.958 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1C⋯O3i 0.85 2.14 2.959 (4) 162
O1W—H1C⋯O1i 0.85 2.37 2.948 (3) 125
O1W—H1D⋯O4i 0.85 2.14 2.929 (3) 153
O1W—H1D⋯O2i 0.85 2.25 2.901 (3) 134
O2W—H2C⋯O6ii 0.85 1.88 2.698 (4) 160
O2W—H2D⋯O5iii 0.85 1.91 2.751 (4) 168
O5—H5B⋯N3 0.87 2.08 2.934 (5) 166
O6—H6B⋯N2 0.86 1.88 2.739 (4) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn,Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Manganese(III) Schiff base complexes and [NEt4]3[Fe(CN)6] are often used as precursors to construct magnetic compounds, which demonstrate various networks and topologies. The asymmetric unit of of the title compound comprises one half of [NEt4]+ cation (disordered), one [Mn(3-Meosalophen)(H2O)2]+ cation, one half of [Fe(CN)6]3- anion and two halves of methanol and ethanol solvent molecules. Both the Mn(III) atom and Fe(III) atom exhibit a slightly distorted octahedral coordination geometry (Fig.1). Adjacent [Mn(3-Meosalophen)(H2O)2]+ units are aggregated into a dimer through O—H···O hydrogen bonding interactions as well as π-π interactions (Fig.2). These dimers and coordination anions are further connected into a one-dimensional zigzag chain through O—H···N hydrogen bonds involving solvent molecules (Fig.3). The chains are further packed into a three-dimensional framework through weak intermolecular interactions.

Related literature top

For related structures, see: Li et al. (2001). For the preparation of the precursors, [Mn(3-Meosalphen)(H2O)(CH3OH)]ClO4 and [NEt4]3[Fe(CN)6], see: Matsumoto et al. (1988); Mascharak et al.(1986).

Experimental top

A solution of [Mn(3-Meosalphen)(H2O)(CH3OH)]ClO4 (0.1094 g) in 1:1 (v/v) methanol-acetonitrile (30 ml) was added to a solution of [NEt4]3[Fe(CN)6] (0.1205 g) in ethanol (30 ml) at room temperature. The resulting solution was filtered and the filtrate was kept in the dark. Black block crystals of the title compound were obtained after a week (yield 85%).

Refinement top

All the H atoms were placed at calculated positions (C—H 0.93–0.98 Å, O—H 0.85-0.87 Å), and treated as riding atoms with Uiso(H)=1.2Ueq(C), Uiso(H)=1.5Ueq(O).

Structure description top

Manganese(III) Schiff base complexes and [NEt4]3[Fe(CN)6] are often used as precursors to construct magnetic compounds, which demonstrate various networks and topologies. The asymmetric unit of of the title compound comprises one half of [NEt4]+ cation (disordered), one [Mn(3-Meosalophen)(H2O)2]+ cation, one half of [Fe(CN)6]3- anion and two halves of methanol and ethanol solvent molecules. Both the Mn(III) atom and Fe(III) atom exhibit a slightly distorted octahedral coordination geometry (Fig.1). Adjacent [Mn(3-Meosalophen)(H2O)2]+ units are aggregated into a dimer through O—H···O hydrogen bonding interactions as well as π-π interactions (Fig.2). These dimers and coordination anions are further connected into a one-dimensional zigzag chain through O—H···N hydrogen bonds involving solvent molecules (Fig.3). The chains are further packed into a three-dimensional framework through weak intermolecular interactions.

For related structures, see: Li et al. (2001). For the preparation of the precursors, [Mn(3-Meosalphen)(H2O)(CH3OH)]ClO4 and [NEt4]3[Fe(CN)6], see: Matsumoto et al. (1988); Mascharak et al.(1986).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labels and 30% probability displacement ellipsoids for non-hydrogen atoms. Disorder of the [NEt4]+ cation is not shown. Symmetry code: (i) 1 - x,y, 1.5 - z.
[Figure 2] Fig. 2. The intermolecular O—H··· O hydrogen bonding interactions connecting the [Mn(3-Meosalophen)(H2O)2]+ units into a dimer. H atoms have been omitted for clarity and hydrogen bonds are shown as dashed line.
[Figure 3] Fig. 3. A view of a one-dimensional zigzag chain. H atoms have been omitted for clarity and hydrogen bonds are shown as dashed line.
Tetraethylammonium hexacyanidoferrate(III) bis(diaqua{6,6'-dimethoxy-2,2'- [o-phenylenebis(nitrilomethylidyne)]diphenolato}manganese(III))– methanol–ethanol (1/2/2) top
Crystal data top
(C8H20N)[Mn(C22H18N2O4)(H2O)2][Fe(CN)6]·2CH4O·2C2H6OF(000) = 2996
Mr = 1429.15Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6244 reflections
a = 24.83 (2) Åθ = 2.3–27.5°
b = 12.467 (11) ŵ = 0.63 mm1
c = 22.915 (19) ÅT = 296 K
β = 98.077 (12)°Prism, black
V = 7024 (10) Å30.22 × 0.22 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
8077 independent reflections
Radiation source: fine-focus sealed tube4987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 0 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scansh = 3232
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1516
Tmin = 0.871, Tmax = 0.910l = 2929
29161 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.05P)2 + 6P]
where P = (Fo2 + 2Fc2)/3
8077 reflections(Δ/σ)max = 0.001
483 parametersΔρmax = 0.68 e Å3
7 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C8H20N)[Mn(C22H18N2O4)(H2O)2][Fe(CN)6]·2CH4O·2C2H6OV = 7024 (10) Å3
Mr = 1429.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.83 (2) ŵ = 0.63 mm1
b = 12.467 (11) ÅT = 296 K
c = 22.915 (19) Å0.22 × 0.22 × 0.15 mm
β = 98.077 (12)°
Data collection top
Rigaku Mercury CCD
diffractometer
8077 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
4987 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.910Rint = 0.077
29161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0487 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
8077 reflectionsΔρmin = 0.61 e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.225696 (15)0.19335 (4)0.900599 (18)0.02057 (13)
N40.19214 (9)0.2894 (2)0.83582 (10)0.0222 (6)
N50.28072 (8)0.17122 (19)0.84607 (10)0.0200 (5)
O10.17142 (7)0.22371 (17)0.94799 (8)0.0257 (5)
O1W0.27767 (7)0.33754 (17)0.93263 (9)0.0270 (5)
H1C0.30720.31030.94950.041*
H1D0.25830.38110.94920.041*
O20.26287 (7)0.10405 (17)0.95897 (8)0.0242 (5)
O2W0.17979 (9)0.05630 (19)0.85739 (10)0.0389 (6)
H2C0.18060.04530.82090.058*
H2D0.17100.00780.88030.058*
O30.10898 (8)0.23257 (19)1.02928 (9)0.0335 (6)
O40.29094 (8)0.02186 (18)1.04843 (9)0.0334 (6)
C10.12920 (10)0.2894 (2)0.93726 (13)0.0237 (7)
C20.09377 (11)0.2957 (3)0.98106 (13)0.0281 (7)
C30.04880 (12)0.3622 (3)0.97292 (15)0.0364 (8)
H3A0.02540.36441.00120.044*
C40.03832 (12)0.4260 (3)0.92262 (15)0.0397 (9)
