Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N^{\prime}-[(E)-1-(3-Fluorophenyl)ethylidene]formohydrazide

Zahid Shafiq, ${ }^{\text {a }}$ Muhammad Yaqub, ${ }^{\text {a }}$ M. Nawaz Tahir, ${ }^{\text {b* }}$ Mian Hasnain Nawaz ${ }^{\text {a }}$ and M. Saeed Iqbal ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, ${ }^{\mathbf{b}}$ Department of Physics, University of Sargodha, Sargodha, Pakistan, and ${ }^{\text {c }}$ Department of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 17 October 2009; accepted 18 October 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.044 ; w R$ factor $=0.148$; data-to-parameter ratio $=17.8$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$, the dihedral angle between the fluorobenzene ring and the mean plane of the side chain is 15.59 (14) ${ }^{\circ}$. In the crystal, the molecules form inversion dimers linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in $R_{2}^{2}(8)$ loops. These dimers are reinforced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For related structures, see: Shafiq et al. (2009a,b). For graphset notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$
$\gamma=73.977(4)^{\circ}$
$M_{r}=180.18$
Triclinic, $P \overline{1}$ $a=6.8466$ (5) A
$b=7.0258$ (6) \AA
$c=9.9419$ (8) A
$\alpha=70.558(5)^{\circ}$
$\beta=81.267(5)^{\circ}$

Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\text {min }}=0.986, T_{\text {max }}=0.990$

19438 measured reflections 2124 independent reflections 1320 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
119 parameters
$w R\left(F^{2}\right)=0.148$
H -atom parameters constrained
$S=1.00$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
2124 reflections
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.14	$2.989(2)$	168
$\mathrm{C} 8-\mathrm{H} 8 A \cdots 1^{\mathrm{i}}$	0.96	2.52	$3.204(3)$	129

Symmetry code: (i) $-x,-y+2,-z+1$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5150).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. \& Iqbal, M. S. (2009a). Acta Cryst. E65, o2494.
Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. \& Iqbal, M. S. (2009b). Acta Cryst. E65, o2495.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2830 [https://doi.org/10.1107/S1600536809042809]
N^{\prime}-[(E)-1-(3-Fluorophenyl) ethylidene]formohydrazide

Zahid Shafiq, Muhammad Yaqub, M. Nawaz Tahir, Mian Hasnain Nawaz and M. Saeed Iqbal

S1. Comment

Recently we have reported the crystal structures of (II) $N^{\prime \prime}-[(1 E)-1-(4-C h l o r o p h e n y l) e t h y l i d e n e]$ formohydrazide (Shafiq et al., 2009a), (III) $N^{\prime}-[(E)-(5-M e t h y l f u r a n-2-y l) m e t h y l i d e n e] f o r m o h y d r a z i d e ~(S h a f i q ~ e t ~ a l ., ~ 2009 b) . ~ T h e ~ t i t l e ~ c o m p o u n d ~(I, ~$
Fig. 1) has been prepared in continuation of synthesizing various formohydrazide derivatives.
In (I), the groups $A(C 1-C 6 / F 1)$ and $B(C 7 / C 8 / N 1 / N 2 / C 9)$ are planar with maximum r. m. s. deviations of 0.0022 and $0.0146 \AA$, respectively from their mean squares planes. The dihedral angle between A / B is $15.59(14)^{\circ}$.
The molecules of (I) consist of dimers similar to (II) and (III) due to $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type of intermolecular H -bondings forming $R_{2}{ }^{2}(8)$ ring motifs (Bernstein et al., 1995). The difference between (I) and (II) is the substitution of Cl and F -atom on the para and meta positions of benzene ring, respectively. Due to this change there exist two $R_{2}{ }^{1}(7)$ ring motifs in dimers due to $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ H-bondings (Table 1).

S2. Experimental

To a hot stirred solution of formic hydrazide $(1.0 \mathrm{~g}, 0.017 \mathrm{~mol})$ in ethanol $(15 \mathrm{ml})$ was added 1-(3-fluorophenyl)ethanone $(2.043 \mathrm{ml}, 0.017 \mathrm{~mol})$. The resultant mixture was then heated under reflux. The reaction mixture was refluxed about 12 h and monitored through TLC. After the completion of reaction, the mixture was cooled to room temperature. The solid was collected by suction filtration. The product obtained was washed with hot ethanol and 1,4-dioxan and dried.
Colourless needles of (I) were obtained by recrystallization of the crude product in 1,4-dioxan after two days.

S3. Refinement

The H-atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}$ (carrier) or $1.5 U_{\mathrm{eq}}$ (methyl C).

Figure 1
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.

Figure 2
The partial packing of (I), which shows that molecules form dimers.

N^{\prime}-[(E)-1-(3-Fluorophenyl)ethylidene]formohydrazide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$
$M_{r}=180.18$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.8466$ (5) A
$b=7.0258$ (6) \AA
$c=9.9419(8) \AA$
$\alpha=70.558(5)^{\circ}$
$\beta=81.267$ (5) ${ }^{\circ}$
$\gamma=73.977(4)^{\circ}$
$V=432.50(6) \AA^{3}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

$$
Z=2
$$

$$
F(000)=188
$$

$D_{\mathrm{x}}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2124 reflections
$\theta=3.1-28.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Cut needle, colourless
$0.28 \times 0.12 \times 0.10 \mathrm{~mm}$

Detector resolution: 7.40 pixels mm^{-1}

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.986, T_{\text {max }}=0.990$
19438 measured reflections
2124 independent reflections
1320 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.148$
$S=1.00$
2124 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-9 \rightarrow 9 \\
& l=-13 \rightarrow 12
\end{aligned}
$$

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0721 P)^{2}+0.1041 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.23$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20$ e \AA^{-3} map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0721 P)^{2}+0.1041 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$-0.17799(17)$	$0.19897(19)$	$0.11146(13)$	$0.0654(5)$
O1	$-0.27158(19)$	$1.0743(2)$	$0.48303(16)$	$0.0571(5)$
N1	$-0.0361(2)$	$0.6861(2)$	$0.32755(15)$	$0.0397(4)$
N2	$-0.0531(2)$	$0.8255(2)$	$0.40149(15)$	$0.0423(5)$
C1	$0.1524(2)$	$0.4305(3)$	$0.22398(18)$	$0.0385(5)$
C2	$-0.0221(3)$	$0.3804(3)$	$0.20534(18)$	$0.0414(5)$
C3	$-0.0068(3)$	$0.2466(3)$	$0.12916(19)$	$0.0443(6)$
C4	$0.1727(3)$	$0.1578(3)$	$0.0688(3)$	$0.0600(8)$
C5	$0.3447(3)$	$0.2084(4)$	$0.0867(3)$	$0.0734(10)$
C6	$0.3367(3)$	$0.3417(3)$	$0.1637(2)$	$0.0582(7)$
C7	$0.1417(2)$	$0.5780(3)$	$0.30417(18)$	$0.0395(5)$
C8	$0.3324(3)$	$0.5870(4)$	$0.3542(3)$	$0.0689(8)$
C9	$-0.2381(3)$	$0.9408(3)$	$0.4233(2)$	$0.0462(6)$
H2	-0.14795	0.43732	0.24433	0.0496^{*}
H2A	0.05215	0.83756	0.43242	0.0507^{*}
H4	0.17812	0.06689	0.01769	0.0720^{*}
H5	0.46934	0.15168	0.04599	0.0882^{*}
H6	0.45566	0.37230	0.17538	0.0698^{*}
H8A	0.30519	0.60432	0.44755	0.1034^{*}
H8B	0.38093	0.70226	0.28885	0.1034^{*}
H8C	0.43388	0.46005	0.35838	0.1034^{*}

supporting information

H 9	-0.34809	0.91844	0.39133

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
F1	$0.0472(7)$	$0.0812(9)$	$0.0917(9)$	$-0.0205(6)$	$-0.0071(6)$	$-0.0522(7)$
O1	$0.0416(7)$	$0.0611(9)$	$0.0844(10)$	$-0.0063(6)$	$0.0031(6)$	$-0.0510(8)$
N1	$0.0379(7)$	$0.0397(8)$	$0.0486(8)$	$-0.0064(6)$	$-0.0014(6)$	$-0.0256(7)$
N2	$0.0350(7)$	$0.0458(8)$	$0.0558(9)$	$-0.0057(6)$	$-0.0034(6)$	$-0.0312(7)$
C1	$0.0353(8)$	$0.0386(9)$	$0.0457(10)$	$-0.0038(7)$	$-0.0042(7)$	$-0.0217(8)$
C2	$0.0348(8)$	$0.0458(10)$	$0.0482(10)$	$-0.0059(7)$	$0.0000(7)$	$-0.0247(8)$
C3	$0.0392(9)$	$0.0480(10)$	$0.0543(11)$	$-0.0110(8)$	$-0.0071(7)$	$-0.0248(9)$
C4	$0.0485(11)$	$0.0681(13)$	$0.0841(15)$	$-0.0068(9)$	$-0.0018(10)$	$-0.0570(12)$
C5	$0.0407(10)$	$0.0940(18)$	$0.112(2)$	$-0.0058(10)$	$0.0056(11)$	$-0.0791(16)$
C6	$0.0332(9)$	$0.0723(14)$	$0.0886(15)$	$-0.0071(9)$	$-0.0009(9)$	$-0.0558(12)$
C7	$0.0357(8)$	$0.0408(9)$	$0.0470(10)$	$-0.0046(7)$	$-0.0058(7)$	$-0.0224(8)$
C8	$0.0423(10)$	$0.0802(15)$	$0.1084(18)$	$0.0019(10)$	$-0.0197(11)$	$-0.0673(14)$
C9	$0.0356(9)$	$0.0491(10)$	$0.0638(12)$	$-0.0082(7)$	$-0.0003(8)$	$-0.0330(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

F1-C3	1.355 (2)	C4-C5	1.372 (3)
O1-C9	1.223 (3)	C5-C6	1.379 (3)
N1-N2	1.380 (2)	C7-C8	1.490 (3)
N1-C7	1.278 (2)	C2-H2	0.9300
N2-C9	1.332 (3)	C4-H4	0.9300
N2-H2A	0.8600	C5-H5	0.9300
C1-C2	1.389 (3)	C6-H6	0.9300
C1-C7	1.485 (3)	C8-H8A	0.9600
C1-C6	1.388 (3)	C8-H8B	0.9600
C2-C3	1.365 (3)	C8-H8C	0.9600
C3-C4	1.364 (3)	C9-H9	0.9300
N2-N1-C7	117.88 (15)	O1-C9-N2	123.78 (19)
N1-N2-C9	117.74 (15)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.00
C9-N2-H2A	121.00	C3-C2-H2	120.00
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	121.00	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	121.00
C6-C1-C7	120.83 (15)	C5-C4-H4	121.00
C2-C1-C7	120.92 (16)	C4-C5-H5	119.00
C2- $\mathrm{C} 1-\mathrm{C} 6$	118.24 (18)	C6-C5-H5	119.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.28 (19)	C1-C6-H6	120.00
C2-C3-C4	123.5 (2)	C5-C6-H6	120.00
F1-C3-C2	118.80 (18)	C7-C8-H8A	109.00
F1-C3-C4	117.74 (18)	C7-C8-H8B	109.00
C3-C4-C5	117.2 (2)	C7-C8- H 8 C	109.00
C4-C5-C6	121.4 (2)	H8A-C8-H8B	110.00
C1-C6-C5	120.5 (2)	H8A-C8-H8C	109.00
N1-C7-C1	115.92 (14)	H8B-C8-H8C	109.00

$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$124.86(19)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{H} 9$	118.00
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$119.20(17)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{H} 9$	118.00
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	$178.74(16)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$164.42(19)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$-179.88(14)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-164.85(17)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$1.7(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-179.92(16)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{O} 1$	$-177.46(17)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{F} 1$	$-0.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.1(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.6(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.02(17)$	$\mathrm{F} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.4(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.7(4)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.6(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-14.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.14	$2.989(2)$	168
$\mathrm{C} 8-\mathrm{H} 8 A \cdots 1^{\mathrm{i}}$	0.96	2.52	$3.204(3)$	129

Symmetry code: (i) $-x,-y+2,-z+1$.

