Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chlorido(5-formyl-2-hydroxyphenylκC^{1})mercury(II)

Ze-Bao Zheng,* Shi-Ying Ma, Ren-Tao Wu, Yin-Feng Han and Jing-Rong Lu

Department of Chemistry and Environmental Science, Taishan University, 271021
Taian, Shandong, People's Republic of China
Correspondence e-mail: zhengzebao@163.com
Received 19 October 2009; accepted 22 October 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$; R factor $=0.039 ; w R$ factor $=0.103 ;$ data-to-parameter ratio $=14.1$.

In the planar (r.m.s. deviation $=0.027 \AA$) title compound, $\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]$, the $\mathrm{Hg}^{\mathrm{II}}$ atom shows a typical linear coordination by a C atom of the benzene ring and a Cl atom. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in the crystal structure, resulting in chains propagating along the b axis. The crystal studied was a non-merohedral twin, with a twin ratio of 0.802 (2):0.198 (2).

Related literature

For general background to the use of cyclometallated compounds in synthesis, catalysis and materials, see: Gruter et al. (1995); Dupont et al. (2005). For related structures and the synthesis of related cyclomercurated compounds, see: Xu et al. (2009). For the preparation of cyclomercurated compounds, see: Ryabov et al. (2003); Wu et al. (2001).

Experimental

Crystal data

$\begin{array}{ll}{\left[\mathrm{Hg}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]} & \text { Monoclinic, } P 2_{1} / c \\ M_{r}=357.15 & a=4.1004(10) \AA\end{array}$

$$
\begin{aligned}
& \text { Monoclinic, } P 2_{1} / c \\
& a=4.1004(10) \AA
\end{aligned}
$$

$$
\begin{aligned}
& b=14.842(3) \AA \\
& c=14.116(3) \AA \\
& \beta=106.657(6)^{\circ} \\
& V=823.0(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

> Mo $K \alpha$ radiation $\mu=18.97 \mathrm{~mm}^{-1}$
> $T=295 \mathrm{~K}$
> $0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.116, T_{\text {max }}=0.151$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.103$
$S=1.09$
1424 reflections

4116 measured reflections 1424 independent reflections 1333 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{C} 3$	$2.058(13)$	$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.326(4)$
$\mathrm{C} 3-\mathrm{Hg} 1-\mathrm{Cl} 1$	$179.1(4)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.91	$2.727(16)$	172
Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.				

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5153).

References

Dupont, J., Consorti, C. S. \& Spencer, J. (2005). Chem. Rev. 105, 2527-2571.
Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. \& Bickelhaupt, F. (1995). Chem. Rev. 95, 2405-2456.
Ryabov, A. D., Soukharev, V. S., Alexandrova, L., Lagadec, R. L. \& Pfeffer, M. (2003). Inorg. Chem. 42, 6598-6600.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wu, Y. J., Huo, S. Q., Gong, J. F., Cui, X. L., Ding, K. L., Du, C. X., Liu, Y. H. \& Song, M. P. (2001). J. Organomet. Chem. 637-639, 27-46.
Xu, C., Cen, F.-F., Wang, Z.-Q. \& Zhang, Y.-Q. (2009). Acta Cryst. E65, m754.

supporting information

Acta Cryst. (2009). E65, m1448 [https://doi.org/10.1107/S1600536809043529]

Chlorido(5-formyl-2-hydroxyphenyl- κC^{1})mercury(II)

Ze-Bao Zheng, Shi-Ying Ma, Ren-Tao Wu, Yin-Feng Han and Jing-Rong Lu

S1. Comment

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Dupont et al., 2005). Among them, cyclomercurated compounds are easy to prepare through a C-H activation process and are stable but reasonably reactive (Wu et al., 2001; Ryabov et al., 2003).
In the planar title compound (Fig. 1), the mercury(II) atom shows a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. $\mathrm{O} 2-\mathrm{Hg} 1$ distance ($3.047(2) \AA$) is much longer than those of the related $\mathrm{Hg}(\mathrm{II})$ complex (Xu et al., 2009). The $\mathrm{C}-\mathrm{Hg}$ and $\mathrm{Hg}-\mathrm{Cl}$ bond distances are within normal ranges. The $\mathrm{C} 3-\mathrm{Hg} 1-\mathrm{Cl} 1$ angle is 179.1 (4) ${ }^{\circ}$. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in the crystal structure (Table 1), resulting in a one-dimensional supramolecular architecture (Fig.2).

S2. Experimental

The title compound was prepared from the p-hydroxybenzaldehyde with $\mathrm{Hg}(\mathrm{OAc})_{2}$ and subsequent treatment with LiCl and recrystallized from dichloromethane-petroleum ether solution at room temperature to give (I) as colorless crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

All H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{O}-\mathrm{H}=0.82-0.85 \AA$ and $\mathrm{N}-\mathrm{H}$ $=0.86 \AA . U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$, and $1.5 U_{\mathrm{eq}}(\mathrm{O})$.
The structure is a non-merohdral twin. The twin law, as given by PLATON (Spek, 2009), is (-100,0-10,201), which lowered the R1 index from 0.116 to 0.039 .

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Chlorido(5-formyl-2-hydroxyphenyl- κC^{1})mercury(II)

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\right]$
$M_{r}=357.15$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.1004$ (10) \AA
$b=14.842$ (3) \AA
$c=14.116$ (3) \AA
$\beta=106.657(6)^{\circ}$
$V=823.0(3) \AA^{3}$
$Z=4$
$F(000)=640$
$D_{\mathrm{x}}=2.882 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2640 reflections
$\theta=2.7-29.5^{\circ}$
$\mu=18.97 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, colorless
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.116, T_{\text {max }}=0.151$

> 4116 measured reflections
> 1424 independent reflections
> 1333 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.039$
> $\theta_{\max }=25.1^{\circ}, \theta_{\min }=1.4^{\circ}$
> $h=-4 \rightarrow 4$
> $k=-12 \rightarrow 17$
> $l=-16 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.103$
$S=1.09$
1424 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg1	$0.32843(16)$	$0.87897(3)$	$0.53385(4)$	$0.0345(2)$
Cl1	$0.5374(10)$	$0.9140(2)$	$0.4016(3)$	$0.0405(8)$
O1	$0.093(5)$	$1.0269(8)$	$0.8767(9)$	$0.076(4)$
O2	$0.069(4)$	$0.6993(7)$	$0.5877(8)$	$0.055(3)$

H2	0.0023	0.6493	0.5982	0.083^{*}
C1	$0.031(5)$	$0.8833(8)$	$0.8033(11)$	$0.038(3)$
C2	$0.131(4)$	$0.9074(9)$	$0.7223(10)$	$0.033(3)$
H2A	0.1898	0.9671	0.7153	0.040^{*}
C3	$0.148(4)$	$0.8460(9)$	$0.6511(9)$	$0.029(3)$
C4	$0.052(4)$	$0.7564(10)$	$0.6613(10)$	$0.036(3)$
C5	$-0.063(5)$	$0.7317(9)$	$0.7410(11)$	$0.042(3)$
H5	-0.1288	0.6724	0.7467	0.051^{*}
C6	$-0.081(4)$	$0.7932(10)$	$0.8110(10)$	$0.039(4)$
H6	-0.1642	0.7766	0.8631	0.047^{*}
C7	$-0.007(6)$	$0.9495(12)$	$0.8760(11)$	$0.059(5)$
H7	-0.1119	0.9319	0.9235	0.070^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0437(3)$	$0.0258(3)$	$0.0364(3)$	$-0.0009(2)$	$0.0153(3)$	$0.0038(2)$
C 11	$0.050(2)$	$0.0390(18)$	$0.0357(17)$	$-0.0049(17)$	$0.0181(16)$	$-0.0012(15)$
O 1	$0.133(14)$	$0.035(6)$	$0.067(8)$	$-0.005(8)$	$0.040(9)$	$-0.009(6)$
O 2	$0.099(11)$	$0.028(5)$	$0.047(6)$	$-0.014(6)$	$0.033(7)$	$-0.007(5)$
C 1	$0.050(10)$	$0.022(7)$	$0.043(8)$	$0.011(6)$	$0.015(7)$	$0.002(5)$
C2	$0.036(8)$	$0.021(6)$	$0.044(8)$	$0.008(6)$	$0.013(6)$	$0.008(6)$
C3	$0.032(7)$	$0.021(6)$	$0.030(7)$	$0.002(6)$	$0.003(5)$	$0.007(5)$
C4	$0.042(8)$	$0.030(7)$	$0.029(7)$	$-0.003(6)$	$0.002(6)$	$0.003(6)$
C5	$0.061(10)$	$0.021(6)$	$0.047(8)$	$-0.005(7)$	$0.020(8)$	$0.008(6)$
C6	$0.052(9)$	$0.034(8)$	$0.034(7)$	$-0.005(7)$	$0.014(7)$	$0.016(6)$
C7	$0.096(15)$	$0.048(10)$	$0.038(9)$	$0.017(10)$	$0.027(10)$	$0.009(7)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{Hg} 1-\mathrm{C} 3$	$2.058(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.37(2)$
$\mathrm{Hg} 1-\mathrm{C} 11$	$2.326(4)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 7$	$1.22(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.405(19)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.357(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.39(2)$
$\mathrm{O} 2-\mathrm{H} 2$	0.8193	$\mathrm{C} 5-\mathrm{C} 6$	$1.36(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.37(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.428(19)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{C} 7$	$1.46(2)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 3-\mathrm{Hg} 1-\mathrm{Cl} 1$			
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 2$	$179.1(4)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$115.9(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	109.5	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.1(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$119.2(13)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.8(13)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$121.9(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 5$	119.6		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$118.4(15)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.2(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$121.8(13)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.1	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.4
	119.1		$122.3(17)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Hg} 1$	$122.4(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Hg} 1$	$118.8(10)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$123.9(13)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-4(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.1(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Hg} 1$	$-175.8(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$179.0(14)$
$\mathrm{Hg} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-3.9(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1(2)$
$\mathrm{Hg} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.5(12)$

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7$	118.8
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7$	118.8

$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.4(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-2(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$4(2)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.7(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-11(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$177.2(19)$

Hydrogen-bond geometry ($\left(,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.91	$2.727(16)$	172

Symmetry code: (i) $-x, y-1 / 2,-z+3 / 2$.

