organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxymethyl-2-methoxyphenol

Qiang Wang* and Suo-Ping Li

Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: wgwang228@163.com

Received 19 October 2009; accepted 19 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 14.5.

The title compound, $C_8H_{10}O_3$, is close to planar (r.m.s. deviation = 0.042 Å) apart from the hydroxyl O atom [deviation = 1.285 (1) Å] and an intramolecular $O-H \cdots O$ hydrogen bond occurs. In the crystal, intermolecular O- $H \cdots O$ links lead to chains propagating in [001].

Related literature

For a related compound used as a food additive, see: Kumar et al. (2004); Shaughnessy et al. (2001).

Experimental

Crystal data C₈H₁₀O₃ $M_r = 154.16$

Monoclinic, $P2_1/c$ a = 9.8476 (6) Å

b = 6.1721 (4) Å c = 15.4915 (7) Å $\beta = 126.877 \ (2)^{\circ}$ V = 753.19 (8) Å³ Z = 4

Data collection

Bruker SMART CCD 3996 measured reflections diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $R_{\rm int}=0.015$ $T_{\min} = 0.971, T_{\max} = 0.993$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 \\ wR(F^2) &= 0.102 \end{split}$$
S = 1.051475 reflections 102 parameters

1475 independent reflections 1249 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $0.29 \times 0.11 \times 0.07 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

2 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1A \cdots O2$	0.82	2.31	2.6669 (16)	107
$01 - H1A \cdots O3^{i}$	0.82	1.96	2.7390 (16)	158
$03 - H3B \cdots O1^{ii}$	0.84	2.07	2.8666 (15)	158

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5154).

References

Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

Kumar, S. S., Priyadarsini, K. I. & Sainis, K. B. (2004). J. Agric. Food Chem. 52, 139-145.

Shaughnessy, D. T., Setzer, R. W. & DeMarini, D. M. (2001). Mutat. Res. 480-481, 55-69.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2838 [https://doi.org/10.1107/S1600536809043025]

4-Hydroxymethyl-2-methoxyphenol

Qiang Wang and Suo-Ping Li

S1. Comment

4-hydroxy-3-methoxybenzaldehyde is one of the commonly used food additives. In recent years, it was discovered that 4hydroxy-3-methoxybenzaldehyde has anti-oxidation (Kumar *et al.*, 2004) and inhibition activity of gene mutation (Shaughnessy *et al.*, 2001). But its activity is low. Therefore, preparing derivatives has been an active research area. Herein we report the crystal structure of the title compound (I).

In the structure of the title compound (I) (Fig.1), the S(6) ring of C(1)/C(2)/C(3)/C(4)/C(5)/C(6) in (I) is an aromatic ring. C(1)–O(1) [1.3702 (16) Å], C(6)–O(2)[1.3683 (16) Å], C(8)–O(2)[1.4181 (18) Å], and C(7)–O(3) [1.433 (2) Å] are typical for C–O single bonds.

In the crystal structure, these molecules are linked into infinite one-dimensional network by intermolecular O—H···O hydrogen bonds running along [100] (Fig. 2, Table 1).

S2. Experimental

4-Hydroxy-3-methoxybenzaldehyde (3.8 g, 25 mmol) was dissolved in methanol (40 ml) at 283 K. After stirring for 30 min, borohydride (0.94 g, 25 mmol) was added in reaction solution, slowly. After 4 h, the solution was quenched with water (150 ml), vacuum concentrated to remove methanol and the aqueous layer was extracted with chloroform, the combined organic extracts were washed, dried and evaporated under reduced pressure to give the crude product. Then purification by column chromatography and recrystallization from chloroform gave (I) as colourless plates (2.58 g, 67%).

S3. Refinement

H atoms were treated as riding, with C—H distances in the range of 0.93–0.97 Å and O—H distances of 0.85 Å, and were refined as riding with $U_{iso}(H)=1.2U_{eq}(C_{methylene} \text{ and } C \text{ in phenyl ring})$ and $U_{iso}(H)=1.5U_{eq}(O \text{ and } (C_{methyl}))$.

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

One-dimensional structure of (I) showing hydrogen bonds as dashed lines.

4-Hydroxymethyl-2-methoxyphenol

Crystal data

C₈H₁₀O₃ $M_r = 154.16$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8476 (6) Å b = 6.1721 (4) Å c = 15.4915 (7) Å $\beta = 126.877$ (2)° V = 753.19 (8) Å³ Z = 4 F(000) = 328 $D_x = 1.359 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1768 reflections $\theta = 2.6-27.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KPlate, colorless $0.29 \times 0.11 \times 0.07 \text{ mm}$ Data collection

Bruker SMART CCD	3996 measured reflections
diffractometer	1475 independent reflections
Radiation source: fine-focus sealed tube	1249 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.015$
ω scans	$\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 8$
(<i>SADABS</i> ; Bruker, 2001)	$k = -7 \rightarrow 7$
$T_{\min} = 0.971, T_{\max} = 0.993$	$l = -17 \rightarrow 19$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.102$	$w = 1/[\sigma^2(F_o^2) + (0.0462P)^2 + 0.2254P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
1475 reflections	$(\Delta/\sigma)_{max} < 0.001$
102 parameters	$\Delta\rho_{max} = 0.24$ e Å ⁻³
2 restraints	$\Delta\rho_{min} = -0.19$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXL</i> ,
direct methods	Fc [*] =kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4}
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.043 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.16947 (13)	0.60312 (18)	0.16129 (8)	0.0462 (3)	
H1A	0.1727	0.4901	0.1347	0.069*	
02	0.35690 (14)	0.26017 (19)	0.27618 (8)	0.0501 (3)	
03	0.16416 (15)	0.1981 (2)	0.52945 (9)	0.0621 (4)	
H3B	0.0675	0.2067	0.4697	0.093*	
C1	0.19570 (17)	0.5586 (2)	0.25692 (11)	0.0352 (3)	
C2	0.12924 (18)	0.6933 (2)	0.29368 (12)	0.0407 (4)	
H2A	0.0704	0.8173	0.2550	0.049*	
C3	0.14955 (19)	0.6447 (2)	0.38857 (12)	0.0416 (4)	
H3A	0.1034	0.7361	0.4125	0.050*	
C4	0.23753 (17)	0.4625 (2)	0.44737 (11)	0.0383 (3)	
C5	0.31075 (18)	0.3308 (2)	0.41213 (11)	0.0394 (4)	
H5A	0.3734	0.2100	0.4524	0.047*	
C6	0.29122 (17)	0.3781 (2)	0.31805 (11)	0.0360 (3)	
C7	0.2509 (2)	0.3978 (3)	0.54583 (12)	0.0467 (4)	

supporting information

H7A	0.3696	0.3823	0.6065	0.056*
H7B	0.2026	0.5111	0.5632	0.056*
C8	0.4600 (2)	0.0789 (3)	0.33595 (13)	0.0491 (4)
H8A	0.4997	0.0128	0.2987	0.074*
H8B	0.3948	-0.0242	0.3435	0.074*
H8C	0.5554	0.1256	0.4061	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0591 (7)	0.0473 (6)	0.0406 (6)	0.0118 (5)	0.0344 (5)	0.0107 (5)
02	0.0624 (7)	0.0559 (7)	0.0461 (6)	0.0249 (5)	0.0400 (6)	0.0144 (5)
03	0.0635 (7)	0.0802 (9)	0.0413 (6)	-0.0217 (7)	0.0308 (6)	-0.0033 (6)
C1	0.0360 (7)	0.0382 (7)	0.0338 (7)	-0.0010 (6)	0.0223 (6)	0.0021 (6)
C2	0.0446 (8)	0.0359 (8)	0.0413 (8)	0.0057 (6)	0.0256 (7)	0.0033 (6)
C3	0.0467 (8)	0.0412 (8)	0.0434 (8)	0.0016 (6)	0.0304 (7)	-0.0052 (6)
C4	0.0389 (7)	0.0440 (8)	0.0318 (7)	-0.0031 (6)	0.0212 (6)	-0.0040 (6)
C5	0.0399 (7)	0.0428 (8)	0.0339 (7)	0.0070 (6)	0.0212 (6)	0.0056 (6)
C6	0.0348 (7)	0.0403 (8)	0.0360 (7)	0.0029 (6)	0.0228 (6)	0.0008 (6)
C7	0.0542 (9)	0.0532 (10)	0.0374 (8)	-0.0009 (7)	0.0300 (7)	-0.0031 (7)
C8	0.0526 (9)	0.0500 (9)	0.0496 (9)	0.0155 (7)	0.0332 (8)	0.0079 (7)

Geometric parameters (Å, °)

01—C1	1.3702 (16)	С3—НЗА	0.9300	
O1—H1A	0.8200	C4—C5	1.397 (2)	
O2—C6	1.3683 (16)	C4—C7	1.5041 (19)	
O2—C8	1.4181 (18)	C5—C6	1.3820 (19)	
O3—C7	1.433 (2)	С5—Н5А	0.9300	
O3—H3B	0.8416	С7—Н7А	0.9700	
C1—C2	1.375 (2)	С7—Н7В	0.9700	
C1—C6	1.3977 (19)	C8—H8A	0.9600	
C2—C3	1.392 (2)	C8—H8B	0.9600	
C2—H2A	0.9300	C8—H8C	0.9600	
C3—C4	1.378 (2)			
C1	109.5	C4—C5—H5A	119.6	
C6—O2—C8	117.84 (11)	O2—C6—C5	125.55 (13)	
С7—О3—Н3В	107.5	O2—C6—C1	114.85 (12)	
O1—C1—C2	119.92 (12)	C5—C6—C1	119.60 (13)	
O1—C1—C6	120.39 (12)	O3—C7—C4	111.63 (12)	
C2—C1—C6	119.68 (12)	O3—C7—H7A	109.3	
C1—C2—C3	120.32 (13)	C4—C7—H7A	109.3	
C1—C2—H2A	119.8	O3—C7—H7B	109.3	
С3—С2—Н2А	119.8	C4—C7—H7B	109.3	
C4—C3—C2	120.58 (13)	H7A—C7—H7B	108.0	
С4—С3—НЗА	119.7	O2—C8—H8A	109.5	
С2—С3—НЗА	119.7	O2—C8—H8B	109.5	

supporting information

C3—C4—C5	118.93 (13)	H8A—C8—H8B	109.5
C3—C4—C7	121.65 (13)	O2—C8—H8C	109.5
C5—C4—C7	119.38 (13)	H8A—C8—H8C	109.5
C6—C5—C4	120.78 (13)	H8B—C8—H8C	109.5
С6—С5—Н5А	119.6		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
01—H1A…O2	0.82	2.31	2.6669 (16)	107	
O1—H1A····O3 ⁱ	0.82	1.96	2.7390 (16)	158	
O3—H3 <i>B</i> …O1 ⁱⁱ	0.84	2.07	2.8666 (15)	158	

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*, *y*-1/2, -*z*+1/2.