H4A0.00830.47140.91800.048*
C50.07180 (12)0.4224 (3)0.87996 (15)0.0352 (8)
H5A0.06470.46600.84680.042*
C60.11749 (11)0.3522 (3)0.88629 (13)0.0258 (7)
C70.14969 (11)0.3500 (3)0.83889 (13)0.0262 (7)
H7A0.13940.39620.80740.031*
C80.22164 (11)0.2927 (2)0.78637 (12)0.0222 (6)
C90.20642 (12)0.3505 (3)0.73467 (13)0.0302 (7)
H9A0.17430.38990.72970.036*
C100.23945 (13)0.3492 (3)0.69047 (14)0.0337 (8)
H10A0.22880.38640.65560.040*
C110.28830 (12)0.2927 (3)0.69809 (13)0.0293 (7)
H11A0.31090.29480.66900.035*
C120.30333 (11)0.2338 (3)0.74860 (13)0.0254 (7)
H12A0.33570.19530.75320.030*
C130.26995 (10)0.2317 (2)0.79300 (12)0.0210 (6)
C140.32186 (10)0.1053 (2)0.85617 (12)0.0231 (7)
H14A0.34470.10060.82740.028*
C150.33504 (11)0.0397 (2)0.90729 (13)0.0235 (7)
C160.37990 (11)0.0311 (3)0.90782 (14)0.0312 (8)
H16A0.39980.03130.87630.037*
C170.39398 (12)0.0988 (3)0.95406 (15)0.0370 (9)
H17A0.42300.14590.95360.044*
C180.36498 (12)0.0981 (3)1.00261 (15)0.0342 (8)
H18A0.37520.14381.03430.041*
C190.32150 (11)0.0299 (3)1.00317 (13)0.0256 (7)
C200.30518 (10)0.0404 (2)0.95564 (12)0.0208 (6)
C210.07320 (14)0.2277 (3)1.07371 (16)0.0481 (10)
H21A0.08860.18121.10510.072*
H21B0.03840.20031.05650.072*
H21C0.06880.29831.08910.072*
C220.30130 (15)0.0992 (3)1.09498 (16)0.0485 (10)
H22A0.27750.08601.12380.073*
H22B0.33840.09331.11320.073*
H22C0.29490.17001.07910.073*
Fe10.50000.20032 (5)0.75000.02048 (15)
N10.41520 (11)0.0258 (2)0.76940 (13)0.0398 (7)
N20.41795 (11)0.3708 (2)0.78020 (13)0.0413 (8)
N30.55820 (12)0.2277 (3)0.87850 (13)0.0478 (8)
C230.44759 (11)0.0900 (3)0.76426 (13)0.0268 (7)
C240.44855 (11)0.3079 (3)0.76920 (14)0.0270 (7)
C250.53541 (12)0.2119 (3)0.83165 (15)0.0312 (8)
O50.64242 (12)0.3872 (2)0.91758 (12)0.0636 (8)
H5B0.61440.34420.91070.076*
C26A0.6553 (5)0.3967 (12)0.9782 (6)0.068 (3)0.50
H26A0.68420.44820.98900.082*0.50
H26B0.66550.32820.99660.082*0.50
C270.5956 (4)0.4407 (8)0.9956 (3)0.100 (4)0.50
H27A0.59870.45171.03740.120*0.50
H27B0.56780.38840.98370.120*0.50
H27C0.58620.50720.97560.120*0.50
C26B0.6324 (4)0.4138 (8)0.9832 (3)0.068 (3)0.50
H26C0.59540.43650.98300.102*0.50
H26D0.65650.47000.99900.102*0.50
H26E0.63910.35081.00720.102*0.50
O60.34304 (10)0.5328 (2)0.76054 (11)0.0492 (7)
H6B0.36790.48400.76430.059*
C28A0.3171 (8)0.5434 (18)0.8071 (9)0.066 (7)0.50
H28A0.28660.59120.79600.080*0.50
H28B0.30280.47230.81280.080*0.50
C290.3422 (5)0.5759 (10)0.8626 (4)0.101 (4)0.50
H29A0.31620.57490.88990.152*0.50
H29B0.35620.64730.86010.152*0.50
H29C0.37160.52790.87610.152*0.50
C28B0.3076 (8)0.5330 (15)0.8069 (7)0.035 (4)0.50
H28C0.28220.47460.80050.053*0.50
