organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-[(*E*)-1-(3-Fluorophenyl)ethylidene]formohydrazide

Zahid Shafiq,^a Muhammad Yagub,^a M. Nawaz Tahir,^b* Mian Hasnain Nawaz^a and M. Saeed Iqbal^c

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 17 October 2009; accepted 18 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.148; data-to-parameter ratio = 17.8.

In the title compound, $C_9H_9FN_2O$, the dihedral angle between the fluorobenzene ring and the mean plane of the side chain is $15.59 (14)^{\circ}$. In the crystal, the molecules form inversion dimers linked by pairs of N-H···O hydrogen bonds, resulting in $R_2^2(8)$ loops. These dimers are reinforced by C-H···O interactions.

Related literature

For related structures, see: Shafiq et al. (2009a,b). For graphset notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C ₉ H ₉ FN ₂ O
$M_r = 180.18$
Triclinic, P1
a = 6.8466 (5) Å
b = 7.0258 (6) Å
c = 9.9419 (8) Å
$\alpha = 70.558 \ (5)^{\circ}$
$\beta = 81.267 \ (5)^{\circ}$

 $\gamma = 73.977 \ (4)^{\circ}$ V = 432.50 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K $0.28 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.986, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	119 parameters
$vR(F^2) = 0.148$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
2124 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

19438 measured reflections

 $R_{\rm int} = 0.028$

2124 independent reflections

1320 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2A \cdots O1^{i} \\ C8 - H8A \cdots O1^{i} \end{array}$	0.86	2.14	2.989 (2)	168
	0.96	2.52	3.204 (3)	129

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5150).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009a). Acta Cryst. E65, 02494.
- Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2495.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2830 [https://doi.org/10.1107/S1600536809042809]

N'-[(*E*)-1-(3-Fluorophenyl)ethylidene]formohydrazide

Zahid Shafiq, Muhammad Yaqub, M. Nawaz Tahir, Mian Hasnain Nawaz and M. Saeed Iqbal

S1. Comment

Recently we have reported the crystal structures of (II) N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide (Shafiq *et al.*, 2009*a*), (III) N'-[(E)-(5-Methylfuran-2-yl)methylidene]formohydrazide (Shafiq *et al.*, 2009*b*). The title compound (I, Fig. 1) has been prepared in continuation of synthesizing various formohydrazide derivatives.

In (I), the groups A (C1—C6/F1) and B (C7/C8/N1/N2/C9) are planar with maximum r. m. s. deviations of 0.0022 and 0.0146 Å, respectively from their mean squares planes. The dihedral angle between A/B is 15.59 (14)°.

The molecules of (I) consist of dimers similar to (II) and (III) due to N–H···O type of intermolecular H-bondings forming $R_2^2(8)$ ring motifs (Bernstein *et al.*, 1995). The difference between (I) and (II) is the substitution of Cl and F-atom on the *para* and *meta* positions of benzene ring, respectively. Due to this change there exist two $R_2^1(7)$ ring motifs in dimers due to C–H···O and N—H···O H-bondings (Table 1).

S2. Experimental

To a hot stirred solution of formic hydrazide (1.0 g, 0.017 mol) in ethanol (15 ml) was added 1-(3-fluorophenyl)ethanone (2.043 ml, 0.017 mol). The resultant mixture was then heated under reflux. The reaction mixture was refluxed about 12 h and monitored through TLC. After the completion of reaction, the mixture was cooled to room temperature. The solid was collected by suction filtration. The product obtained was washed with hot ethanol and 1,4-dioxan and dried. Colourless needles of (I) were obtained by recrystallization of the crude product in 1,4-dioxan after two days.

S3. Refinement

The H-atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius.

Figure 2

The partial packing of (I), which shows that molecules form dimers.

N'-[(*E*)-1-(3-Fluorophenyl)ethylidene]formohydrazide

Crystal data

C₉H₉FN₂O $M_r = 180.18$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.8466 (5) Å b = 7.0258 (6) Å c = 9.9419 (8) Å a = 70.558 (5)° $\beta = 81.267$ (5)° $\gamma = 73.977$ (4)° V = 432.50 (6) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Z = 2 F(000) = 188 $D_x = 1.384 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2124 reflections $\theta = 3.1-28.3^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K Cut needle, colourless $0.28 \times 0.12 \times 0.10 \text{ mm}$

Detector resolution: 7.40 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005)

$T_{\min} = 0.986, \ T_{\max} = 0.990$	$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
19438 measured reflections	$h = -9 \rightarrow 9$
2124 independent reflections	$k = -9 \longrightarrow 9$
1320 reflections with $I > 2\sigma(I)$	$l = -13 \rightarrow 12$
$R_{\rm int} = 0.028$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.148$	neighbouring sites
S = 1.00	H-atom parameters constrained
2124 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 + 0.1041P]$
119 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
-0.17799 (17)	0.19897 (19)	0.11146 (13)	0.0654 (5)
-0.27158 (19)	1.0743 (2)	0.48303 (16)	0.0571 (5)
-0.0361 (2)	0.6861 (2)	0.32755 (15)	0.0397 (4)
-0.0531 (2)	0.8255 (2)	0.40149 (15)	0.0423 (5)
0.1524 (2)	0.4305 (3)	0.22398 (18)	0.0385 (5)
-0.0221 (3)	0.3804 (3)	0.20534 (18)	0.0414 (5)
-0.0068 (3)	0.2466 (3)	0.12916 (19)	0.0443 (6)
0.1727 (3)	0.1578 (3)	0.0688 (3)	0.0600 (8)
0.3447 (3)	0.2084 (4)	0.0867 (3)	0.0734 (10)
0.3367 (3)	0.3417 (3)	0.1637 (2)	0.0582 (7)
0.1417 (2)	0.5780 (3)	0.30417 (18)	0.0395 (5)
0.3324 (3)	0.5870 (4)	0.3542 (3)	0.0689 (8)
-0.2381 (3)	0.9408 (3)	0.4233 (2)	0.0462 (6)
-0.14795	0.43732	0.24433	0.0496*
0.05215	0.83756	0.43242	0.0507*
0.17812	0.06689	0.01769	0.0720*
0.46934	0.15168	0.04599	0.0882*
0.45566	0.37230	0.17538	0.0698*
0.30519	0.60432	0.44755	0.1034*
0.38093	0.70226	0.28885	0.1034*
0.43388	0.46005	0.35838	0.1034*
	$\begin{array}{c} x \\ \hline -0.17799 (17) \\ \hline -0.27158 (19) \\ \hline -0.0361 (2) \\ \hline -0.0531 (2) \\ 0.1524 (2) \\ \hline -0.0221 (3) \\ \hline -0.0068 (3) \\ 0.1727 (3) \\ 0.3447 (3) \\ 0.3367 (3) \\ 0.1417 (2) \\ 0.3324 (3) \\ \hline -0.2381 (3) \\ \hline -0.2381 (3) \\ \hline -0.14795 \\ 0.05215 \\ 0.17812 \\ 0.46934 \\ 0.45566 \\ 0.30519 \\ 0.38093 \\ 0.43388 \end{array}$	xy $-0.17799 (17)$ $0.19897 (19)$ $-0.27158 (19)$ $1.0743 (2)$ $-0.0361 (2)$ $0.6861 (2)$ $-0.0531 (2)$ $0.8255 (2)$ $0.1524 (2)$ $0.4305 (3)$ $-0.0221 (3)$ $0.3804 (3)$ $-0.068 (3)$ $0.2466 (3)$ $0.1727 (3)$ $0.1578 (3)$ $0.3447 (3)$ $0.2084 (4)$ $0.3367 (3)$ $0.3417 (3)$ $0.1417 (2)$ $0.5780 (3)$ $0.3224 (3)$ $0.5870 (4)$ $-0.2381 (3)$ $0.9408 (3)$ -0.14795 0.43732 0.05215 0.83756 0.17812 0.06689 0.46934 0.15168 0.45566 0.37230 0.30519 0.60432 0.38093 0.70226 0.43388 0.46005	x y z $-0.17799(17)$ $0.19897(19)$ $0.11146(13)$ $-0.27158(19)$ $1.0743(2)$ $0.48303(16)$ $-0.0361(2)$ $0.6861(2)$ $0.32755(15)$ $-0.0531(2)$ $0.8255(2)$ $0.40149(15)$ $0.1524(2)$ $0.4305(3)$ $0.22398(18)$ $-0.0221(3)$ $0.3804(3)$ $0.20534(18)$ $-0.0068(3)$ $0.2466(3)$ $0.12916(19)$ $0.1727(3)$ $0.1578(3)$ $0.0688(3)$ $0.3447(3)$ $0.2084(4)$ $0.0867(3)$ $0.3367(3)$ $0.3417(3)$ $0.1637(2)$ $0.1417(2)$ $0.5780(3)$ $0.30417(18)$ $0.3324(3)$ $0.5870(4)$ $0.3542(3)$ $-0.2381(3)$ $0.9408(3)$ $0.4233(2)$ -0.14795 0.43732 0.24433 0.05215 0.83756 0.43242 0.17812 0.06689 0.01769 0.46934 0.15168 0.04599 0.45566 0.37230 0.17538 0.30519 0.60432 0.44755 0.38093 0.70226 0.28885 0.43388 0.46005 0.35838

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H9	-0.3480	9	0.91844	0.39133	0.0554*		
Atomi	Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
F1	0.0472 (7)	0.0812 (9)	0.0917 (9)	-0.0205 (6)	-0.0071 (6)	-0.0522 (7)	
01	0.0416 (7)	0.0611 (9)	0.0844 (10)	-0.0063 (6)	0.0031 (6)	-0.0510 (8)	
N1	0.0379 (7)	0.0397 (8)	0.0486 (8)	-0.0064 (6)	-0.0014 (6)	-0.0256 (7)	
N2	0.0350 (7)	0.0458 (8)	0.0558 (9)	-0.0057 (6)	-0.0034 (6)	-0.0312 (7)	
C1	0.0353 (8)	0.0386 (9)	0.0457 (10)	-0.0038 (7)	-0.0042 (7)	-0.0217 (8)	
C2	0.0348 (8)	0.0458 (10)	0.0482 (10)	-0.0059 (7)	0.0000(7)	-0.0247 (8)	
C3	0.0392 (9)	0.0480 (10)	0.0543 (11)	-0.0110 (8)	-0.0071 (7)	-0.0248 (9)	
C4	0.0485 (11)	0.0681 (13)	0.0841 (15)	-0.0068 (9)	-0.0018 (10)	-0.0570 (12)	
C5	0.0407 (10)	0.0940 (18)	0.112 (2)	-0.0058 (10)	0.0056 (11)	-0.0791 (16)	
C6	0.0332 (9)	0.0723 (14)	0.0886 (15)	-0.0071 (9)	-0.0009 (9)	-0.0558 (12)	
C7	0.0357 (8)	0.0408 (9)	0.0470 (10)	-0.0046 (7)	-0.0058 (7)	-0.0224 (8)	
C8	0.0423 (10)	0.0802 (15)	0.1084 (18)	0.0019 (10)	-0.0197 (11)	-0.0673 (14)	
C9	0.0356 (9)	0.0491 (10)	0.0638 (12)	-0.0082 (7)	-0.0003 (8)	-0.0330 (9)	

Geometric parameters (Å, °)

F1—C3	1.355 (2)	C4—C5	1.372 (3)	
O1—C9	1.223 (3)	C5—C6	1.379 (3)	
N1—N2	1.380 (2)	С7—С8	1.490 (3)	
N1—C7	1.278 (2)	С2—Н2	0.9300	
N2—C9	1.332 (3)	C4—H4	0.9300	
N2—H2A	0.8600	С5—Н5	0.9300	
C1—C2	1.389 (3)	С6—Н6	0.9300	
C1—C7	1.485 (3)	C8—H8A	0.9600	
C1—C6	1.388 (3)	C8—H8B	0.9600	
C2—C3	1.365 (3)	C8—H8C	0.9600	
C3—C4	1.364 (3)	С9—Н9	0.9300	
N2—N1—C7	117.88 (15)	O1—C9—N2	123.78 (19)	
N1—N2—C9	117.74 (15)	C1—C2—H2	120.00	
C9—N2—H2A	121.00	С3—С2—Н2	120.00	
N1—N2—H2A	121.00	C3—C4—H4	121.00	
C6—C1—C7	120.83 (15)	С5—С4—Н4	121.00	
C2—C1—C7	120.92 (16)	C4—C5—H5	119.00	
C2—C1—C6	118.24 (18)	С6—С5—Н5	119.00	
C1—C2—C3	119.28 (19)	С1—С6—Н6	120.00	
C2—C3—C4	123.5 (2)	С5—С6—Н6	120.00	
F1—C3—C2	118.80 (18)	C7—C8—H8A	109.00	
F1—C3—C4	117.74 (18)	C7—C8—H8B	109.00	
C3—C4—C5	117.2 (2)	C7—C8—H8C	109.00	
C4—C5—C6	121.4 (2)	H8A—C8—H8B	110.00	
C1—C6—C5	120.5 (2)	H8A—C8—H8C	109.00	
N1—C7—C1	115.92 (14)	H8B—C8—H8C	109.00	

supporting information

N1—C7—C8	124.86 (19)	O1—C9—H9	118.00
C1—C7—C8	119.20 (17)	N2—C9—H9	118.00
C7—N1—N2—C9	178.74 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164.42 (19)
N2—N1—C7—C1	-179.88 (14)		164.85 (17)
N2—N1—C7—C8	1.7 (3)		-16.6 (3)
N1—N2—C9—O1	-177.46 (17)		-179.92 (16)
C6—C1—C2—C3	0.1 (3)		-0.2 (3)
C7—C1—C2—C3	179.02 (17)		179.6 (2)
C2—C1—C6—C5	0.4 (3)		-0.2 (4)
C7—C1—C6—C5	-178.6 (2)		0.7 (4)
C2—C1—C6—C5	-14.1 (3)		-0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A····O1 ⁱ	0.86	2.14	2.989 (2)	168
C8—H8A···O1 ⁱ	0.96	2.52	3.204 (3)	129

Symmetry code: (i) -x, -y+2, -z+1.