

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(E)-3-Pyridylmethylidene]benzohydrazide

Liyuan Wen, Handong Yin,* Wenkuan Li and Kang Li

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 22 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.042; wR factor = 0.104; data-to-parameter ratio = 7.4.

The title compound, C₁₃H₁₁N₃O, was prepared by the reaction of benzohydrazide and nicotinaldehyde. The dihedral angle between the planes of the two aromatic rings is $47.78 (9)^{\circ}$. The crystal structure is stabilized by intermolecular N-H···N hydrogen-bonding interactions.

Related literature

For related structures, see: Yin et al. (2008).

Experimental

Crystal data C13H11N3O $M_r = 225.25$ Orthorhombic, $P2_12_12_1$ a = 7.6193 (13) Å

b = 10.6291 (17) Åc = 13.530 (2) Å V = 1095.7 (3) Å³ Z = 4

organic compounds

T = 298 K $0.21 \times 0.18 \times 0.08 \text{ mm}$

Data collection

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

5473 measured reflections
1136 independent reflections
612 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.073$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 154 parameters $wR(F^2) = 0.104$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-2}$ S = 1.18 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 1136 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots N3^i$	0.86	2.40	3.236 (5)	164
Commentary and as (i)		1		

Symmetry code: (i) $-x + \frac{1}{2}, -y + 2, z - \frac{1}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the National Natural Science Foundation of China (20771053), the Natural Science Foundation of Shandong Province (Y2008B48) and the Students Technology Cultural Innovation Fund of Liaocheng University (SRT08044HX2) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2228).

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Yin, H., Cui, J. & Qiao, Y. (2008). Polyhedron, 27, 2157-2166.

supporting information

Acta Cryst. (2009). E65, o2623 [https://doi.org/10.1107/S160053680903894X]

N'-[(*E*)-3-Pyridylmethylidene]benzohydrazide

Liyuan Wen, Handong Yin, Wenkuan Li and Kang Li

S1. Comment

Acylhydrazones, as an example of Schiff bases, and their metal complexes have been widely studied due to their versatile applications in the fields of analytical and medicinal chemistry and biotechnology. These ligands, owing to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate with metals (Yin *et al.*, 2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The hydrazone molecule crystallizes as an E isomer. In the crystal structure, there exist intermolecular N —H···N hydrogen bonds (Table 1). As seen in Fig. 2, the molecules are linked into one-dimensional extended chain structure.

S2. Experimental

A mixture of benzohydrazide (10 mmol) and nicotinaldehyde (10 mmol) was refluxed in ethanol (40 ml) for 2 h at 353K. After the solution had cooled down to room temperature yellow sediment appeared. The product was crystallized from a solution of methanol to yield yellow block-shaped crystals of the title compound (yield 78%). Anal. Calcd (%) for $C_{13}H_{11}N_{3}O$ (Mr = 225.25): C,69.32; H, 4.92; N, 18.65. Found (%): C, 69.21; H, 4.97; N, 18.76.

S3. Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The C—H and N—H H atoms were positioned with idealized geometry (N—H = 0.86 Å and C—H = 0.93 Å) and were refined using a riding model approximation with $U_{iso}(H) = 1.2 U_{eq}(C, N)$.

Figure 1

The molecule of the title compound, shown with 50% probability displacement ellipsoids.

F(000) = 472

 $\theta = 2.4 - 25.1^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, yellow

 $0.21 \times 0.18 \times 0.08 \text{ mm}$

5473 measured reflections 1136 independent reflections 612 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.4^\circ$

T = 298 K

 $R_{\rm int} = 0.073$

 $h = -9 \rightarrow 8$ $k = -12 \rightarrow 11$ $l = -12 \rightarrow 16$

 $D_{\rm x} = 1.365 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 764 reflections

Figure 2

A view of the one-dimensional extended chain structure in the title compound.

N'-[(*E*)-3-Pyridylmethylidene]benzohydrazide

Crystal data

 $C_{13}H_{11}N_3O$ $M_r = 225.25$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.6193 (13) Å b = 10.6291 (17) Å c = 13.530 (2) Å V = 1095.7 (3) Å³ Z = 4

Data collection

Siemens SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.981, \ T_{\max} = 0.993$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
<i>S</i> = 1.18	H-atom parameters constrained
1136 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0242P)^2 + 0.2399P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.20$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.1276 (5)	0.7488 (3)	0.4106 (3)	0.0430 (12)	
H1	0.1551	0.8129	0.3750	0.052*	
N2	0.1085 (5)	0.7596 (4)	0.5111 (3)	0.0410 (11)	
N3	0.1881 (5)	1.0185 (4)	0.7966 (3)	0.0450 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

01	0.0701 (5)	0.5389 (3)	0.4181 (2)	0.0544 (10)
C1	0.1015 (7)	0.6334 (4)	0.3688 (4)	0.0386 (13)
C2	0.1109 (6)	0.6291 (4)	0.2602 (3)	0.0327 (12)
C3	0.0535 (7)	0.7257 (4)	0.2001 (4)	0.0438 (14)
H3	0.0107	0.7992	0.2285	0.053*
C4	0.0588 (7)	0.7150 (5)	0.0986 (4)	0.0523 (15)
H4	0.0175	0.7805	0.0594	0.063*
C5	0.1247 (7)	0.6078 (5)	0.0548 (4)	0.0559 (17)
Н5	0.1301	0.6013	-0.0137	0.067*
C6	0.1826 (7)	0.5105 (4)	0.1136 (4)	0.0515 (15)
H6	0.2268	0.4376	0.0848	0.062*
C7	0.1748 (6)	0.5212 (4)	0.2156 (4)	0.0448 (14)
H7	0.2132	0.4547	0.2547	0.054*
C8	0.1525 (6)	0.8640 (5)	0.5499 (3)	0.0446 (14)
H8	0.1941	0.9288	0.5101	0.054*
C9	0.1968 (6)	0.9926 (4)	0.6998 (3)	0.0432 (14)
H9	0.2460	1.0533	0.6588	0.052*
C10	0.1383 (6)	0.8825 (4)	0.6558 (4)	0.0365 (13)
C11	0.0676 (6)	0.7933 (4)	0.7186 (4)	0.0416 (14)
H11	0.0272	0.7173	0.6933	0.050*
C12	0.0567 (7)	0.8168 (5)	0.8183 (4)	0.0492 (15)
H12	0.0094	0.7572	0.8610	0.059*
C13	0.1173 (6)	0.9306 (5)	0.8537 (4)	0.0497 (15)
H13	0.1080	0.9465	0.9211	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.066 (3)	0.036 (2)	0.026 (2)	-0.006 (2)	0.001 (2)	-0.0031 (19)
N2	0.051 (3)	0.039 (2)	0.033 (3)	-0.002(2)	0.003 (2)	0.0001 (19)
N3	0.048 (3)	0.046 (2)	0.041 (3)	-0.003 (2)	0.001 (2)	-0.008(2)
01	0.080 (3)	0.0399 (19)	0.044 (2)	-0.009 (2)	-0.004(2)	0.0059 (18)
C1	0.043 (3)	0.036 (3)	0.037 (3)	-0.005 (3)	-0.006 (3)	-0.003(3)
C2	0.030 (3)	0.033 (3)	0.035 (3)	-0.004 (3)	0.002 (3)	-0.004(2)
C3	0.057 (4)	0.033 (3)	0.042 (4)	0.004 (3)	0.005 (3)	-0.005 (3)
C4	0.063 (4)	0.054 (3)	0.040 (4)	-0.002 (3)	-0.007 (3)	0.003 (3)
C5	0.077 (4)	0.056 (4)	0.035 (3)	-0.002(3)	0.002 (3)	-0.006(3)
C6	0.063 (4)	0.037 (3)	0.055 (4)	0.004 (3)	0.005 (3)	-0.011 (3)
C7	0.050 (4)	0.036 (3)	0.049 (4)	-0.004 (3)	0.000 (3)	-0.001 (3)
C8	0.057 (4)	0.039 (3)	0.038 (3)	-0.003 (3)	0.001 (3)	0.003 (3)
С9	0.056 (4)	0.038 (3)	0.036 (3)	-0.002(3)	0.002 (3)	0.000 (3)
C10	0.044 (3)	0.035 (3)	0.030 (3)	-0.002 (3)	0.000 (3)	0.002 (2)
C11	0.045 (4)	0.038 (3)	0.042 (4)	-0.002(3)	0.000 (3)	-0.002 (3)
C12	0.060 (4)	0.048 (3)	0.039 (3)	-0.010 (3)	0.004 (3)	0.006 (3)
C13	0.052 (4)	0.061 (3)	0.037 (3)	-0.002(3)	0.004 (3)	-0.006(3)

Geometric parameters (Å, °)

N1—C1	1.365 (5)	С5—Н5	0.9300
N1—N2	1.372 (5)	C6—C7	1.386 (6)
N1—H1	0.8600	С6—Н6	0.9300
N2—C8	1.273 (6)	C7—H7	0.9300
N3—C13	1.327 (6)	C8—C10	1.451 (6)
N3—C9	1.340 (5)	C8—H8	0.9300
01—C1	1.229 (5)	C9—C10	1.386 (6)
C1—C2	1.473 (6)	С9—Н9	0.9300
С2—С3	1.380 (6)	C10—C11	1.381 (6)
C2—C7	1.385 (6)	C11—C12	1.375 (6)
C3—C4	1.378 (6)	C11—H11	0.9300
С3—Н3	0.9300	C12—C13	1.381 (6)
C4—C5	1.379 (6)	C12—H12	0.9300
C4—H4	0.9300	C13—H13	0.9300
C5—C6	1.377 (6)		
C1—N1—N2	118.1 (4)	С7—С6—Н6	120.0
C1—N1—H1	121.0	C2—C7—C6	121.1 (5)
N2—N1—H1	121.0	C2—C7—H7	119.5
C8—N2—N1	117.0 (4)	C6—C7—H7	119.5
C13—N3—C9	116.4 (4)	N2-C8-C10	120.4 (5)
01—C1—N1	122.5 (5)	N2—C8—H8	119.8
O1—C1—C2	121.7 (5)	С10—С8—Н8	119.8
N1-C1-C2	115.7 (4)	N3—C9—C10	125.2 (4)
C3—C2—C7	118.1 (4)	N3—C9—H9	117.4
C3—C2—C1	123.4 (5)	С10—С9—Н9	117.4
C7—C2—C1	118.5 (5)	C11—C10—C9	116.2 (4)
C4—C3—C2	121.1 (5)	C11—C10—C8	122.9 (5)
С4—С3—Н3	119.5	C9—C10—C8	120.9 (5)
С2—С3—Н3	119.5	C12-C11-C10	120.1 (5)
C3—C4—C5	120.5 (5)	C12-C11-H11	119.9
C3—C4—H4	119.8	C10-C11-H11	119.9
C5—C4—H4	119.8	C11—C12—C13	118.6 (5)
C6—C5—C4	119.2 (5)	C11—C12—H12	120.7
С6—С5—Н5	120.4	C13—C12—H12	120.7
С4—С5—Н5	120.4	N3—C13—C12	123.4 (5)
C5—C6—C7	120.0 (5)	N3—C13—H13	118.3
С5—С6—Н6	120.0	C12—C13—H13	118.3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···N3 ⁱ	0.86	2.40	3.236 (5)	164

Symmetry code: (i) -x+1/2, -y+2, z-1/2.