organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5*E*)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol monosolvate

Durre Shahwar,^a M. Nawaz Tahir,^b* Muhammad Asam Raza,^a Maria Saddaf^a and Sana Majeed^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 24 September 2009; accepted 29 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; *R* factor = 0.039; *wR* factor = 0.070; data-to-parameter ratio = 13.4.

In the title compound, $C_{11}H_9NO_3S_2 \cdot CH_4O$, the dihedral angle between the aromatic rings is 3.57 (16)° and intramolecular $O-H\cdots O$ and $C-H\cdots S$ interactions occur. In the crystal, the thiazolidin-4-one molecules are linked by $N-H\cdots O$ hydrogen bonds, forming chains. The hydrogen-bond motifs lead to S(5), S(6) and $R_3^3(8)$ ring motifs. There exist $C=O\cdots\pi$ interactions between the heterocyclic rings and $\pi-\pi$ interactions between the heterocyclic and benzene rings at distances of 3.455 (2) and 3.602 (2) Å, respectively. The methanol solvent molecule is disordered over two sets of sites in a 0.542 (9):0.458 (9) ratio.

Related literature

For related structures, see: Barreiro *et al.* (2007); Shahwar *et al.* (2009). For graph-set notation, see: Bernstein *et al.* (1995).

HO—CH₃

Experimental

Crystal data $C_{11}H_9NO_3S_2 \cdot CH_4O$ $M_r = 299.35$ Orthorhombic, $Pna2_1$ a = 17.731 (2) Å

b = 11.7528 (14) Å c = 6.5715 (6) Å $V = 1369.4 (3) \text{ Å}^{3}$ Z = 4 Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.942, T_{max} = 0.955$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.070$ S = 1.022472 reflections 185 parameters 1 restraint T = 296 K $0.26 \times 0.13 \times 0.12 \text{ mm}$

7574 measured reflections 2472 independent reflections 1807 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 829 Friedal Pairs Flack parameter: 0.01 (8)

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O2	0.88 (3)	2.21 (3)	2.641 (3)	109 (3)
$C2-H2\cdots S1$	0.93	2.66	3.349 (3)	132
$O1-H1\cdots O4A^{i}$	0.88 (3)	1.85 (3)	2.622 (7)	145 (3)
$N1 - H1N \cdot \cdot \cdot O1^{ii}$	0.86	2.05	2.899 (3)	169
$O4A - H4A \cdots O3^{iii}$	0.96 (8)	1.79 (8)	2.744 (7)	173 (7)
$C12A - H12A \cdots O3^{iv}$	0.96	2.37	3.150 (5)	139

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{3}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z$ (g2 is the centroid of the C1–C6 benzene ring.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042– 111212-PS2–200).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5118).

References

- Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964–1973.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009). Acta Cryst. E65, 02637.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2638 [https://doi.org/10.1107/S1600536809039567]

(5*E*)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol monosolvate

Durre Shahwar, M. Nawaz Tahir, Muhammad Asam Raza, Maria Saddaf and Sana Majeed

S1. Comment

We have recently reported the crystal structure of (5*Z*)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar *et al.*, 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.

The crystal structure of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, *et al.*, 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.

In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein *et al.*, 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming $R_3^3(8)$ ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist π - π interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 \rightarrow Cg2 is 3.455 (2) Å due to symmetry ($x, y, \mp 1 + z$) and for Cg2 \rightarrow Cg1 is 3.602 (2) Å due to symmetry ($1/2 - x, \mp 1/2 + y, \mp 1/2 + z$), respectively. The molecules may also be stabilized due C==O··· π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).

S2. Experimental

Rhodanine (0.266 g, 0.2 mol), 4-hydroxy-3-methoxybenzaldehyde (0.304 g, 0.2 mol) and K_2CO_3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in methanol to affoard dark brown needles of (I).

S3. Refinement

The coordinates of H1 and H4A attached with O1 and O4A respectively, were refined.

The H-atoms were positioned geometrically with O–H = 0.82, N–H = 0.86, C–H = 0.93 and 0.96 Å for aromatic like and methyl H atoms and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C, N, O)$, where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted line represent the intramolecular H-bond.

Figure 2

The partial packing of (I), which shows that molecules form polymeric chains.

(5*E*)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol monosolvate

Crystal data	
$C_{11}H_9NO_3S_7$ ·CH ₄ O	F(000) = 624
$M_r = 299.35$	$D_{\rm x} = 1.452 \ {\rm Mg} \ {\rm m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 2472 reflections
a = 17.731 (2) Å	$\theta = 2.9 - 27.1^{\circ}$
b = 11.7528 (14) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 6.5715 (6) Å	T = 296 K
V = 1369.4 (3) Å ³	Cut needle, dark brown
Z=4	$0.26 \times 0.13 \times 0.12 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD	7574 measured reflections
diffractometer	2472 independent reflections
Radiation source: fine-focus sealed tube	1807 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
Detector resolution: 7.50 pixels mm ⁻¹	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
ω scans	$h = -22 \rightarrow 22$
Absorption correction: multi-scan	$k = -13 \rightarrow 15$
(SADABS; Bruker, 2007)	$l = -5 \rightarrow 8$
$T_{\min} = 0.942, \ T_{\max} = 0.955$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent
$wR(F^2) = 0.070$	and constrained refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0145P)^2 + 0.2762P]$
2472 reflections	where $P = (F_0^2 + 2F_c^2)/3$
185 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 829 Friedal
Secondary atom site location: difference Fourier	Pairs
map	Absolute structure parameter: 0.01 (8)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.36194 (4)	0.02090 (7)	0.57918 (14)	0.0440 (3)	
S2	0.41466 (5)	-0.10304 (9)	0.20833 (15)	0.0609 (4)	
01	0.30380 (12)	0.3234 (2)	1.4811 (3)	0.0514 (9)	
O2	0.41511 (11)	0.2575 (2)	1.2416 (3)	0.0540 (9)	
03	0.15476 (12)	-0.0232 (2)	0.4387 (3)	0.0531 (9)	
N1	0.27209 (14)	-0.0654 (2)	0.3174 (4)	0.0403 (9)	
C1	0.25139 (18)	0.1479 (3)	0.9536 (4)	0.0352 (10)	
C2	0.32661 (18)	0.1714 (3)	1.0013 (5)	0.0383 (11)	
C3	0.34462 (16)	0.2296 (3)	1.1767 (5)	0.0377 (11)	
C4	0.28684 (17)	0.2662 (3)	1.3082 (4)	0.0373 (11)	
C5	0.21274 (17)	0.2455 (3)	1.2609 (5)	0.0412 (11)	
C6	0.19503 (16)	0.1858 (3)	1.0864 (5)	0.0411 (11)	
C7	0.22722 (18)	0.0873 (3)	0.7745 (5)	0.0410(11)	
C8	0.26494 (16)	0.0363 (3)	0.6206 (4)	0.0376 (11)	
C9	0.22317 (17)	-0.0188 (3)	0.4558 (5)	0.0405 (11)	
C10	0.34766 (17)	-0.0547 (3)	0.3526 (5)	0.0392 (11)	
C11	0.47733 (18)	0.2154 (4)	1.1321 (6)	0.0780 (18)	
O4A	0.4252 (3)	0.4356 (7)	0.5888 (10)	0.078 (3)	0.542 (9)
C12A	0.5055 (2)	0.4123 (5)	0.6066 (13)	0.096 (2)	0.542 (9)
O4B	0.4343 (2)	0.3568 (4)	0.6677 (9)	0.059 (3)	0.458 (9)
C12B	0.4913 (2)	0.4044 (4)	0.6141 (9)	0.096 (2)	0.458 (9)
H1	0.3525 (17)	0.334 (3)	1.499 (5)	0.0617*	
H1N	0.25564	-0.10029	0.21132	0.0483*	
H2	0.36478	0.14769	0.91393	0.0460*	

supporting information

Н5	0.17457	0.27152	1.34604	0.0495*		
H6	0.14477	0.17047	1.05653	0.0492*		
H7	0.17507	0.08219	0.76231	0.0494*		
H11A	0.47613	0.13375	1.13217	0.1166*		
H11B	0.52316	0.24114	1.19480	0.1166*		
H11C	0.47516	0.24266	0.99447	0.1166*		
H4A	0.401 (4)	0.449 (6)	0.717 (13)	0.0935*	0.542 (9)	
H12C	0.51734	0.39385	0.74524	0.1441*	0.542 (9)	
H12A	0.53358	0.47831	0.56588	0.1441*	0.542 (9)	
H12B	0.51849	0.34937	0.52036	0.1441*	0.542 (9)	
H4B	0.40848	0.40061	0.73547	0.0709*	0.458 (9)	
H12D	0.50918	0.45230	0.72210	0.1441*	0.458 (9)	
H12E	0.48086	0.44993	0.49615	0.1441*	0.458 (9)	
H12F	0.52902	0.34877	0.58154	0.1441*	0.458 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0445 (4)	0.0523 (5)	0.0353 (4)	0.0038 (4)	-0.0056 (4)	-0.0094 (5)
S2	0.0552 (5)	0.0804 (8)	0.0472 (5)	0.0164 (5)	0.0008 (5)	-0.0137 (6)
01	0.0444 (14)	0.0726 (19)	0.0372 (13)	0.0026 (13)	0.0019 (11)	-0.0231 (12)
O2	0.0383 (13)	0.0796 (17)	0.0442 (14)	-0.0046 (12)	0.0060 (11)	-0.0230 (13)
O3	0.0435 (13)	0.0691 (18)	0.0467 (14)	0.0004 (12)	-0.0084 (11)	-0.0146 (13)
N1	0.0527 (17)	0.0388 (18)	0.0293 (14)	0.0048 (14)	-0.0049 (12)	-0.0101 (13)
C1	0.0417 (17)	0.0343 (19)	0.0295 (17)	0.0022 (14)	0.0031 (14)	-0.0013 (14)
C2	0.0442 (19)	0.041 (2)	0.0297 (17)	0.0029 (16)	0.0060 (14)	-0.0062 (16)
C3	0.0389 (17)	0.040 (2)	0.0341 (19)	0.0002 (15)	0.0035 (15)	-0.0030 (17)
C4	0.047 (2)	0.037 (2)	0.0278 (18)	0.0023 (15)	0.0007 (15)	-0.0093 (16)
C5	0.0414 (19)	0.051 (2)	0.0313 (18)	0.0070 (17)	0.0024 (15)	-0.0069 (16)
C6	0.0372 (17)	0.045 (2)	0.0410 (18)	0.0037 (14)	-0.0008 (18)	-0.001(2)
C7	0.0437 (18)	0.041 (2)	0.0383 (19)	0.0002 (16)	-0.0016 (15)	0.0005 (17)
C8	0.0464 (17)	0.039 (2)	0.0275 (19)	0.0024 (14)	-0.0081 (14)	-0.0034 (15)
C9	0.048 (2)	0.037 (2)	0.0364 (18)	0.0040 (17)	-0.0041 (16)	-0.0005 (16)
C10	0.047 (2)	0.038 (2)	0.0327 (18)	0.0049 (15)	-0.0088 (15)	-0.0018 (15)
C11	0.044 (2)	0.113 (4)	0.077 (3)	-0.005 (2)	0.0177 (18)	-0.026 (3)
O4A	0.048 (3)	0.119 (6)	0.067 (4)	0.004 (3)	0.005 (3)	-0.039 (5)
C12A	0.064 (3)	0.131 (5)	0.093 (4)	-0.008 (3)	0.011 (3)	-0.019 (4)
O4B	0.043 (3)	0.079 (6)	0.055 (4)	-0.001 (3)	0.006 (3)	-0.020 (4)
C12B	0.064 (3)	0.131 (5)	0.093 (4)	-0.008(3)	0.011 (3)	-0.019 (4)

Geometric parameters (Å, °)

S1—C8	1.751 (3)	C3—C4	1.408 (4)	
S1—C10	1.752 (3)	C4—C5	1.372 (4)	
S2-C10	1.623 (3)	C5—C6	1.381 (5)	
O1—C4	1.354 (4)	С7—С8	1.353 (4)	
O2—C3	1.361 (4)	C8—C9	1.463 (4)	
O2—C11	1.407 (4)	C2—H2	0.9300	

supporting information

O3—C9	1.219 (4)	С5—Н5	0.9300
O1—H1	0.88 (3)	С6—Н6	0.9300
O4A—C12A	1.455 (7)	С7—Н7	0.9300
O4B—C12B	1.208 (6)	C11—H11A	0.9600
O4A—H4A	0.96 (8)	C11—H11B	0.9600
O4B—H4B	0.8200	C11—H11C	0.9600
N1—C10	1.366 (4)	C12A—H12B	0.9600
N1—C9	1.371 (4)	C12A—H12C	0.9600
N1—H1N	0.8600	C12A—H12A	0.9600
C1C2	1.398 (5)	C12B—H12D	0.9600
C1 - C7	1441(4)	C12B—H12E	0.9600
C1-C6	1400(4)	C12B—H12E	0.9600
$C^2 - C^3$	1.100 (1)		0.9000
62 65	1.576 (5)		
C8—S1—C10	92.44 (14)	S2—C10—N1	126.0 (3)
C3—O2—C11	118.4 (3)	S1-C10-S2	124.63 (19)
C4—O1—H1	114 (2)	C3—C2—H2	120.00
C12A—O4A—H4A	114 (4)	C1—C2—H2	120.00
C12B—O4B—H4B	110.00	C4—C5—H5	120.00
C9—N1—C10	118.1 (3)	С6—С5—Н5	120.00
C10—N1—H1N	121.00	С5—С6—Н6	119.00
C9—N1—H1N	121.00	C1—C6—H6	119.00
C2-C1-C7	124.4 (3)	С8—С7—Н7	113.00
$C_2 - C_1 - C_6$	118.6 (3)	С1—С7—Н7	113.00
C6-C1-C7	1170(3)	02 - C11 - H11C	109.00
C1 - C2 - C3	1205(3)	Ω^2 C11—H11A	110.00
$0^{2}-C^{3}-C^{4}$	120.5(3) 113.7(3)	O^2 $C11$ $H11B$	109.00
$0^{2}-C^{3}-C^{2}$	1265(3)	H11B-C11-H11C	109.00
$C_2 = C_3 = C_4$	120.3(3)	H11A_C11_H11B	109.00
01 - C4 - C5	119.8(3) 119.4(3)	H11A-C11-H11C	109.00
$C_1 - C_2 - C_3$	119.4(3) 120.3(3)	Ω_{A} C12A H12B	109.00
$C_{3} - C_{4} - C_{3}$	120.3(3)	O4A = C12A = H12C	109.00
C_{1}^{-} C_{2}^{-} C_{3}^{-}	120.4(3)	O4A = C12A = H12C	109.00
$C_{1} = C_{2} = C_{0}$	119.8(3) 121.2(3)	$H_{12A} = C_{12A} = H_{12C}$	109.00
$C_1 = C_0 = C_3$	121.2(3) 122.1(3)	H12R C12A H12C	109.00
$C_1 - C_7 - C_8$	100.7(3)	H12D - C12A - H12C	100.00
S1 - C8 - C9	109.7(2)	$\begin{array}{c} \Pi I 2 A - C I 2 A - \Pi I 2 B \\ \Omega 4 P - C I 2 P - H I 2 D \end{array}$	109.00
$SI = C_0 = C_1$	130.4(2)	O4B = C12B = H12D	109.00
C = C = C	120.0(3) 126.2(2)	O4D = C12D = D12E	109.00
03-09-08	120.2(3)	U4D = C12D = D12F	109.00
NI = C9 = C8	110.3 (3)	HI2D—CI2B—HI2E	110.00
03—09—NI	123.5 (3)	HI2D—CI2B—HI2F	110.00
\$1C10N1	109.4 (2)	H12E—C12B—H12F	110.00
C10—S1—C8—C7	179.4 (4)	C1 - C2 - C3 - O2	179.7 (3)
C10-S1-C8-C9	0.3(3)	C1 - C2 - C3 - C4	-04(5)
C8 = S1 = C10 = S2	179.6 (3)	02 - 03 - 04 - 01	-0.1(5)
C8 = S1 = C10 = S2	-0.1(3)	02 - 03 - 04 - 05	179 1 (3)
$C_{11} = 0^{2} = C_{3} = C_{2}^{2}$	-62(5)	$C_2 = C_3 = C_4 = C_1$	1800(3)
011 02 03 02	0.2 (0)	02 03 07 01	100.0 (5)

C11—O2—C3—C4	173.9 (3)	C2—C3—C4—C5	-0.9 (5)	
C10—N1—C9—O3	179.8 (3)	O1—C4—C5—C6	-179.1 (3)	
C10—N1—C9—C8	0.4 (4)	C3—C4—C5—C6	1.8 (5)	
C9—N1—C10—S1	-0.2 (4)	C4—C5—C6—C1	-1.4 (5)	
C9—N1—C10—S2	-179.8 (3)	C1—C7—C8—S1	1.4 (6)	
C6—C1—C2—C3	0.7 (5)	C1—C7—C8—C9	-179.5 (4)	
C7—C1—C2—C3	-179.7 (3)	S1—C8—C9—O3	-179.8 (3)	
C2-C1-C6-C5	0.2 (5)	S1—C8—C9—N1	-0.4 (3)	
C7—C1—C6—C5	-179.4 (3)	С7—С8—С9—О3	1.0 (5)	
C2-C1-C7-C8	3.1 (6)	C7—C8—C9—N1	-179.6 (3)	
C6—C1—C7—C8	-177.4 (4)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1—H1…O2	0.88 (3)	2.21 (3)	2.641 (3)	109 (3)
C2—H2…S1	0.93	2.66	3.349 (3)	132
O1—H1···O4A ⁱ	0.88 (3)	1.85 (3)	2.622 (7)	145 (3)
N1—H1 <i>N</i> ···O1 ⁱⁱ	0.86	2.05	2.899 (3)	169
O4A—H4A···O3 ⁱⁱⁱ	0.96 (8)	1.79 (8)	2.744 (7)	173 (7)
C12A— $H12A$ ···O3 ^{iv}	0.96	2.37	3.150 (5)	139

Symmetry codes: (i) x, y, z+1; (ii) -x+1/2, y-1/2, z-3/2; (iii) -x+1/2, y+1/2, z+1/2; (iv) x+1/2, -y+1/2, z.