H28D0.28800.59960.80570.053*0.50
H28E0.32930.52510.84470.053*0.50
N60.0021 (11)0.1619 (5)0.7622 (8)0.047 (4)0.50
C300.0566 (3)0.1690 (8)0.7791 (5)0.083 (3)0.50
H30A0.08150.19090.74520.100*0.50
H30B0.06730.09850.78990.100*0.50
C310.0630 (7)0.2493 (14)0.8296 (6)0.080 (4)0.50
H31A0.09990.24830.83770.120*0.50
H31B0.03900.22870.86440.120*0.50
H31C0.05390.32030.81810.120*0.50
C320.0420 (3)0.1427 (8)0.8130 (5)0.065 (3)0.50
H32A0.07620.13280.79870.078*0.50
H32B0.04520.20580.83720.078*0.50
C330.0319 (11)0.0444 (18)0.8536 (11)0.086 (6)0.50
H33A0.06150.03900.88530.129*0.50
H33B0.02990.02010.83050.129*0.50
H33C0.00150.05390.86950.129*0.50
C340.0129 (4)0.2695 (7)0.7327 (7)0.087 (5)0.50
H34A0.01770.29250.70530.104*0.50
H34B0.01890.32240.76340.104*0.50
C350.0620 (6)0.2682 (14)0.7047 (6)0.076 (4)0.50
H35A0.06790.33800.68910.114*0.50
H35B0.05620.21720.67300.114*0.50
H35C0.09330.24750.73180.114*0.50
C360.0001 (3)0.0690 (7)0.7169 (4)0.063 (3)0.50
H36A0.03700.06390.70900.075*0.50
H36B0.00800.00320.73560.075*0.50
C370.0355 (8)0.0791 (14)0.6618 (8)0.072 (5)0.50
H37A0.02990.01750.63820.107*0.50
H37B0.02710.14300.64160.107*0.50
H37C0.07280.08140.66860.107*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0194 (2)0.0256 (3)0.0178 (2)0.00585 (18)0.00654 (16)0.0020 (2)
N40.0220 (11)0.0259 (16)0.0192 (13)0.0031 (10)0.0042 (9)0.0006 (11)
N50.0212 (10)0.0234 (15)0.0159 (12)0.0017 (10)0.0045 (9)0.0002 (11)
O10.0235 (9)0.0327 (14)0.0225 (11)0.0096 (9)0.0088 (8)0.0039 (10)
O1W0.0277 (10)0.0267 (13)0.0274 (12)0.0059 (9)0.0064 (9)0.0024 (10)
O20.0259 (9)0.0271 (13)0.0208 (11)0.0100 (9)0.0080 (8)0.0017 (9)
O2W0.0513 (13)0.0386 (15)0.0287 (13)0.0140 (11)0.0126 (11)0.0040 (11)
O30.0313 (11)0.0445 (16)0.0281 (13)0.0057 (10)0.0161 (9)0.0062 (11)
O40.0388 (11)0.0376 (15)0.0264 (12)0.0155 (10)0.0138 (10)0.0135 (11)
C10.0197 (12)0.0272 (19)0.0248 (16)0.0023 (12)0.0047 (11)0.0058 (14)
C20.0246 (13)0.035 (2)0.0266 (17)0.0023 (13)0.0090 (12)0.0002 (15)
C30.0261 (15)0.051 (2)0.035 (2)0.0054 (15)0.0142 (14)0.0018 (18)
C40.0307 (16)0.048 (2)0.041 (2)0.0207 (16)0.0088 (14)0.0003 (18)
C50.0339 (16)0.039 (2)0.0325 (19)0.0133 (15)0.0064 (14)0.0043 (16)
C60.0236 (13)0.0289 (19)0.0252 (17)0.0069 (13)0.0045 (12)0.0012 (14)
C70.0258 (14)0.0297 (19)0.0229 (16)0.0050 (13)0.0029 (12)0.0035 (14)
C80.0242 (13)0.0249 (18)0.0187 (15)0.0015 (12)0.0073 (11)0.0006 (13)
C90.0287 (14)0.035 (2)0.0276 (18)0.0065 (14)0.0072 (13)0.0059 (15)
C100.0444 (18)0.036 (2)0.0214 (17)0.0023 (16)0.0092 (14)0.0069 (16)
C110.0357 (16)0.031 (2)0.0240 (17)0.0041 (14)0.0141 (13)0.0004 (15)
C120.0244 (13)0.0280 (19)0.0250 (17)0.0000 (13)0.0080 (12)0.0006 (14)
C130.0232 (13)0.0204 (17)0.0200 (15)0.0018 (12)0.0049 (11)0.0003 (13)
C140.0219 (13)0.0284 (19)0.0207 (16)0.0004 (12)0.0086 (11)0.0032 (14)
C150.0231 (13)0.0247 (18)0.0229 (16)0.0036 (12)0.0035 (11)0.0002 (13)
C160.0281 (14)0.041 (2)0.0266 (17)0.0130 (14)0.0113 (13)0.0017 (16)
C170.0327 (16)0.039 (2)0.041 (2)0.0195 (15)0.0107 (15)0.0094 (18)
C180.0375 (16)0.033 (2)0.0331 (19)0.0111 (15)0.0084 (14)0.0120 (16)
C190.0281 (14)0.0280 (19)0.0218 (16)0.0046 (13)0.0073 (12)0.0026 (14)
C200.0201 (13)0.0224 (18)0.0203 (15)0.0015 (12)0.0038 (11)0.0012 (13)
C210.048 (2)0.063 (3)0.040 (2)0.0018 (18)0.0297 (17)0.010 (2)
C220.062 (2)0.051 (3)0.038 (2)0.020 (2)0.0258 (18)0.0244 (19)
Fe10.0182 (3)0.0211 (4)0.0228 (3)0.0000.0049 (2)0.000
N10.0449 (16)0.040 (2)0.0385 (17)0.0147 (14)0.0206 (14)0.0062 (14)
N20.0348 (15)0.0362 (19)0.055 (2)0.0074 (13)0.0125 (14)0.0030 (16)
N30.0594 (19)0.048 (2)0.0325 (18)0.0101 (16)0.0060 (15)0.0024 (16)
C230.0257 (14)0.031 (2)0.0262 (17)0.0000 (14)0.0114 (12)0.0040 (14)
C240.0217 (13)0.0251 (19)0.0347 (18)0.0002 (14)0.0057 (12)0.0000 (15)
C250.0299 (15)0.027 (2)0.037 (2)0.0068 (14)0.0062 (14)0.0025 (16)
O50.092 (2)0.056 (2)0.0462 (18)0.0256 (16)0.0231 (15)0.0015 (15)
C26A0.093 (9)0.059 (5)0.058 (4)0.022 (6)0.034 (5)0.011 (3)
C270.130 (7)0.105 (7)0.079 (6)0.012 (6)0.066 (6)0.042 (5)
C26B0.093 (9)0.059 (5)0.058 (4)0.022 (6)0.034 (5)0.011 (3)
O60.0588 (15)0.0536 (19)0.0352 (15)0.0273 (13)0.0070 (13)0.0013 (13)
C28A0.042 (8)0.074 (12)0.080 (12)0.023 (8)0.002 (7)0.036 (8)
C290.105 (8)0.145 (12)0.052 (7)0.009 (8)0.006 (6)0.035 (7)
C28B0.041 (6)0.038 (7)0.031 (6)0.005 (5)0.023 (5)0.020 (5)
N60.024 (4)0.029 (3)0.086 (15)0.003 (4)0.002 (9)0.004 (4)
C300.029 (4)0.059 (7)0.157 (11)0.014 (4)0.000 (5)0.003 (7)
C310.067 (7)0.062 (9)0.111 (12)0.018 (6)0.014 (9)0.021 (11)
C320.032 (4)0.048 (7)0.111 (10)0.001 (4)0.007 (5)0.003 (6)
C330.070 (7)0.068 (11)0.118 (16)0.002 (7)0.010 (8)0.057 (9)
C340.056 (8)0.032 (5)0.163 (16)0.000 (4)0.018 (7)0.015 (7)
C350.070 (7)0.063 (9)0.089 (11)0.031 (6)0.007 (8)0.020 (9)
C360.051 (4)0.028 (5)0.107 (8)0.005 (4)0.001 (5)0.003 (5)
C370.067 (9)0.074 (16)0.073 (11)0.019 (11)0.006 (7)0.027 (10)
Geometric parameters (Å, º) top
Mn1—O21.880 (2)Fe1—C231.953 (3)
Mn1—O11.884 (2)Fe1—C251.958 (4)
Mn1—N51.996 (2)Fe1—C25i1.958 (4)
Mn1—N41.996 (3)N1—C231.152 (4)
Mn1—O2W2.210 (3)N2—C241.145 (4)
Mn1—O1W2.274 (2)N3—C251.158 (4)
N4—C71.307 (4)O5—C26A1.386 (13)
N4—C81.434 (3)O5—C26B1.594 (7)
N5—C141.306 (4)O5—H5B0.8747
N5—C131.424 (4)C26A—C271.679 (13)
O1—C11.326 (3)C26A—H26A0.9700
O1W—H1C0.8500C26A—H26B0.9700
O1W—H1D0.8500C27—H27A0.9600
O2—C201.328 (3)C27—H27B0.9600
O2W—H2C0.8501C27—H27C0.9600
O2W—H2D0.8499C26B—H26C0.9600
O3—C21.366 (4)C26B—H26D0.9600
O3—C211.444 (3)C26B—H26E0.9600
O4—C191.372 (3)O6—C28A1.33 (2)
O4—C221.434 (4)O6—C28B1.472 (16)
C1—C61.402 (4)O6—H6B0.8619
C1—C21.427 (4)C28A—C291.40 (2)
C2—C31.382 (4)C28A—H28A0.9700
C3—C41.395 (5)C28A—H28B0.9700
C3—H3A0.9300C29—H29A0.9600
C4—C51.370 (4)C29—H29B0.9600
C4—H4A0.9300C29—H29C0.9600
C5—C61.425 (4)C28B—H28C0.9600
C5—H5A0.9300C28B—H28D0.9600
C6—C71.437 (4)C28B—H28E0.9600
C7—H7A0.9300N6—N6ii0.58 (3)
C8—C91.393 (4)N6—C36ii1.252 (11)
C8—C131.410 (4)N6—C34ii1.377 (11)
C9—C101.390 (4)N6—C301.46 (2)
C9—H9A0.9300N6—C321.50 (3)
C10—C111.392 (4)N6—C361.561 (15)
C10—H10A0.9300N6—C341.571 (12)
C11—C121.378 (4)C30—C311.556 (18)
C11—H11A0.9300C30—H30A0.9600
C12—C131.400 (4)C30—H30B0.9600
C12—H12A0.9300C31—H31A0.9600
C14—C151.428 (4)C31—H31B0.9600
C14—H14A0.9300C31—H31C0.9599
C15—C201.417 (4)C32—C331.581 (14)
C15—C161.420 (4)C32—H32A0.9598
C16—C171.361 (4)C32—H32B0.9600
C16—H16A0.9300C33—H33A0.9600
C17—C181.408 (4)C33—H33B0.9601
C17—H17A0.9300C33—H33C0.9598
C18—C191.376 (4)C34—C351.455 (16)
C18—H18A0.9300C34—H34A0.9598
C19—C201.412 (4)C34—H34B0.9600
C21—H21A0.9600C35—H35A0.9601
C21—H21B0.9600C35—H35B0.9600
C21—H21C0.9600C35—H35C0.9600
C22—H22A0.9600C36—C371.44 (2)
C22—H22B0.9600C36—H36A0.9602
C22—H22C0.9600C36—H36B0.9599
Fe1—C24i1.945 (3)C37—H37A0.9601
Fe1—C241.945 (3)C37—H37B0.9600
Fe1—C23i1.953 (3)C37—H37C0.9599
O2—Mn1—O191.62 (10)C23i—Fe1—C2390.40 (19)
O2—Mn1—N593.02 (10)C24i—Fe1—C2586.79 (14)
O1—Mn1—N5175.24 (9)C24—Fe1—C2587.36 (13)
O2—Mn1—N4175.15 (8)C23i—Fe1—C2589.52 (13)
O1—Mn1—N492.89 (10)C23—Fe1—C2596.47 (13)
N5—Mn1—N482.44 (10)C24i—Fe1—C25i87.36 (13)
O2—Mn1—O2W91.82 (11)C24—Fe1—C25i86.79 (14)
O1—Mn1—O2W92.74 (10)C23i—Fe1—C25i96.47 (13)
N5—Mn1—O2W88.17 (10)C23—Fe1—C25i89.52 (13)
N4—Mn1—O2W89.75 (11)C25—Fe1—C25i171.5 (2)
O2—Mn1—O1W92.23 (10)N1—C23—Fe1176.0 (3)
O1—Mn1—O1W94.28 (9)N2—C24—Fe1179.4 (3)
N5—Mn1—O1W84.49 (9)N3—C25—Fe1173.8 (3)
N4—Mn1—O1W85.66 (10)C26A—O5—H5B107.4
O2W—Mn1—O1W171.79 (8)C26B—O5—H5B94.1
C7—N4—C8122.1 (3)O5—C26A—C27100.3 (10)
C7—N4—Mn1124.2 (2)O5—C26A—H26A111.7
C8—N4—Mn1113.49 (18)C27—C26A—H26A111.7
C14—N5—C13122.2 (2)O5—C26A—H26B111.7
C14—N5—Mn1124.3 (2)C27—C26A—H26B111.7
C13—N5—Mn1113.47 (17)H26A—C26A—H26B109.5
C1—O1—Mn1128.92 (19)C26A—C27—H27A109.5
Mn1—O1W—H1C104.2C26A—C27—H27B109.5
Mn1—O1W—H1D108.6H27A—C27—H27B109.5
H1C—O1W—H1D123.9C26A—C27—H27C109.5
C20—O2—Mn1128.80 (18)H27A—C27—H27C109.5
