organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1-(4-hy­droxy­phen­yl)ethanone

aMedical College of Henan University, Henan University, Kaifeng 475004, People's Republic of China, and bDepartment of Pharmacy, Zhengzhou Railway Vocational and Technological College;, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: qingweixia2005@163.com

(Received 15 October 2009; accepted 19 October 2009; online 23 October 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C8H7BrO2. In the crystal, they form independent chains propagating in [010] linked by O—H⋯O hydrogen bonds.

Related literature

For medicinal background, see: Kumar et al. (1997[Kumar, A., Rane, R. A., Ravindran, V. K. & Dike, S. Y. (1997). Synth. Commun. 27, 1133-1141.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7BrO2

  • Mr = 215.04

  • Monoclinic, P 21 /c

  • a = 8.6495 (15) Å

  • b = 15.052 (3) Å

  • c = 14.3562 (19) Å

  • β = 123.224 (7)°

  • V = 1563.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.20 mm−1

  • T = 293 K

  • 0.38 × 0.34 × 0.29 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.243, Tmax = 0.314

  • 7916 measured reflections

  • 3064 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.03

  • 3064 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.02 2.811 (6) 162
O4—H4⋯O3ii 0.82 2.00 2.776 (5) 158
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound, (I), 2-bromo-1-(4-hydroxyphenyl)ethanone is widely used in the synthesis of adrenaline-type drugs (e.g. Kumar et al., 1997). Herein, we report the crystal structure of the title compound (I).

As shown in Fig.1, the title compound (I) consists of an asymmetric organic molecule. The S(6) ring of C(1)/C(2)/C(3)/C(4)/C(5)/C(6) in (I) is an aromatic ring. In the structure, C(7)–O(1) [1.212 (7) Å] and C(15)–O(3) [1.203 (6) Å] is typical for a C==O double bond, whereas, the C(1)–O(2), and C(9)–O(4) bond distances are of 1.349 (7) and 1.355 (7) Å, respectively (Table 1), indicating two obviously C–O single bonds.

In the crystal structure, these molecules are linked into infinite one-dimensional chains by intermolecular O—H···O hydrogen bonds running along [010] direction (Fig. 2, Table 1).

Related literature top

For medicinal background, see: Kumar et al. (1997).

Experimental top

4-Hydroxyacetophenone (10 g, 73.4 mmol) was dissolved in chloroform (50 ml) at 338 K. With stirring, concentrated sulfuric acid (3.80 ml, 1.84 g/ml) was added in the solution. After stirring for 10 min, bromine (3.9 ml, 76.1 mmol) was added in reaction solution. After 5 h, the solution was quenched with water (60 ml), the layers were separated and the aqueous layer was extracted with chloroform, the combined organic extracts were washed with saturated aqueous sodium bicarbonate solution (30 ml), dried (MgSO4) and evaporated under reduced pressure to give the crude product. Then purification by short column chromatography (chloroform) and recrystallization from chloroform gave the compound (I) as orange blocks (12.79 g, 81%).

Refinement top

H atoms were geometrically placed (C—H = 0.93–0.97Å, O—H = 0.82 Å) and refined as riding with Uiso(H)=1.2Ueq(C) or Uiso(H)=1.5Ueq(O).

Structure description top

The title compound, (I), 2-bromo-1-(4-hydroxyphenyl)ethanone is widely used in the synthesis of adrenaline-type drugs (e.g. Kumar et al., 1997). Herein, we report the crystal structure of the title compound (I).

As shown in Fig.1, the title compound (I) consists of an asymmetric organic molecule. The S(6) ring of C(1)/C(2)/C(3)/C(4)/C(5)/C(6) in (I) is an aromatic ring. In the structure, C(7)–O(1) [1.212 (7) Å] and C(15)–O(3) [1.203 (6) Å] is typical for a C==O double bond, whereas, the C(1)–O(2), and C(9)–O(4) bond distances are of 1.349 (7) and 1.355 (7) Å, respectively (Table 1), indicating two obviously C–O single bonds.

In the crystal structure, these molecules are linked into infinite one-dimensional chains by intermolecular O—H···O hydrogen bonds running along [010] direction (Fig. 2, Table 1).

For medicinal background, see: Kumar et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional structure of (I) along [010] direction, Hydrogen bonds are shown as dashed lines.
2-Bromo-1-(4-hydroxyphenyl)ethanone top
Crystal data top
C8H7BrO2F(000) = 848
Mr = 215.04Dx = 1.827 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1628 reflections
a = 8.6495 (15) Åθ = 2.7–23.1°
b = 15.052 (3) ŵ = 5.20 mm1
c = 14.3562 (19) ÅT = 293 K
β = 123.224 (7)°Block, orange
V = 1563.5 (5) Å30.38 × 0.34 × 0.29 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3064 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 510
Tmin = 0.243, Tmax = 0.314k = 1818
7916 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3873P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C8H7BrO2V = 1563.5 (5) Å3
Mr = 215.04Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.6495 (15) ŵ = 5.20 mm1
b = 15.052 (3) ÅT = 293 K
c = 14.3562 (19) Å0.38 × 0.34 × 0.29 mm
β = 123.224 (7)°
Data collection top
Bruker SMART CCD
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1752 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.314Rint = 0.058
7916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
3064 reflectionsΔρmin = 0.79 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.93107 (10)0.53760 (4)0.71841 (6)0.0609 (3)
O10.9475 (6)0.3392 (2)0.7394 (4)0.0546 (12)
O20.2872 (6)0.0898 (2)0.4104 (3)0.0546 (12)
H20.18180.10920.37050.082*
C10.4050 (9)0.1575 (4)0.4654 (5)0.0412 (15)
C20.5763 (8)0.1372 (4)0.5584 (5)0.0401 (15)
H2A0.60700.07810.57970.048*
C30.7014 (8)0.2024 (3)0.6197 (5)0.0371 (14)
H3A0.81410.18720.68370.044*
C40.6631 (8)0.2913 (3)0.5878 (4)0.0326 (13)
C50.4910 (9)0.3105 (4)0.4922 (5)0.0426 (15)
H5A0.46120.36930.46950.051*
C60.3633 (9)0.2450 (4)0.4300 (5)0.0409 (15)
H6A0.25090.25940.36530.049*
C70.7990 (9)0.3582 (3)0.6569 (5)0.0375 (14)
C80.7466 (9)0.4533 (3)0.6211 (5)0.0398 (15)
H8A0.63300.46650.61670.048*
H8B0.72230.46030.54700.048*
Br21.06321 (10)0.28455 (5)1.05320 (6)0.0680 (3)
O30.6801 (6)0.2668 (2)0.8479 (3)0.0446 (11)
O40.1884 (6)0.5955 (2)0.5816 (3)0.0489 (11)
H40.23370.64500.58960.073*
C90.3201 (9)0.5383 (4)0.6552 (5)0.0393 (15)
C100.2821 (9)0.4486 (4)0.6349 (5)0.0456 (16)
H10A0.16970.42970.57340.055*
C110.4103 (8)0.3883 (4)0.7055 (5)0.0445 (16)
H11A0.38220.32810.69220.053*
C120.5815 (8)0.4134 (3)0.7966 (4)0.0310 (13)
C130.6156 (9)0.5033 (4)0.8149 (5)0.0391 (14)
H13A0.72710.52240.87700.047*
C140.4887 (9)0.5657 (4)0.7435 (5)0.0388 (15)
H14A0.51740.62590.75520.047*
C150.7123 (8)0.3449 (4)0.8668 (5)0.0357 (14)
C160.8958 (8)0.3773 (4)0.9621 (5)0.0430 (15)
H16A0.87530.41581.00850.052*
H16B0.95340.41260.93260.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0530 (5)0.0346 (4)0.0735 (5)0.0082 (3)0.0209 (4)0.0036 (3)
O10.035 (3)0.035 (2)0.050 (3)0.003 (2)0.005 (3)0.000 (2)
O20.042 (3)0.033 (2)0.060 (3)0.009 (2)0.010 (2)0.004 (2)
C10.044 (4)0.038 (4)0.043 (4)0.001 (3)0.024 (4)0.003 (3)
C20.044 (4)0.026 (3)0.042 (4)0.008 (3)0.018 (4)0.006 (3)
C30.032 (3)0.027 (3)0.040 (3)0.007 (3)0.012 (3)0.005 (3)
C40.033 (3)0.029 (3)0.030 (3)0.005 (3)0.014 (3)0.002 (2)
C50.045 (4)0.026 (3)0.047 (4)0.007 (3)0.019 (4)0.005 (3)
C60.038 (4)0.027 (3)0.037 (3)0.004 (3)0.007 (3)0.006 (3)
C70.043 (4)0.028 (3)0.039 (4)0.004 (3)0.021 (4)0.005 (3)
C80.044 (4)0.027 (3)0.038 (3)0.000 (3)0.015 (3)0.000 (2)
Br20.0486 (5)0.0459 (4)0.0771 (6)0.0048 (3)0.0138 (4)0.0072 (3)
O30.052 (3)0.018 (2)0.047 (2)0.0043 (19)0.017 (2)0.0005 (17)
O40.043 (3)0.027 (2)0.057 (3)0.005 (2)0.015 (2)0.0044 (19)
C90.045 (4)0.035 (3)0.040 (4)0.000 (3)0.025 (4)0.001 (3)
C100.039 (4)0.032 (3)0.050 (4)0.008 (3)0.014 (3)0.005 (3)
C110.045 (4)0.024 (3)0.054 (4)0.005 (3)0.021 (4)0.001 (3)
C120.036 (4)0.023 (3)0.029 (3)0.002 (3)0.015 (3)0.002 (2)
C130.037 (4)0.034 (3)0.033 (3)0.001 (3)0.010 (3)0.004 (3)
C140.043 (4)0.022 (3)0.041 (4)0.004 (3)0.016 (4)0.009 (3)
C150.038 (4)0.033 (3)0.036 (3)0.002 (3)0.020 (3)0.001 (3)
C160.046 (4)0.027 (3)0.042 (4)0.003 (3)0.016 (4)0.001 (3)
Geometric parameters (Å, º) top
Br1—C81.915 (6)Br2—C161.918 (6)
O1—C71.212 (7)O3—C151.203 (6)
O2—C11.349 (7)O4—C91.355 (7)
O2—H20.8200O4—H40.8199
C1—C21.380 (8)C9—C141.370 (9)
C1—C61.387 (8)C9—C101.382 (8)
C2—C31.366 (8)C10—C111.360 (8)
C2—H2A0.9300C10—H10A0.9300
C3—C41.395 (7)C11—C121.387 (7)
C3—H3A0.9300C11—H11A0.9300
C4—C51.395 (8)C12—C131.379 (8)
C4—C71.449 (8)C12—C151.453 (7)
C5—C61.381 (8)C13—C141.380 (8)
C5—H5A0.9300C13—H13A0.9300
C6—H6A0.9300C14—H14A0.9300
C7—C81.504 (7)C15—C161.500 (8)
C8—H8A0.9700C16—H16A0.9700
C8—H8B0.9700C16—H16B0.9700
C1—O2—H2109.5C9—O4—H4109.6
O2—C1—C2117.7 (5)O4—C9—C14122.9 (5)
O2—C1—C6122.8 (6)O4—C9—C10117.1 (6)
C2—C1—C6119.4 (6)C14—C9—C10119.9 (6)
C3—C2—C1121.0 (5)C11—C10—C9119.5 (6)
C3—C2—H2A119.5C11—C10—H10A120.3
C1—C2—H2A119.5C9—C10—H10A120.3
C2—C3—C4121.1 (5)C10—C11—C12122.2 (5)
C2—C3—H3A119.4C10—C11—H11A118.9
C4—C3—H3A119.4C12—C11—H11A118.9
C5—C4—C3117.1 (5)C13—C12—C11117.0 (5)
C5—C4—C7123.9 (5)C13—C12—C15124.1 (5)
C3—C4—C7119.0 (5)C11—C12—C15118.9 (5)
C6—C5—C4122.2 (5)C12—C13—C14121.7 (6)
C6—C5—H5A118.9C12—C13—H13A119.1
C4—C5—H5A118.9C14—C13—H13A119.1
C5—C6—C1119.0 (6)C9—C14—C13119.5 (5)
C5—C6—H6A120.5C9—C14—H14A120.2
C1—C6—H6A120.5C13—C14—H14A120.2
O1—C7—C4122.2 (5)O3—C15—C12122.7 (5)
O1—C7—C8121.2 (5)O3—C15—C16121.4 (5)
C4—C7—C8116.6 (5)C12—C15—C16115.7 (5)
C7—C8—Br1114.0 (4)C15—C16—Br2114.3 (4)
C7—C8—H8A108.8C15—C16—H16A108.7
Br1—C8—H8A108.8Br2—C16—H16A108.7
C7—C8—H8B108.8C15—C16—H16B108.7
Br1—C8—H8B108.8Br2—C16—H16B108.7
H8A—C8—H8B107.6H16A—C16—H16B107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.811 (6)162
O4—H4···O3ii0.822.002.776 (5)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H7BrO2
Mr215.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6495 (15), 15.052 (3), 14.3562 (19)
β (°) 123.224 (7)
V3)1563.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.20
Crystal size (mm)0.38 × 0.34 × 0.29
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.243, 0.314
No. of measured, independent and
observed [I > 2σ(I)] reflections
7916, 3064, 1752
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.03
No. of reflections3064
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.79

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.811 (6)162
O4—H4···O3ii0.822.002.776 (5)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2.
 

References

First citationBruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, A., Rane, R. A., Ravindran, V. K. & Dike, S. Y. (1997). Synth. Commun. 27, 1133–1141.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds