metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Di-\mu_4$ -succinato-tetrakis[aquaphenanthrolinecopper(II)] tetranitrate tetrahydrate

Panana Kitiphaisalnont,^a Sutatip Siripaisarnpipat^{a*} and Narongsak Chaichit^b

^aDepartment of Chemistry, Kasetsart University, Bangkok 10903, Thailand, and ^bDepartment of Physics, Thammasat University, Rangsit, Pathumthani 12121, Thailand

Correspondence e-mail: fscists@ku.ac.th

Received 21 September 2009; accepted 29 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.191; data-to-parameter ratio = 19.4.

In the title compound, $[Cu_4(C_4H_4O_4)_2(C_{12}H_8N_2)_4(H_2O)_4]$ - $(NO_3)_4$ ·4H₂O, the complete tetracation is generated by crystallographic inversion symmetry. Both unique Cu²⁺ ions are coordinated by an N,N'-bidentate phenanthroline molecule, two O-monodentate bis-bridging succinate dianions and a water molecule, resulting in distorted CuN₂O₃ square-based pyramidal geometries for the metal ions, with the water molecule occupying the apical site. In the crystal, the components are linked by O-H···O hydrogen bonds and aromatic π - π stacking interactions [minimum centroidcentroid separation = 3.537(2) Å].

Related literature

For related structures, see: McCann et al. (1998); Padmanabhan et al. (2005); Ghosh et al. (2007).

Experimental

Crystal data $[Cu_4(C_4H_4O_4)_2(C_{12}H_8N_2)_4(H_2O)_4]$ - $\beta = 96.031 \ (1)^{\circ}$ V = 3134.51 (7) Å³ (NO₃)₄·4H₂O $M_r = 1599.29$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.9180(1) Å $\mu = 1.44 \text{ mm}^$ b = 34.1090 (2) Å T = 293 Kc = 10.3620 (2) Å $0.20\,\times\,0.19\,\times\,0.10$ mm

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: none 23089 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.191$	independent and constrained
S = 1.05	refinement
8980 reflections	$\Delta \rho_{\rm max} = 2.88 \text{ e} \text{ Å}^{-3}$
463 parameters	$\Delta \rho_{\rm min} = -1.59 \text{ e } \text{\AA}^{-3}$
101 restraints	

Table 1 Selected bond lengths (Å).

Cu1-O2	1.948 (3)	Cu2-O1	1.946 (3)
Cu1-O5	1.966 (3)	Cu2-O6	1.952 (3)
Cu1-N2	2.011 (3)	Cu2-N4	2.007 (3)
Cu1-N1	2.015 (3)	Cu2-N3	2.025 (3)
Cu1-O4	2.240 (3)	Cu2-O3	2.160 (3)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H4 \cdots 014 \\ 03 - H16 \cdots 013 \\ 04 - H23 \cdots 012 \\ 04 - H24 \cdots 010^{i} \\ 013 - H13C \cdots 05^{ii} \\ 013 - H13D \cdots 010^{iii} \\ 014 - H14B \cdots 09^{iv} \end{array}$	0.73 (7) 0.70 (6) 0.82 (6) 0.82 (5) 0.77 (7) 0.71 (7) 0.83 (7)	1.99 (7) 2.07 (6) 2.27 (6) 2.03 (6) 2.24 (7) 2.23 (7) 2.15 (6)	2.707 (7) 2.772 (6) 3.015 (7) 2.816 (6) 3.000 (5) 2.899 (7) 2.846 (13)	169 (7) 177 (9) 153 (5) 161 (8) 167 (7) 159 (8) 142 (6)
$O14 - H14C \cdots O7^*$	0.82 (9)	2.10 (9)	2.874 (14)	158 (10)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z; (iii) x + 1, y, z - 1; (iv) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}; (v) x + 1, y, z.$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Royal Golden Jubilee PhD Program (RGJ) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5112).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057-3071.
- McCann, S., McCann, M., Casey, R. M. T., Jackman, M., Devereux, M., McKee, V., & (1998). Inorg. Chim. Acta, 279, 24-29.
- Padmanabhan, M., Kumary, S. M., Huang, X. & Li, J. (2005). Inorg. Chim. Acta. 358, 3537-3544.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

8980 independent reflections

 $R_{\rm int} = 0.018$

7772 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2009). E65, m1284 [https://doi.org/10.1107/S1600536809039580]

$Di-\mu_4$ -succinato-tetrakis[aquaphenanthrolinecopper(II)] tetranitrate tetrahydrate

Panana Kitiphaisalnont, Sutatip Siripaisarnpipat and Narongsak Chaichit

S1. Comment

The moleculular structure of the title compound, (I), consists of a tetranuclear $[Cu_4(phen)_4(suc)_2(H_2O)_4]$.⁴⁺ species and uncoordinated water molecules and nitrate anions. Each Cu(II) ion (Table 1) exhibits a distorted square pyramidal coordination geometry through one apical water oxygen atom, two phen N atoms and two carboxylate O atoms from two succinate dianions which act as bis bridging ligands toward the Cu1 and Cu2 atoms (Fig. 1). The Cu1…Cu2 distance is 3.0318 (4) Å. The succinate ions also bridge two Cu(II) ions (Cu1' and Cu2'). The Cu1 and Cu2' distance separated by the bridging succinate anion is 6.396 Å. The face-to-face π - π interactions between the phenanthroline ring enhance the stability of the structure.

The apical water molecules form hydrogen bonds with nitrate O atoms (O···O distances of 2.810–2.920 Å) and uncoordinated water O atoms (O···O distances of 2.709–2.768Å): Table 2.

S2. Experimental

The solvothermal systhesis was carried out in telflon-lined stainless steel autoclave. A mixture of $Cu(NO_3)_2.2H_2O$, phenantholine and succinic acid (mole ratio 1:1:1) in (H₂O)/MeOH (2:1) was heated at 423 K for 72 h. Green slabs of (I) in a green solution were obtained.

S3. Refinement

All the H atoms were located in a difference map and their positions and $U_{iso}(H)$ value were freely refined.

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.

Di-µ₄-succinato-tetrakis[aquaphenanthrolinecopper(II)] tetranitrate tetrahydrate

Crystal data

$[Cu_4(C_4H_4O_4)_2(C_{12}H_8N_2)_4(H_2O)_4](NO_3)_4 \cdot 4H_2O$ $M_r = 1599.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9180 (1) Å b = 34.1090 (2) Å c = 10.3620 (2) Å $\beta = 96.031$ (1)° V = 3134.51 (7) Å ³	Z = 2 F(000) = 1632 $D_x = 1.694$ Mg m ⁻³ Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 23295 reflections $\mu = 1.44$ mm ⁻¹ T = 293 K Slab, green $0.20 \times 0.19 \times 0.10$ mm
Data collection	
 Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 23089 measured reflections 8980 independent reflections 	7772 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 30.5^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -12 \rightarrow 9$ $k = -37 \rightarrow 48$ $l = -13 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.191$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
8980 reflections	and constrained refinement
463 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1023P)^2 + 8.0138P]$
101 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 2.88 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\min} = -1.59 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.28697 (5)	0.045902 (12)	0.25937 (4)	0.02773 (12)
Cu2	0.45414 (5)	0.092420 (12)	0.07025 (4)	0.02759 (12)
01	0.5954 (3)	0.05491 (8)	0.1565 (3)	0.0403 (6)
O2	0.4661 (3)	0.01290 (8)	0.2689 (3)	0.0384 (6)
03	0.6118 (4)	0.11127 (12)	-0.0618 (3)	0.0431 (7)

O4	0.1350 (5)	0.01289 (11)	0.3799 (4)	0.0577 (9)
05	0.2091 (3)	0.02148 (9)	0.0939 (3)	0.0366 (6)
O6	0.3553 (4)	0.05135 (8)	-0.0390(3)	0.0396 (6)
07	-0.1911 (12)	0.2391 (4)	0.0691 (10)	0.191 (2)
08	-0.1382(12)	0.2708(4)	0.2187 (10)	0.191 (2)
09	-0.3494(12)	0.2700 (4)	0.1619 (9)	0.191(2)
010	-0.0018(6)	0.06202(15)	0.6390 (5)	0.0804(7)
011	-0.1232(6)	0.11331(15)	0 5928 (5)	0.0804(7)
012	-0.0996(6)	0.07141 (15)	0.4439(5)	0.0804(7)
013	0 8466 (5)	0.06449(13)	-0.1270(4)	0.0529 (8)
014	0.6181(10)	0 18964 (17)	-0.1023(7)	0.0029(0)
N1	0.0101(10) 0.1424(3)	0.09146(9)	0.1025(7) 0.2426(3)	0.105(2) 0.0281(5)
N2	0.1424(3) 0.3661(3)	0.07455(0)	0.2420(3) 0.4221(3)	0.0201 (5)
N2	0.3001(3) 0.2087(3)	0.07433(9) 0.13232(9)	-0.0008(3)	0.0299(0)
NJ	0.2987(3) 0.5046(3)	0.13232(9) 0.13445(8)	0.0008(3)	0.0313(0)
IN4 NI5	0.3040(3)	0.13443(8)	0.2055(5)	0.0283(3)
NJ NC	-0.0734(7)	0.08108(19)	0.3374(0) 0.1492(12)	0.0804(7)
N6	-0.2256 (16)	0.2581(4)	0.1483 (12)	0.191(2)
	0.02//(4)	0.09854 (12)	0.1527 (4)	0.0348 (/)
HI	0.00/0	0.0806	0.0856	0.042*
C2	-0.0628 (5)	0.13195 (14)	0.1556 (5)	0.0442 (9)
H2	-0.1422	0.1359	0.0912	0.053*
C3	-0.0343 (5)	0.15882 (13)	0.2536 (5)	0.0441 (9)
H3	-0.0919	0.1815	0.2547	0.053*
C4	0.0829 (4)	0.15163 (11)	0.3524 (4)	0.0357 (7)
C5	0.1192 (6)	0.17666 (13)	0.4627 (5)	0.0502 (11)
H5	0.0631	0.1993	0.4711	0.060*
C6	0.2326 (6)	0.16796 (14)	0.5539 (4)	0.0524 (11)
H6	0.2540	0.1849	0.6237	0.063*
C7	0.3218 (5)	0.13296 (12)	0.5464 (4)	0.0396 (8)
C8	0.4391 (6)	0.12140 (15)	0.6398 (4)	0.0508 (11)
H8	0.4656	0.1369	0.7124	0.061*
C9	0.5138 (6)	0.08717 (15)	0.6231 (4)	0.0507 (11)
H9	0.5903	0.0790	0.6852	0.061*
C10	0.4754 (5)	0.06441 (13)	0.5126 (4)	0.0404 (8)
H10	0.5284	0.0413	0.5021	0.049*
C11	0.2887 (4)	0.10818 (11)	0.4393 (3)	0.0302 (6)
C12	0.1680 (4)	0.11755 (10)	0.3420 (3)	0.0287 (6)
C13	0.1976 (5)	0.12984 (14)	-0.1039 (4)	0.0409 (8)
H13	0.1950	0.1075	-0.1555	0.049*
C14	0.0944(5)	0.16024 (16)	-0.1369(5)	0.0503 (11)
H14	0.0256	0.1580	-0.2105	0.060*
C15	0.0946 (5)	0.19314 (14)	-0.0612(5)	0.0495 (10)
H15	0.0250	0.2131	-0.0818	0.059*
C16	0.2019 (5)	0.19638(12)	0.0489 (4)	0.0401 (8)
C17	0.2015(6)	0.22905(12)	0.1378(5)	0.0513(11)
H17	0 1425	0.22905 (12)	0 1242	0.062*
C18	0 3176 (6)	0.23065 (12)	0.1212	0.0529 (11)
H18	0.3170 (0)	0.2524	0.2326 (0)	0.0527 (11)
1110	0.3227	0.2324	0.2771	0.005

C19	0.4237 (5)	0.19925 (11)	0.2661 (4)	0.0385 (8)
C20	0.5367 (6)	0.19841 (13)	0.3722 (5)	0.0478 (10)
H20	0.5482	0.2194	0.4295	0.057*
C21	0.6289 (5)	0.16652 (14)	0.3902 (4)	0.0446 (9)
H21	0.7046	0.1660	0.4591	0.053*
C22	0.6097 (4)	0.13465 (12)	0.3049 (4)	0.0346 (7)
H22	0.6723	0.1129	0.3195	0.042*
C23	0.4138 (4)	0.16638 (10)	0.1835 (4)	0.0300 (6)
C24	0.3028 (4)	0.16508 (10)	0.0740 (3)	0.0303 (6)
C25	0.5830 (4)	0.02380 (10)	0.2196 (3)	0.0288 (6)
C26	0.7229 (4)	-0.00119 (11)	0.2433 (3)	0.0307 (7)
C27	0.2562 (4)	0.02685 (10)	-0.0151 (3)	0.0276 (6)
C28	0.1862 (4)	0.00277 (12)	-0.1284 (4)	0.0319 (7)
H13D	0.865 (7)	0.0669 (19)	-0.191 (7)	0.054 (19)*
H13C	0.840 (8)	0.042 (2)	-0.128 (7)	0.07 (2)*
H4	0.624 (7)	0.132 (2)	-0.075 (6)	0.055 (18)*
H16	0.671 (7)	0.0999 (18)	-0.081 (6)	0.047 (16)*
H24	0.101 (10)	-0.0089 (12)	0.393 (9)	0.11 (3)*
H23	0.080 (6)	0.0256 (17)	0.422 (5)	0.065 (19)*
H28B	0.173 (7)	-0.0210 (18)	-0.092 (6)	0.057 (16)*
H26B	0.704 (7)	-0.0255 (19)	0.270 (6)	0.058 (16)*
H26A	0.773 (6)	0.0080 (14)	0.316 (5)	0.039 (12)*
H28A	0.098 (7)	0.0156 (19)	-0.140 (6)	0.065 (18)*
H14B	0.669 (8)	0.200 (2)	-0.155 (6)	0.10 (3)*
H14C	0.679 (10)	0.198 (3)	-0.044 (8)	0.09 (3)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.0279 (2)	0.0305 (2)	0.0247 (2)	0.00133 (15)	0.00241 (15)	-0.00501 (15)
Cu2	0.0291 (2)	0.0243 (2)	0.0287 (2)	0.00061 (14)	-0.00019 (15)	-0.00122 (14)
O1	0.0387 (14)	0.0304 (13)	0.0505 (16)	0.0070 (11)	-0.0019 (12)	0.0056 (11)
O2	0.0359 (13)	0.0400 (14)	0.0402 (14)	0.0100 (11)	0.0079 (11)	0.0007 (11)
O3	0.0407 (16)	0.0469 (19)	0.0435 (16)	0.0031 (14)	0.0136 (13)	0.0056 (14)
O4	0.072 (2)	0.0434 (18)	0.063 (2)	-0.0140 (17)	0.0327 (19)	-0.0013 (16)
O5	0.0366 (13)	0.0438 (15)	0.0298 (12)	-0.0025 (11)	0.0053 (10)	-0.0122 (11)
O6	0.0477 (16)	0.0338 (13)	0.0368 (14)	-0.0110 (11)	0.0018 (12)	-0.0077 (11)
O7	0.146 (4)	0.276 (7)	0.139 (4)	0.073 (4)	-0.043 (3)	-0.078(4)
08	0.146 (4)	0.276 (7)	0.139 (4)	0.073 (4)	-0.043 (3)	-0.078 (4)
09	0.146 (4)	0.276 (7)	0.139 (4)	0.073 (4)	-0.043 (3)	-0.078(4)
O10	0.0886 (18)	0.0729 (15)	0.0775 (16)	0.0048 (13)	-0.0016 (13)	-0.0012 (13)
O11	0.0886 (18)	0.0729 (15)	0.0775 (16)	0.0048 (13)	-0.0016 (13)	-0.0012 (13)
O12	0.0886 (18)	0.0729 (15)	0.0775 (16)	0.0048 (13)	-0.0016 (13)	-0.0012 (13)
O13	0.062 (2)	0.051 (2)	0.048 (2)	0.0071 (17)	0.0155 (17)	-0.0016 (16)
O14	0.169 (7)	0.059 (3)	0.089 (4)	-0.035 (4)	0.023 (5)	0.007 (3)
N1	0.0273 (13)	0.0322 (14)	0.0246 (12)	-0.0023 (10)	0.0023 (10)	-0.0017 (10)
N2	0.0325 (14)	0.0333 (14)	0.0235 (12)	-0.0018 (11)	0.0004 (11)	-0.0009 (11)
N3	0.0293 (14)	0.0331 (14)	0.0307 (14)	0.0010 (11)	-0.0004 (11)	0.0028 (11)

N4	0.0275 (13)	0.0258 (13)	0.0316 (14)	0.0000 (10)	0.0008 (11)	-0.0001 (10)
N5	0.0886 (18)	0.0729 (15)	0.0775 (16)	0.0048 (13)	-0.0016 (13)	-0.0012 (13)
N6	0.146 (4)	0.276 (7)	0.139 (4)	0.073 (4)	-0.043 (3)	-0.078 (4)
C1	0.0276 (16)	0.0421 (19)	0.0333 (17)	-0.0040 (14)	-0.0037 (13)	-0.0033 (14)
C2	0.0297 (18)	0.053 (2)	0.048 (2)	0.0044 (16)	-0.0056 (16)	0.0041 (19)
C3	0.0336 (18)	0.038 (2)	0.060 (3)	0.0081 (15)	0.0050 (17)	0.0029 (18)
C4	0.0380 (18)	0.0296 (16)	0.0399 (19)	0.0033 (14)	0.0060 (15)	-0.0033 (14)
C5	0.064 (3)	0.0328 (19)	0.055 (3)	0.0055 (19)	0.010 (2)	-0.0127 (18)
C6	0.076 (3)	0.041 (2)	0.040 (2)	0.001 (2)	0.004 (2)	-0.0183 (18)
C7	0.052 (2)	0.0382 (19)	0.0274 (16)	-0.0061 (16)	0.0000 (15)	-0.0065 (14)
C8	0.067 (3)	0.055 (3)	0.0281 (18)	-0.009 (2)	-0.0080 (18)	-0.0079 (17)
C9	0.057 (3)	0.060 (3)	0.0311 (19)	-0.001 (2)	-0.0140 (18)	0.0008 (18)
C10	0.044 (2)	0.045 (2)	0.0307 (17)	0.0021 (16)	-0.0045 (15)	0.0051 (15)
C11	0.0355 (17)	0.0324 (16)	0.0225 (14)	-0.0036 (13)	0.0025 (12)	-0.0024 (12)
C12	0.0289 (15)	0.0295 (15)	0.0279 (15)	-0.0003 (12)	0.0043 (12)	-0.0034 (12)
C13	0.0392 (19)	0.051 (2)	0.0314 (17)	0.0005 (17)	-0.0034 (15)	0.0014 (16)
C14	0.043 (2)	0.065 (3)	0.040 (2)	0.004 (2)	-0.0099 (17)	0.010 (2)
C15	0.044 (2)	0.048 (2)	0.054 (3)	0.0117 (19)	-0.0056 (19)	0.015 (2)
C16	0.0401 (19)	0.0319 (18)	0.048 (2)	0.0054 (15)	0.0032 (16)	0.0113 (16)
C17	0.056 (3)	0.0281 (18)	0.068 (3)	0.0121 (17)	0.001 (2)	0.0058 (19)
C18	0.062 (3)	0.0242 (17)	0.072 (3)	0.0041 (17)	0.004 (2)	-0.0074 (19)
C19	0.042 (2)	0.0251 (16)	0.048 (2)	-0.0041 (14)	0.0037 (16)	-0.0028 (15)
C20	0.053 (2)	0.040 (2)	0.049 (2)	-0.0090 (18)	-0.0010 (19)	-0.0123 (18)
C21	0.041 (2)	0.050 (2)	0.040 (2)	-0.0082 (17)	-0.0066 (16)	-0.0077 (17)
C22	0.0298 (16)	0.0386 (18)	0.0343 (17)	-0.0006 (13)	-0.0018 (13)	0.0008 (14)
C23	0.0308 (16)	0.0243 (14)	0.0346 (16)	-0.0019 (12)	0.0018 (13)	0.0015 (12)
C24	0.0302 (15)	0.0274 (15)	0.0335 (16)	0.0011 (12)	0.0044 (13)	0.0052 (12)
C25	0.0325 (16)	0.0280 (15)	0.0248 (14)	0.0066 (12)	-0.0026 (12)	-0.0060 (11)
C26	0.0326 (16)	0.0332 (17)	0.0250 (15)	0.0076 (13)	-0.0036 (12)	-0.0022 (13)
C27	0.0254 (14)	0.0275 (15)	0.0287 (15)	0.0053 (11)	-0.0021 (11)	-0.0070 (12)
C28	0.0272 (15)	0.0353 (17)	0.0320 (16)	0.0006 (13)	-0.0024 (12)	-0.0101 (14)

Geometric parameters (Å, °)

Cu1—O2	1.948 (3)	C4—C12	1.398 (5)
Cu1—O5	1.966 (3)	C4—C5	1.437 (6)
Cu1—N2	2.011 (3)	C5—C6	1.342 (7)
Cu1—N1	2.015 (3)	С5—Н5	0.9300
Cu1—O4	2.240 (3)	C6—C7	1.441 (6)
Cu1—Cu2	3.0322 (6)	С6—Н6	0.9300
Cu2—O1	1.946 (3)	C7—C11	1.401 (5)
Cu2—O6	1.952 (3)	C7—C8	1.405 (6)
Cu2—N4	2.007 (3)	C8—C9	1.364 (7)
Cu2—N3	2.025 (3)	C8—H8	0.9300
Cu2—O3	2.160 (3)	C9—C10	1.396 (6)
O1—C25	1.258 (5)	С9—Н9	0.9300
O2—C25	1.264 (5)	C10—H10	0.9300
O3—H4	0.73 (7)	C11—C12	1.432 (5)

supporting information

O3—H16	0.70 (6)	C13—C14	1.405 (6)
O4—H24	0.82 (5)	С13—Н13	0.9300
O4—H23	0.82 (6)	C14—C15	1.369 (7)
O5—C27	1.259 (4)	C14—H14	0.9300
O6—C27	1.260 (5)	C15—C16	1.415 (6)
O7—N6	1.114 (14)	С15—Н15	0.9300
O8—N6	1.099 (14)	C16—C24	1.403 (5)
O9—N6	1.199 (14)	C16—C17	1.443 (7)
O10—N5	1.216 (8)	C17—C18	1.344 (7)
O11—N5	1.231 (8)	C17—H17	0.9300
O12—N5	1.224 (8)	C18—C19	1.436 (6)
013—H13D	0.70 (7)	C18—H18	0.9300
013—H13C	0.75 (8)	C19—C23	1 407 (5)
014—H14B	0.83(7)	$C_{19} - C_{20}$	1.411 (6)
014-H14C	0.82(8)	C_{20} C_{21}	1.364(7)
N1—C1	1.331(4)	C20—H20	0.9300
N1—C12	1.351(1) 1 362(4)	$C_{20} = C_{20}$	1 400 (6)
N2 C10	1.302(4) 1.326(5)	C21 H21	0.9300
N2 C11	1.320(5)	$C_{21} = H_{21}$	0.9300
N2 C12	1.300(3) 1.327(5)	C_{22} C_{24} C_{24}	1.426(5)
N3 C24	1.327(3) 1.358(5)	$C_{23} = C_{24}$	1.420(5) 1.510(5)
N4 C22	1.336(3) 1.224(5)	$C_{25} = C_{20}$	1.510(5) 1.510(5)
N4—C22	1.554(5) 1.250(4)	C_{20}	1.310(3)
N4-C23	1.559 (4)		0.90(6)
	1.399 (6)	C26—H26A	0.89 (5)
	0.9300	C27—C28	1.513 (4)
C2—C3	1.3/1 (/)		1.510(5)
C2—H2	0.9300	C28—H28B	0.91 (6)
C3—C4	1.406 (6)	C28—H28A	0.90 (7)
С3—Н3	0.9300		
O2—Cu1—O5	90.69 (12)	С5—С6—С7	121.6 (4)
O2—Cu1—N2	91.42 (12)	С5—С6—Н6	119.2
O5—Cu1—N2	175.95 (12)	С7—С6—Н6	119.2
O2—Cu1—N1	164.53 (12)	C11—C7—C8	117.1 (4)
O5—Cu1—N1	95.00 (12)	C11—C7—C6	118.1 (4)
N2—Cu1—N1	82.10 (12)	C8—C7—C6	124.8 (4)
O2—Cu1—O4	102.84 (14)	C9—C8—C7	119.4 (4)
O5—Cu1—O4	95.40 (14)	С9—С8—Н8	120.3
N2—Cu1—O4	87.49 (14)	С7—С8—Н8	120.3
N1—Cu1—O4	90.95 (14)	C8—C9—C10	120.0 (4)
O2—Cu1—Cu2	83.04 (9)	С8—С9—Н9	120.0
O5—Cu1—Cu2	79.10 (9)	С10—С9—Н9	120.0
N2—Cu1—Cu2	97.73 (9)	N2—C10—C9	122.3 (4)
N1—Cu1—Cu2	83.93 (8)	N2-C10-H10	118.9
O4—Cu1—Cu2	172.09 (12)	С9—С10—Н10	118.9
O1—Cu2—O6	91.46 (13)	N2—C11—C7	123.0 (3)
O1—Cu2—N4	93.81 (12)	N2—C11—C12	116.7 (3)
O6—Cu2—N4	164.98 (13)	C7—C11—C12	120.2 (3)

O1—Cu2—N3	173.84 (13)	N1-C12-C4	123.5 (3)
O6—Cu2—N3	91.23 (13)	N1—C12—C11	116.2 (3)
N4—Cu2—N3	82.25 (12)	C4—C12—C11	120.3 (3)
O1—Cu2—O3	93.07 (14)	N3—C13—C14	121.4 (4)
O6—Cu2—O3	97.50 (14)	N3—C13—H13	119.3
N4—Cu2—O3	96.25 (14)	C14—C13—H13	119.3
N3—Cu2—O3	92.07 (14)	C15—C14—C13	120.3 (4)
O1—Cu2—Cu1	72.40 (9)	C15—C14—H14	119.9
O6—Cu2—Cu1	77.09 (9)	C13—C14—H14	119.9
N4—Cu2—Cu1	91.12 (9)	C14—C15—C16	119.1 (4)
N3—Cu2—Cu1	102.83 (9)	C14—C15—H15	120.5
O3—Cu2—Cu1	164.16 (11)	С16—С15—Н15	120.5
C25-01-Cu2	134.9 (3)	C24—C16—C15	117.2 (4)
$C_{25} = 0_{1} = 0_{1}$	121.1(2)	C_{24} C_{16} C_{17}	118.4 (4)
Cu2—O3—H4	122 (5)	C15—C16—C17	124.4 (4)
Cu2—O3—H16	125 (5)	C18 - C17 - C16	121.5(4)
H4-03-H16	110(7)	C18—C17—H17	119.2
Cu1 - O4 - H24	144(7)	C16—C17—H17	119.2
Cu1 - O4 - H23	118(5)	C17 - C18 - C19	121.0(4)
H24-04-H23	98 (7)	C17 - C18 - H18	119 5
$C_{27} = 05 = C_{11}$	1268(2)	C19-C18-H18	119.5
$C_{27} = 0.5 = C_{11}^{2}$	120.0(2) 130.2(2)	C^{23} C^{19} C^{20}	116.8 (4)
$H_{13D} = 013 = H_{13C}$	97 (7)	C_{23} C_{19} C_{20} C_{20}	118.7(4)
H14B - 014 - H14C	88 (8)	C_{20} C_{19} C_{18}	124 4 (4)
C1-N1-C12	117.8(3)	$C_{20} = C_{10} = C_{10}$	12.1.1(1) 119.6(4)
C1-N1-Cu1	129 7 (3)	$C_{21} = C_{20} = H_{20}$	120.2
C12— $N1$ — $Cu1$	112.5 (2)	C19 - C20 - H20	120.2
C10 - N2 - C11	118.2 (3)	C_{20} C_{21} C_{22}	120.0 (4)
C10 - N2 - Cu1	129.3 (3)	C_{20} C_{21} H_{21}	120.0
C_{11} N_2 C_{11}	112.4 (2)	C22—C21—H21	120.0
C13 - N3 - C24	119.2 (3)	N4—C22—C21	122.1 (4)
C13 - N3 - Cu2	129.1 (3)	N4—C22—H22	119.0
C24—N3—Cu2	111.7 (2)	C21—C22—H22	119.0
C22—N4—C23	118.2 (3)	N4—C23—C19	123.3 (3)
C22—N4—Cu2	129.3 (3)	N4—C23—C24	116.6 (3)
C23—N4—Cu2	112.4 (2)	C19—C23—C24	120.1 (3)
010—N5—012	122.5 (7)	N3—C24—C16	122.8 (3)
010—N5—011	117.0 (6)	N3—C24—C23	117.0 (3)
012—N5—011	120.4 (6)	C16—C24—C23	120.1 (3)
O8—N6—O7	119.1 (16)	O1—C25—O2	125.4 (3)
O8—N6—O9	112.7 (14)	O1—C25—C26	116.4 (3)
O7—N6—O9	127.8 (14)	O2—C25—C26	118.1 (3)
N1—C1—C2	122.4 (4)	C25—C26—C28 ⁱ	113.2 (3)
N1—C1—H1	118.8	C25—C26—H26B	113 (4)
C2—C1—H1	118.8	C28 ⁱ —C26—H26B	110 (4)
C3—C2—C1	119.9 (4)	C25—C26—H26A	106 (3)
С3—С2—Н2	120.1	C28 ⁱ —C26—H26A	114 (3)
C1—C2—H2	120.1	H26B—C26—H26A	99 (5)

supporting information

C2—C3—C4	119.2 (4)	O5—C27—O6	125.5 (3)	
С2—С3—Н3	120.4	O5—C27—C28	117.9 (3)	
С4—С3—Н3	120.4	O6—C27—C28	116.6 (3)	
C12—C4—C3	117.2 (4)	C26 ⁱ —C28—C27	114.8 (3)	
C12—C4—C5	118.5 (4)	C26 ⁱ —C28—H28B	114 (4)	
C3—C4—C5	124.3 (4)	C27—C28—H28B	103 (4)	
C6—C5—C4	121.3 (4)	C26 ⁱ —C28—H28A	116 (4)	
С6—С5—Н5	119.4	C27—C28—H28A	97 (4)	
С4—С5—Н5	119.4	H28B—C28—H28A	110 (5)	

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O3—H4…O14	0.73 (7)	1.99 (7)	2.707 (7)	169 (7)
O3—H16…O13	0.70 (6)	2.07 (6)	2.772 (6)	177 (9)
O4—H23…O12	0.82 (6)	2.27 (6)	3.015 (7)	153 (5)
O4—H24…O10 ⁱⁱ	0.82 (5)	2.03 (6)	2.816 (6)	161 (8)
O13—H13 <i>C</i> ···O5 ⁱ	0.77 (7)	2.24 (7)	3.000 (5)	167 (7)
O13—H13D…O10 ⁱⁱⁱ	0.71 (7)	2.23 (7)	2.899 (7)	159 (8)
O14—H14 <i>B</i> ····O9 ^{iv}	0.83 (7)	2.15 (6)	2.846 (13)	142 (6)
O14—H14 <i>C</i> ···O7 ^v	0.82 (9)	2.10 (9)	2.874 (14)	158 (10)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*, -*y*, -*z*+1; (iii) *x*+1, *y*, *z*-1; (iv) *x*+1, -*y*+1/2, *z*-1/2; (v) *x*+1, *y*, *z*.