Mn1—O2W—H2C118.9H27B—C27—H27C109.5
Mn1—O2W—H2D115.8O5—C26B—H26C109.5
H2C—O2W—H2D122.5O5—C26B—H26D109.5
C2—O3—C21117.9 (2)H26C—C26B—H26D109.5
C19—O4—C22116.9 (2)O5—C26B—H26E109.5
O1—C1—C6124.4 (2)H26C—C26B—H26E109.5
O1—C1—C2116.9 (3)H26D—C26B—H26E109.5
C6—C1—C2118.7 (3)C28A—O6—H6B114.3
O3—C2—C3125.5 (3)C28B—O6—H6B115.0
O3—C2—C1114.2 (3)O6—C28A—C29123.8 (17)
C3—C2—C1120.3 (3)O6—C28A—H28A107.4
C2—C3—C4120.5 (3)C29—C28A—H28A107.1
C2—C3—H3A119.8O6—C28A—H28B104.2
C4—C3—H3A119.8C29—C28A—H28B105.6
C5—C4—C3120.6 (3)H28A—C28A—H28B107.9
C5—C4—H4A119.7C28A—C29—H29A109.5
C3—C4—H4A119.7C28A—C29—H29B109.5
C4—C5—C6120.1 (3)H29A—C29—H29B109.5
C4—C5—H5A119.9C28A—C29—H29C109.5
C6—C5—H5A119.9H29A—C29—H29C109.5
C1—C6—C5119.8 (3)H29B—C29—H29C109.5
C1—C6—C7123.2 (3)O6—C28B—H28C109.5
C5—C6—C7117.0 (3)O6—C28B—H28D109.5
N4—C7—C6126.2 (3)H28C—C28B—H28D109.5
N4—C7—H7A116.9O6—C28B—H28E109.5
C6—C7—H7A116.9H28C—C28B—H28E109.5
C9—C8—C13119.7 (2)H28D—C28B—H28E109.5
C9—C8—N4125.4 (3)C30—N6—C32114.0 (11)
C13—C8—N4114.9 (2)C30—N6—C36109.9 (16)
C10—C9—C8119.8 (3)C32—N6—C36107.9 (12)
C10—C9—H9A120.1C30—N6—C34110.3 (12)
C8—C9—H9A120.1C32—N6—C34106.2 (15)
C9—C10—C11120.5 (3)C36—N6—C34108.4 (10)
C9—C10—H10A119.8N6—C30—C31115.5 (11)
C11—C10—H10A119.8N6—C30—H30A108.5
C12—C11—C10120.2 (3)C31—C30—H30A107.3
C12—C11—H11A119.9N6—C30—H30B108.1
C10—C11—H11A119.9C31—C30—H30B109.6
C11—C12—C13120.2 (3)H30A—C30—H30B107.5
C11—C12—H12A119.9C30—C31—H31A109.6
C13—C12—H12A119.9C30—C31—H31B109.3
C12—C13—C8119.6 (3)H31A—C31—H31B109.5
C12—C13—N5124.8 (3)C30—C31—H31C109.6
C8—C13—N5115.6 (2)H31A—C31—H31C109.5
N5—C14—C15126.1 (2)H31B—C31—H31C109.5
N5—C14—H14A117.0N6—C32—C33115.0 (14)
C15—C14—H14A117.0N6—C32—H32A109.9
C20—C15—C16119.5 (3)C33—C32—H32A108.8
C20—C15—C14123.6 (3)N6—C32—H32B108.0
C16—C15—C14116.9 (3)C33—C32—H32B107.5
C17—C16—C15120.5 (3)H32A—C32—H32B107.3
C17—C16—H16A119.8C32—C33—H33A109.4
C15—C16—H16A119.8C32—C33—H33B108.8
C16—C17—C18120.5 (3)H33A—C33—H33B109.5
C16—C17—H17A119.8C32—C33—H33C110.2
C18—C17—H17A119.8H33A—C33—H33C109.5
C19—C18—C17120.0 (3)H33B—C33—H33C109.5
C19—C18—H18A120.0C35—C34—N6116.3 (11)
C17—C18—H18A120.0C35—C34—H34A110.6
O4—C19—C18124.8 (3)N6—C34—H34A108.8
O4—C19—C20114.1 (2)C35—C34—H34B106.2
C18—C19—C20121.1 (3)N6—C34—H34B107.1
O2—C20—C19118.0 (2)H34A—C34—H34B107.5
O2—C20—C15123.6 (3)C34—C35—H35A109.5
C19—C20—C15118.3 (3)C34—C35—H35B107.2
O3—C21—H21A109.5H35A—C35—H35B109.5
O3—C21—H21B109.5C34—C35—H35C111.7
H21A—C21—H21B109.5H35A—C35—H35C109.5
O3—C21—H21C109.5H35B—C35—H35C109.5
H21A—C21—H21C109.5C37—C36—N6116.3 (13)
H21B—C21—H21C109.5C37—C36—H36A108.9
O4—C22—H22A109.5N6—C36—H36A107.4
O4—C22—H22B109.5C37—C36—H36B108.9
H22A—C22—H22B109.5N6—C36—H36B107.9
O4—C22—H22C109.5H36A—C36—H36B107.2
H22A—C22—H22C109.5C36—C37—H37A107.7
H22B—C22—H22C109.5C36—C37—H37B110.3
C24i—Fe1—C2492.78 (19)H37A—C37—H37B109.5
C24i—Fe1—C23i88.50 (14)C36—C37—H37C110.4
C24—Fe1—C23i176.55 (13)H37A—C37—H37C109.5
C24i—Fe1—C23176.55 (13)H37B—C37—H37C109.5
C24—Fe1—C2388.50 (14)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O3iii0.852.142.959 (4)162
O1W—H1C···O1iii0.852.372.948 (3)125
O1W—H1D···O4iii0.852.142.929 (3)153
O1W—H1D···O2iii0.852.252.901 (3)134
O2W—H2C···O6iv0.851.882.698 (4)160
O2W—H2D···O5v0.851.912.751 (4)168
O5—H5B···N30.872.082.934 (5)166
O6—H6B···N20.861.882.739 (4)173
Symmetry codes: (iii) x+1/2, y+1/2, z+2; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Mn(C22H18N2O4)(H2O)2][Fe(CN)6]·2CH4O·2C2H6O
Mr1429.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)24.83 (2), 12.467 (11), 22.915 (19)
β (°) 98.077 (12)
V3)7024 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.22 × 0.22 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.871, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
29161, 8077, 4987
Rint0.077
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.05
No. of reflections8077
No. of parameters483
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.61

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O21.880 (2)Mn1—O1W2.274 (2)
Mn1—O11.884 (2)Fe1—C241.945 (3)
Mn1—N51.996 (2)Fe1—C231.953 (3)
Mn1—N41.996 (3)Fe1—C251.958 (4)
Mn1—O2W2.210 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O3i0.852.142.959 (4)162
O1W—H1C···O1i0.852.372.948 (3)125
O1W—H1D···O4i0.852.142.929 (3)153
O1W—H1D···O2i0.852.252.901 (3)134
O2W—H2C···O6ii0.851.882.698 (4)160
O2W—H2D···O5iii0.851.912.751 (4)168
O5—H5B···N30.872.082.934 (5)166
O6—H6B···N20.861.882.739 (4)173
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y1/2, z.
 

Acknowledgements

We thank the Social Development Foundation of Jiangsu Province of China (BS2006038) and the Social Development Foundation of Zhenjiang, Jiangsu Province of China (SH2006057).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn,Germany.  Google Scholar
First citationLi, S. N., Li, J., Tang, Z. X. & Zhou, Z. Y. (2001). Acta Chim. Sin. 59, 78–83.  CAS Google Scholar
First citationMascharak, P. K. (1986). Inorg. Chem. 25, 245–247.  CrossRef CAS Web of Science Google Scholar
First citationMatsumoto, N., Takemoto, A., Ohyoshi, A. & Okawa, H. (1988). Bull. Chem. Soc. Jpn, 61, 2984–2986.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds