organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro-3-quinol­yl)-3-phenyl­thia­zolidin-4-one

aSchool of Chemical Engineering, Huaihai Institute of Technology, Lianyun-gang Jiangsu 222005, People's Republic of China, and bDepartment of Chemistry, Nanjing University, Nanjing Jiangsu 210093, People's Republic of China
*Correspondence e-mail: liuww2007ly@yahoo.com.cn

(Received 1 August 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C18H13ClN2OS, the thia­zolidinone ring is slightly distorted and adopts a envelope conformation. The basal plane is nearly perpendicular to the quinoline ring, forming a dihedral angle of 86.1 (1)°, and makes a dihedral angle of 14.9 (1)° to the benzene ring. The benzene ring is also nearly perpendicular to the quinoline ring, forming a dihedral angle of 89.4 (1)°. In the crystal, non-classical C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, forming polymers along b.

Related literature

For the biological activity of thia­zolidinone derivatives, see: Abd Elhafez et al. (2003[Abd Elhafez, O. M., El Din Ahmed Mohamed El Khrisy, E., Badria, F. & El Din Mohamed Fathy, A. (2003). Arch. Pharm. Res. 26, 686-696.]); Kuecuekguezel et al. (2006[Kuecuekguezel, G., Kocatepe, A., De Clercq, E., Sahin, F. & Guelluece, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Shih & Ke (2004[Shih, M.-H. & Ke, F.-Y. (2004). Bioorg. Med. Chem. 12, 4633-4643.]); Subudhi et al. (2007[Subudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114-118.]); Srivastava et al. (2006[Srivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118-1123.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN2OS

  • Mr = 340.81

  • Monoclinic, C 2/c

  • a = 16.1192 (6) Å

  • b = 12.7502 (5) Å

  • c = 16.8949 (6) Å

  • β = 110.379 (2)°

  • V = 3255.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 12810 measured reflections

  • 2883 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 2883 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N1i 0.93 2.63 3.514 (3) 158
C3—H3A⋯O1ii 0.93 2.35 3.192 (2) 151
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidinone derivatives are important heterocyclic nitrogen compounds which display a wide range of biological activity. Some synthetic thiazolidinones have been used as antiviral (Abd Elhafez et al., 2003), antioxidant (Shih and Ke, 2004), antimycobacterial (Kuecuekguezel et al., 2006), antimicrobial (Subudhi et al., 2007), and also as antiinflammatory (Srivastava et al., 2006). We report here the structure of 2-(2-chloroquinolin-3-yl)- 3-phenylthiazolidin-4-one, (I).

In (I), the thiazolidinone ring is slightly distorted and adopts a envelope conformation: the atoms of C11, C12, N2 and C10 are coplanar, with S1 deviating from the defined plane by 0.673 Å. The basal plane is nearly perpendicular to the quinoline ring, forming a dihedral angle of 86.1 (1) °, and makes a dihedral angle of 14.9 (1) ° to benzene ring. The benzene ring is also nearly to perpendicular to the quinoline ring, forming a dihedral angle of 89.4 (1) °.

There are two non-classical hydrogen bonds of C3—H3A···O1 and C8—H8A···N1 in the crystal structure. The former links the adjacent molecules forming dimmers, while the latter also links another adjacent molecules forming polymers. The two above mentioned non-classical hydrogen bonds link the molecules forming polymers along b.

Related literature top

For the biological activity of thiazolidinone derivatives, see: Abd Elhafez et al. (2003); Kuecuekguezel et al. (2006); Shih & Ke (2004); Subudhi et al. (2007); Srivastava et al. (2006).

Experimental top

A solution of 2-chloroquinoline-3-carbadehyde (1.92 g, 10 mmol) and 5 mmol aniline (0.5 ml, 5.5 mmol) in anhydrous THF (30 ml) was stirred under ice-cold conditions for 5 min, followed by addition of mercapto acid (1.1 ml, 15 mmol). Dicyclohexylcarbodiimide (DCC) (6 mmol) was added to the reaction mixture 5 min later, the resulting mixture was stirred at ambient temperature for 1 h. Dicyclohexylurea (DCU) was removed by filtration and the filtrate was concentrated under reduced pressure and the residue was taken up in some ethyl acetate. The organic layer was successively washed with 5% aq. citric acid, water, 5% aq. sodium hydrogen carbonate, and then finally with brine. The organic layer was dried over magnesium sulfate and the solvent was removed under reduced pressure to get a crude product that was purified by column chromatography on silica gel with petroleum ether and ethyl acetate as eluents for stepwise elution. The colorless single crystals of the title compound suitable for X-raycrystallographic analysis were obtained by recrystallization from a mixture of petroleum ether and ethyl acetate. m.p.426–428 K.

Refinement top

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å. with Uiso((Cmethyl)) = 1.5Ueq; Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Thiazolidinone derivatives are important heterocyclic nitrogen compounds which display a wide range of biological activity. Some synthetic thiazolidinones have been used as antiviral (Abd Elhafez et al., 2003), antioxidant (Shih and Ke, 2004), antimycobacterial (Kuecuekguezel et al., 2006), antimicrobial (Subudhi et al., 2007), and also as antiinflammatory (Srivastava et al., 2006). We report here the structure of 2-(2-chloroquinolin-3-yl)- 3-phenylthiazolidin-4-one, (I).

In (I), the thiazolidinone ring is slightly distorted and adopts a envelope conformation: the atoms of C11, C12, N2 and C10 are coplanar, with S1 deviating from the defined plane by 0.673 Å. The basal plane is nearly perpendicular to the quinoline ring, forming a dihedral angle of 86.1 (1) °, and makes a dihedral angle of 14.9 (1) ° to benzene ring. The benzene ring is also nearly to perpendicular to the quinoline ring, forming a dihedral angle of 89.4 (1) °.

There are two non-classical hydrogen bonds of C3—H3A···O1 and C8—H8A···N1 in the crystal structure. The former links the adjacent molecules forming dimmers, while the latter also links another adjacent molecules forming polymers. The two above mentioned non-classical hydrogen bonds link the molecules forming polymers along b.

For the biological activity of thiazolidinone derivatives, see: Abd Elhafez et al. (2003); Kuecuekguezel et al. (2006); Shih & Ke (2004); Subudhi et al. (2007); Srivastava et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram of (I). The broken lines indicate hydrogen bonds.
2-(2-Chloro-3-quinolyl)-3-phenylthiazolidin-4-one top
Crystal data top
C18H13ClN2OSF(000) = 1408
Mr = 340.81Dx = 1.391 Mg m3
Monoclinic, C2/cMelting point = 426–428 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.1192 (6) ÅCell parameters from 3808 reflections
b = 12.7502 (5) Åθ = 2.7–26.3°
c = 16.8949 (6) ŵ = 0.37 mm1
β = 110.379 (2)°T = 296 K
V = 3255.0 (2) Å3Block, pale yellow
Z = 80.35 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2165 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
φ and ω scansh = 1919
12810 measured reflectionsk = 1415
2883 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 1.9966P]
where P = (Fo2 + 2Fc2)/3
2883 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H13ClN2OSV = 3255.0 (2) Å3
Mr = 340.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.1192 (6) ŵ = 0.37 mm1
b = 12.7502 (5) ÅT = 296 K
c = 16.8949 (6) Å0.35 × 0.20 × 0.15 mm
β = 110.379 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2165 reflections with I > 2σ(I)
12810 measured reflectionsRint = 0.027
2883 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2883 reflectionsΔρmin = 0.24 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18759 (4)0.86407 (6)0.14286 (3)0.0776 (2)
S10.35490 (4)1.06043 (5)0.23906 (4)0.0743 (2)
N10.13806 (10)0.84780 (14)0.27204 (10)0.0529 (4)
C50.23728 (14)0.88458 (16)0.50321 (12)0.0505 (5)
H5A0.29110.90130.54460.061*
C20.29190 (12)0.89607 (15)0.30682 (11)0.0432 (5)
C10.20616 (13)0.86948 (16)0.25139 (11)0.0486 (5)
N20.45307 (10)0.91604 (14)0.33821 (9)0.0483 (4)
C90.14837 (12)0.85342 (15)0.35618 (12)0.0455 (5)
C30.30220 (12)0.89873 (15)0.39034 (11)0.0433 (5)
H3A0.35760.91370.43000.052*
C40.23063 (12)0.87924 (15)0.41773 (11)0.0418 (4)
C80.07547 (14)0.83422 (19)0.38073 (13)0.0581 (6)
H8A0.02100.81750.34030.070*
C100.36487 (12)0.92437 (17)0.27408 (11)0.0488 (5)
H10A0.36130.87850.22650.059*
C130.49430 (13)0.81620 (18)0.35847 (12)0.0516 (5)
C60.16534 (14)0.86545 (18)0.52517 (13)0.0578 (6)
H6A0.17010.86930.58160.069*
C70.08402 (14)0.8399 (2)0.46357 (14)0.0635 (6)
H7A0.03530.82680.47950.076*
O10.55375 (11)1.01688 (16)0.43920 (10)0.0849 (6)
C180.44621 (16)0.72616 (19)0.32907 (14)0.0624 (6)
H18A0.38630.73080.29690.075*
C120.48571 (15)1.0079 (2)0.37932 (14)0.0613 (6)
C140.58436 (16)0.8072 (2)0.40572 (14)0.0731 (7)
H14A0.61840.86690.42580.088*
C110.42542 (19)1.0985 (2)0.34260 (17)0.0841 (8)
H11A0.45961.16000.33960.101*
H11B0.39041.11500.37750.101*
C160.5747 (2)0.6209 (3)0.3948 (2)0.0937 (9)
H16A0.60150.55560.40820.112*
C170.4867 (2)0.6282 (2)0.34713 (18)0.0835 (8)
H17A0.45390.56770.32680.100*
C150.6223 (2)0.7092 (3)0.42233 (18)0.0950 (10)
H15A0.68240.70360.45340.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0609 (4)0.1297 (6)0.0347 (3)0.0162 (4)0.0073 (2)0.0082 (3)
S10.0791 (5)0.0764 (4)0.0645 (4)0.0054 (4)0.0214 (3)0.0224 (3)
N10.0406 (9)0.0694 (12)0.0419 (9)0.0089 (9)0.0060 (7)0.0041 (8)
C50.0442 (11)0.0637 (13)0.0414 (10)0.0034 (10)0.0122 (9)0.0016 (10)
C20.0385 (10)0.0500 (11)0.0375 (9)0.0028 (9)0.0086 (8)0.0009 (8)
C10.0451 (11)0.0600 (13)0.0352 (10)0.0032 (10)0.0072 (9)0.0028 (9)
N20.0397 (9)0.0629 (11)0.0414 (8)0.0110 (8)0.0131 (7)0.0021 (8)
C90.0404 (11)0.0488 (12)0.0443 (10)0.0034 (9)0.0108 (9)0.0007 (9)
C30.0337 (10)0.0538 (12)0.0380 (10)0.0036 (9)0.0069 (8)0.0020 (8)
C40.0379 (10)0.0457 (11)0.0392 (9)0.0010 (9)0.0099 (8)0.0007 (8)
C80.0407 (11)0.0739 (15)0.0563 (13)0.0125 (11)0.0128 (10)0.0010 (11)
C100.0444 (11)0.0641 (13)0.0360 (10)0.0066 (10)0.0116 (8)0.0013 (9)
C130.0488 (12)0.0720 (15)0.0406 (10)0.0003 (11)0.0237 (9)0.0066 (10)
C60.0576 (13)0.0723 (15)0.0474 (11)0.0042 (12)0.0233 (10)0.0014 (10)
C70.0489 (13)0.0824 (17)0.0647 (14)0.0100 (12)0.0266 (11)0.0031 (12)
O10.0623 (10)0.1135 (15)0.0676 (10)0.0327 (10)0.0083 (9)0.0206 (10)
C180.0603 (14)0.0692 (16)0.0676 (14)0.0016 (13)0.0346 (12)0.0020 (12)
C120.0547 (13)0.0780 (17)0.0527 (12)0.0226 (13)0.0204 (11)0.0058 (12)
C140.0569 (14)0.099 (2)0.0590 (14)0.0021 (14)0.0147 (11)0.0118 (13)
C110.097 (2)0.0620 (16)0.0873 (18)0.0189 (15)0.0247 (16)0.0036 (14)
C160.102 (3)0.094 (2)0.096 (2)0.032 (2)0.048 (2)0.0265 (18)
C170.104 (2)0.0750 (19)0.090 (2)0.0042 (17)0.0571 (18)0.0035 (15)
C150.0746 (19)0.123 (3)0.0808 (19)0.029 (2)0.0185 (15)0.0279 (19)
Geometric parameters (Å, º) top
Cl1—C11.7534 (19)C10—H10A0.9800
S1—C111.790 (3)C13—C181.377 (3)
S1—C101.822 (2)C13—C141.397 (3)
N1—C11.292 (3)C6—C71.399 (3)
N1—C91.374 (2)C6—H6A0.9300
C5—C61.357 (3)C7—H7A0.9300
C5—C41.412 (3)O1—C121.211 (3)
C5—H5A0.9300C18—C171.393 (4)
C2—C31.363 (2)C18—H18A0.9300
C2—C11.414 (3)C12—C111.497 (4)
C2—C101.508 (3)C14—C151.377 (4)
N2—C121.370 (3)C14—H14A0.9300
N2—C131.422 (3)C11—H11A0.9700
N2—C101.461 (2)C11—H11B0.9700
C9—C81.397 (3)C16—C151.349 (4)
C9—C41.410 (2)C16—C171.369 (4)
C3—C41.407 (3)C16—H16A0.9300
C3—H3A0.9300C17—H17A0.9300
C8—C71.360 (3)C15—H15A0.9300
C8—H8A0.9300
C11—S1—C1089.23 (11)C18—C13—N2120.15 (19)
C1—N1—C9117.38 (16)C14—C13—N2121.1 (2)
C6—C5—C4120.21 (19)C5—C6—C7120.5 (2)
C6—C5—H5A119.9C5—C6—H6A119.8
C4—C5—H5A119.9C7—C6—H6A119.8
C3—C2—C1115.48 (18)C8—C7—C6120.7 (2)
C3—C2—C10123.01 (16)C8—C7—H7A119.6
C1—C2—C10121.45 (16)C6—C7—H7A119.6
N1—C1—C2126.77 (18)C13—C18—C17120.4 (2)
N1—C1—Cl1114.97 (14)C13—C18—H18A119.8
C2—C1—Cl1118.26 (16)C17—C18—H18A119.8
C12—N2—C13125.37 (18)O1—C12—N2125.5 (2)
C12—N2—C10114.62 (18)O1—C12—C11122.8 (2)
C13—N2—C10119.76 (17)N2—C12—C11111.71 (19)
N1—C9—C8119.12 (17)C15—C14—C13119.3 (3)
N1—C9—C4121.27 (17)C15—C14—H14A120.3
C8—C9—C4119.61 (18)C13—C14—H14A120.3
C2—C3—C4121.21 (17)C12—C11—S1107.20 (18)
C2—C3—H3A119.4C12—C11—H11A110.3
C4—C3—H3A119.4S1—C11—H11A110.3
C3—C4—C9117.83 (16)C12—C11—H11B110.3
C3—C4—C5123.31 (17)S1—C11—H11B110.3
C9—C4—C5118.86 (18)H11A—C11—H11B108.5
C7—C8—C9120.12 (19)C15—C16—C17119.6 (3)
C7—C8—H8A119.9C15—C16—H16A120.2
C9—C8—H8A119.9C17—C16—H16A120.2
N2—C10—C2113.12 (15)C16—C17—C18120.0 (3)
N2—C10—S1105.26 (13)C16—C17—H17A120.0
C2—C10—S1110.80 (14)C18—C17—H17A120.0
N2—C10—H10A109.2C16—C15—C14121.9 (3)
C2—C10—H10A109.2C16—C15—H15A119.1
S1—C10—H10A109.2C14—C15—H15A119.1
C18—C13—C14118.7 (2)
C9—N1—C1—C21.8 (3)C3—C2—C10—S196.2 (2)
C9—N1—C1—Cl1178.42 (15)C1—C2—C10—S180.8 (2)
C3—C2—C1—N10.1 (3)C11—S1—C10—N231.25 (16)
C10—C2—C1—N1177.3 (2)C11—S1—C10—C291.36 (16)
C3—C2—C1—Cl1179.85 (15)C12—N2—C13—C18162.71 (19)
C10—C2—C1—Cl12.9 (3)C10—N2—C13—C1811.2 (3)
C1—N1—C9—C8177.7 (2)C12—N2—C13—C1419.5 (3)
C1—N1—C9—C41.6 (3)C10—N2—C13—C14166.56 (19)
C1—C2—C3—C41.9 (3)C4—C5—C6—C70.2 (3)
C10—C2—C3—C4175.26 (18)C9—C8—C7—C60.3 (4)
C2—C3—C4—C92.0 (3)C5—C6—C7—C80.2 (4)
C2—C3—C4—C5177.78 (19)C14—C13—C18—C170.8 (3)
N1—C9—C4—C30.2 (3)N2—C13—C18—C17178.56 (19)
C8—C9—C4—C3179.55 (19)C13—N2—C12—O10.8 (3)
N1—C9—C4—C5179.58 (19)C10—N2—C12—O1173.4 (2)
C8—C9—C4—C50.3 (3)C13—N2—C12—C11179.38 (19)
C6—C5—C4—C3179.6 (2)C10—N2—C12—C115.2 (3)
C6—C5—C4—C90.2 (3)C18—C13—C14—C150.7 (3)
N1—C9—C8—C7179.6 (2)N2—C13—C14—C15178.5 (2)
C4—C9—C8—C70.3 (3)O1—C12—C11—S1162.11 (19)
C12—N2—C10—C294.5 (2)N2—C12—C11—S119.3 (2)
C13—N2—C10—C280.0 (2)C10—S1—C11—C1228.95 (19)
C12—N2—C10—S126.58 (19)C15—C16—C17—C181.7 (4)
C13—N2—C10—S1158.88 (14)C13—C18—C17—C160.4 (4)
C3—C2—C10—N221.7 (3)C17—C16—C15—C141.7 (5)
C1—C2—C10—N2161.27 (18)C13—C14—C15—C160.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.932.633.514 (3)158
C3—H3A···O1ii0.932.353.192 (2)151
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H13ClN2OS
Mr340.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.1192 (6), 12.7502 (5), 16.8949 (6)
β (°) 110.379 (2)
V3)3255.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12810, 2883, 2165
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections2883
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.932.633.514 (3)158.2
C3—H3A···O1ii0.932.353.192 (2)150.7
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Six Kinds of Professional Elite Foundation of Jiangsu Province (No. 07-A-024), the Education Department Natural Science Foundation of Jiangsu Province (No. 08KJB150002), the Key Laboratory of the Marine Biotechnology Foundation of Jiangsu Province (No. 2006HS014) and the Science and Technology Critical Project Foundation of Lianyungang Municipality (CG0803–2).

References

First citationAbd Elhafez, O. M., El Din Ahmed Mohamed El Khrisy, E., Badria, F. & El Din Mohamed Fathy, A. (2003). Arch. Pharm. Res. 26, 686–696.  Web of Science PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKuecuekguezel, G., Kocatepe, A., De Clercq, E., Sahin, F. & Guelluece, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, M.-H. & Ke, F.-Y. (2004). Bioorg. Med. Chem. 12, 4633–4643.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSrivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118–1123.  CAS Google Scholar
First citationSubudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114–118.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds