

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4,6-Dimethylpyrimidin-2-yl)-4-(oxolan-2-ylamino)benzenesulfonamide

Hadi D. Arman,^a Trupta Kaulgud,^a Edward R. T. Tiekink^{b*} and David J. Young^c

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cSchool of Biomolecular and Physical Sciences, Nathan, Griffith University, Queensland 4111, Australia Correspondence e-mail: edward.tiekink@gmail.com

Received 20 October 2009; accepted 21 October 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.137; data-to-parameter ratio = 16.7.

The title compound, $C_{16}H_{20}N_4O_3S$, adopts an L-shaped conformation, as seen by the dihedral angle of 76.93 (7)° formed between the two aromatic rings. The most notable feature of the crystal packing is the formation of N-H···O and N-H···N hydrogen bonds that lead to supramolecular chains orientated along the *b* axis.

Related literature

For background to the co-crystallization of active pharmaceutical agents, see: Shan & Zaworotko (2008). For background to sulfa drugs, see: Caira (2007); Nishimori *et al.* (2009). For the synthesis, see: Fructos *et al.* (2006); Kemnitz *et al.* (1998). For related studies on co-crystal formation, see: Broker & Tiekink (2008); Broker *et al.* (2008).

Experimental

Crystal data C₁₆H₂₀N₄O₃S

 $M_r = 348.42$

Z = 4

Mo $K\alpha$ radiation

 $0.35 \times 0.21 \times 0.11 \text{ mm}$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 98 K

Monoclinic, $P2_1/c$ a = 10.291 (5) Å b = 9.592 (4) Å c = 17.196 (8) Å $\beta = 106.445$ (10)° V = 1628.0 (13) Å³

Data collection

Rigaku Saturn724 diffractometer	11164 measured reflections
Absorption correction: multi-scan	3749 independent reflections
(ABSCOR; Higashi, 1995)	3341 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.761, \ T_{\max} = 1.000$	$R_{\rm int} = 0.046$
Refinement	
- 2	

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.057 & 2 \text{ restraints} \\ wR(F^2) &= 0.137 & \text{H-atom parameters constrained} \\ S &= 1.10 & \Delta\rho_{\text{max}} = 0.60 \text{ e } \text{ Å}^{-3} \\ 3749 \text{ reflections} & \Delta\rho_{\text{min}} = -0.39 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3n···O3 ⁱ	0.88	1.98	2.854 (3)	174
$N4-H4n\cdots N2^{ii}$	0.88	2.22	3.086 (3)	167

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The Queensland Department of Employment, Economic Development and Innovation is thanked for an International Fellowship to DJY.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5159).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). *CrystEngComm*, **10**, 879–887.

- Broker, G. A. & Tiekink, E. R. T. (2008). CrystEngComm, 9, 1096-1109.
- Caira, M. R. (2007). Mol. Pharm. 4, 310-316.
- Fructos, M. R., Trofimenko, S., Mar Díaz-Requejo, M. & Pérez, P. J. (2006). J. Am. Chem. Soc. 128, 11784–11791.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kemnitz, C. R., Karney, W. L. & Borden, W. T. (1998). J. Am. Chem. Soc. 120, 3499–3503.
- Nishimori, I., Minakuchi, T., Vullo, D., Scozzafava, A., Innocenti, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 3116–3120.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.
- Shan, N. & Zaworotko, M. J. (2008). *Drug Discovery Today*, **13**, 440–446. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

supporting information

Acta Cryst. (2009). E65, o2851 [https://doi.org/10.1107/S1600536809043347] N-(4,6-Dimethylpyrimidin-2-yl)-4-(oxolan-2-ylamino)benzenesulfonamide Hadi D. Arman, Trupta Kaulgud, Edward R. T. Tiekink and David J. Young

S1. Comment

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008). Sulfonamide drugs, *e.g.* sulfadimidine and sulfameter, attract significant interest in this regard, especially owing to their propensity to form polymorphs (Caira, 2007). They are also receiving renewed attention as selective inhibitors of carbonic anhydrase isoforms (*e.g.* Nishimori *et al.*, 2009). As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2008; Broker *et al.*, 2008), the co-crystallization of *N*'-(4,6-di-methyl-2-pyrimidinyl)sulfanilamide (sulfadimidine) and 1,4-C₆H₄I₂ in THF was investigated. Colourless crystals of the title compound (I) were obtained unexpectedly; we are not aware of any precedence for this reaction. The insertion of nitrenes into the *a* C—H bond of cyclic ethers is known (Fructos *et al.*, 2006) and it is suggested that adventitious I₂ in 1,4-C₆H₄I₂ reacts with the aryl amine to give a nitrene stabilized by the *para*-sulfonamide group (Kemnitz *et al.*, 1998).

The molecule of (I), Fig. 1, is bent at the S atom, N3—S1—C7 = 107.85 (10)°, and adopts an overall `L'-conformation; the dihedral angle between the two six-membered rings is 76.93 (7)°. The five membered ring adopts an envelope configuration at the C16 atom. The crystal packing is dominated by N—H…O and N—H…N hydrogen bonding interactions, Table 1, that co-operate to form a supramolecular chain along the *b* axis, Fig. 2.

S2. Experimental

Colourless crystals of (I) were isolated from the attempted co-crystallization of N'-(4,6-dimethyl-2-pyrimidinyl)-sulfanilamide and 1,4-di-iodobenzene in THF.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The nitrogen-bound H-atoms were located in a difference Fourier map and were refined with a N–H 0.880±0.001 Å restraint, and with $U_{iso}(H) = 1.2U_{eq}(N)$.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Supramolecular chain formation along the *b* axis in (I) mediated by N—H…N (orange dashed lines) and N—H…N (blue dashed lines) hydrogen bonding.

N-(4,6-Dimethylpyrimidin-2-yl)-4-(oxolan-2-ylamino)benzenesulfonamide

Crystal data

$C_{16}H_{20}N_4O_3S$	F(000) = 736
$M_r = 348.42$	$D_{\rm x} = 1.422 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6601 reflections
a = 10.291 (5) Å	$\theta = 2.5 - 40.2^{\circ}$
b = 9.592 (4) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 17.196(8) Å	T = 98 K
$\beta = 106.445 \ (10)^{\circ}$	Block, colourless
$V = 1628.0(13) \text{ Å}^3$	$0.35 \times 0.21 \times 0.11 \text{ mm}$
Z = 4	
Data collection	
Saturn724	11164 measured reflections
diffractometer	3749 independent reflections
Radiation source: sealed tube	3341 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -12 \rightarrow 13$
Absorption correction: multi-scan	$k = -12 \rightarrow 11$
(ABSCOR; Higashi, 1995)	$l = -22 \rightarrow 17$
$T_{\min} = 0.761, T_{\max} = 1.000$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.10	H-atom parameters constrained
3749 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 1.4631P]$
225 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.60 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.39 \ m e \ m \AA^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.31473 (6)	0.75837 (6)	0.11287 (3)	0.02795 (16)	
01	0.23391 (18)	0.71472 (18)	0.03422 (9)	0.0357 (4)	
O2	0.45898 (17)	0.76422 (18)	0.12920 (9)	0.0339 (4)	
O3	0.03413 (17)	1.4900 (2)	0.10040 (10)	0.0406 (4)	
N1	0.40297 (19)	0.74868 (19)	0.29276 (10)	0.0271 (4)	
N2	0.27644 (18)	0.53811 (19)	0.29370 (10)	0.0265 (4)	
N3	0.2755 (2)	0.6434 (2)	0.17341 (10)	0.0283 (4)	
H3N	0.2048	0.5906	0.1512	0.034*	
N4	0.1102 (2)	1.3038 (2)	0.18799 (14)	0.0421 (5)	
H4N	0.1658	1.3594	0.2227	0.051*	
C1	0.3215 (2)	0.6443 (2)	0.25786 (12)	0.0258 (4)	
C2	0.4447 (2)	0.7458 (2)	0.37479 (12)	0.0283 (5)	
C3	0.4038 (2)	0.6408 (2)	0.41786 (12)	0.0298 (5)	
H3	0.4336	0.6395	0.4754	0.036*	
C4	0.3183 (2)	0.5378 (2)	0.37529 (12)	0.0283 (4)	
C5	0.5376 (3)	0.8614 (3)	0.41506 (14)	0.0378 (5)	
H5A	0.6280	0.8455	0.4085	0.057*	
H5B	0.5435	0.8637	0.4729	0.057*	
H5C	0.5021	0.9506	0.3901	0.057*	
C6	0.2706 (3)	0.4199 (3)	0.41651 (14)	0.0348 (5)	
H6A	0.1741	0.4032	0.3904	0.052*	
H6B	0.2840	0.4432	0.4737	0.052*	
H6C	0.3223	0.3357	0.4125	0.052*	
C7	0.2564 (2)	0.9212 (2)	0.13414 (12)	0.0279 (4)	
C8	0.3417 (2)	1.0138 (2)	0.18760 (13)	0.0291 (5)	

supporting information

H8	0.4334	0.9891	0.2129	0.035*
C9	0.2929 (2)	1.1411 (2)	0.20371 (13)	0.0307 (5)
H9	0.3513	1.2038	0.2402	0.037*
C10	0.1574 (2)	1.1793 (2)	0.16669 (13)	0.0318 (5)
C11	0.0733 (2)	1.0854 (2)	0.11240 (14)	0.0344 (5)
H11	-0.0181	1.1100	0.0862	0.041*
C12	0.1224 (2)	0.9580 (2)	0.09687 (13)	0.0322 (5)
H12	0.0645	0.8949	0.0605	0.039*
C13	-0.0074 (3)	1.3735 (3)	0.14064 (16)	0.0384 (6)
H13	-0.0624	1.3077	0.0991	0.046*
C14	-0.0727 (3)	1.5920 (3)	0.0855 (2)	0.0582 (8)
H14A	-0.1141	1.6035	0.0265	0.070*
H14B	-0.0360	1.6832	0.1085	0.070*
C15	-0.1763 (3)	1.5425 (4)	0.1246 (2)	0.0573 (8)
H15A	-0.2534	1.4971	0.0848	0.069*
H15B	-0.2105	1.6199	0.1513	0.069*
C16	-0.0957 (3)	1.4381 (4)	0.1863 (2)	0.0618 (9)
H16A	-0.0415	1.4851	0.2362	0.074*
H16B	-0.1557	1.3681	0.2007	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S 1	0.0279 (3)	0.0329 (3)	0.0212 (2)	0.0002 (2)	0.0038 (2)	0.00097 (19)
O1	0.0393 (9)	0.0426 (10)	0.0218 (7)	-0.0014 (8)	0.0032 (7)	-0.0022 (6)
O2	0.0289 (8)	0.0431 (9)	0.0297 (8)	0.0015 (7)	0.0085 (7)	0.0009 (7)
O3	0.0274 (8)	0.0554 (11)	0.0384 (9)	0.0039 (8)	0.0083 (7)	0.0090 (8)
N1	0.0287 (9)	0.0260 (9)	0.0242 (8)	0.0000 (7)	0.0037 (7)	-0.0023 (7)
N2	0.0261 (9)	0.0278 (9)	0.0245 (8)	0.0005 (7)	0.0053 (7)	0.0001 (7)
N3	0.0307 (10)	0.0284 (9)	0.0221 (8)	-0.0028 (8)	0.0013 (7)	-0.0012 (7)
N4	0.0332 (11)	0.0337 (11)	0.0476 (12)	0.0010 (9)	-0.0079 (9)	-0.0087 (9)
C1	0.0250 (10)	0.0260 (10)	0.0246 (9)	0.0039 (8)	0.0042 (8)	-0.0011 (8)
C2	0.0297 (11)	0.0273 (10)	0.0251 (10)	0.0030 (9)	0.0031 (8)	-0.0039 (8)
C3	0.0329 (11)	0.0349 (12)	0.0198 (9)	0.0012 (9)	0.0044 (8)	-0.0017 (8)
C4	0.0277 (11)	0.0310(11)	0.0265 (10)	0.0024 (9)	0.0080 (8)	0.0005 (8)
C5	0.0430 (14)	0.0333 (12)	0.0319 (11)	-0.0059 (11)	0.0020 (10)	-0.0070 (9)
C6	0.0336 (12)	0.0388 (13)	0.0311 (11)	-0.0018 (10)	0.0075 (10)	0.0042 (9)
C7	0.0262 (11)	0.0297 (11)	0.0253 (10)	-0.0007 (9)	0.0032 (8)	0.0046 (8)
C8	0.0238 (10)	0.0311 (11)	0.0286 (10)	-0.0031 (9)	0.0015 (8)	0.0048 (8)
C9	0.0264 (11)	0.0318 (11)	0.0290 (10)	-0.0064 (9)	-0.0001 (9)	0.0012 (8)
C10	0.0286 (11)	0.0305 (11)	0.0309 (11)	-0.0021 (9)	-0.0001 (9)	0.0012 (9)
C11	0.0268 (11)	0.0338 (12)	0.0355 (11)	-0.0005 (9)	-0.0025 (9)	0.0001 (9)
C12	0.0291 (11)	0.0341 (12)	0.0279 (10)	-0.0030 (9)	-0.0011 (9)	0.0000 (9)
C13	0.0300 (12)	0.0293 (12)	0.0472 (13)	-0.0007 (10)	-0.0031 (10)	-0.0046 (10)
C14	0.0399 (16)	0.0565 (19)	0.077 (2)	0.0120 (14)	0.0149 (15)	0.0303 (16)
C15	0.0522 (18)	0.063 (2)	0.0633 (18)	0.0242 (15)	0.0275 (15)	0.0178 (15)
C16	0.0483 (18)	0.073 (2)	0.074 (2)	0.0206 (16)	0.0344 (16)	0.0345 (18)

Geometric parameters (Å, °)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 00 00 2 (3) 5 (3) 0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 2 (3) 5 (3) 9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 2 (3) 5 (3) 9 (3)
S1—C7 1.748 (2) C7—C12 1.392 O3—C14 1.439 (3) C7—C8 1.396 O3—C13 1.442 (3) C8—C9 1.379 N1—C1 1.334 (3) C8—H8 0.950 N1—C2 1.353 (3) C9—C10 1.407 N2—C1 1.340 (3) C9—H9 0.950	2 (3) 5 (3) 9 (3)
O3—C14 1.439 (3) C7—C8 1.396 O3—C13 1.442 (3) C8—C9 1.379 N1—C1 1.334 (3) C8—H8 0.950 N1—C2 1.353 (3) C9—C10 1.407 N2—C1 1.340 (3) C9—H9 0.950	5 (3) 9 (3)
O3-C131.442 (3)C8-C91.379N1-C11.334 (3)C8-H80.950N1-C21.353 (3)C9-C101.407N2-C11.340 (3)C9-H90.950	0(3)
N1—C11.334 (3)C8—H80.950N1—C21.353 (3)C9—C101.407N2—C11.340 (3)C9—H90.950	
N1—C21.353 (3)C9—C101.407N2—C11.340 (3)C9—H90.950	00
N2-C1 1.340 (3) C9-H9 0.950	7(3)
	00
N2—C4 1.346 (3) C10—C11 1.405	5(3)
N3—C1 1.394 (3) C11—C12 1.377	7(3)
N3—H3N 0.8800 C11—H11 0.950	00
N4—C10 1.377 (3) C12—H12 0.950	00
N4—C13 1.420 (3) C13—C16 1.494	(4)
N4—H4N 0.8800 C13—H13 1.000	00
C2—C3 1.384 (3) C14—C15 1.488	3 (4)
C2—C5 1.500 (3) C14—H14A 0.990	00
C3—C4 1.386 (3) C14—H14B 0.990	00
С3—НЗ 0.9500 С15—С16 1.523	3 (4)
C4—C6 1.490 (3) C15—H15A 0.990	0
C5—H5A 0.9800 C15—H15B 0.990	00
С5—Н5В 0.9800 С16—Н16А 0.990	00
C5—H5C 0.9800 C16—H16B 0.990	00
O2—S1—O1 119.23 (10) C8—C7—S1 121.1	5 (17)
O2—S1—N3 109.23 (10) C9—C8—C7 120.0) (2)
O1—S1—N3 102.72 (10) C9—C8—H8 120.0)
O2—S1—C7 108.79 (11) C7—C8—H8 120.0)
O1—S1—C7 108.43 (10) C8—C9—C10 120.7	7 (2)
N3—S1—C7 107.85 (10) C8—C9—H9 119.6)
C14—O3—C13 107.26 (19) C10—C9—H9 119.6	-)
C1—N1—C2 115.27 (19) N4—C10—C11 122.3	3 (2)
C1—N2—C4 115.51 (18) N4—C10—C9 118.9	0(2)
C1—N3—S1 125.67 (16) C11—C10—C9 118.6	5 (2)
C1—N3—H3N 116.9 C12—C11—C10 120.4	(2)
S1—N3—H3N 115.6 C12—C11—H11 119.8	5
C10—N4—C13 124.3 (2) C10—C11—H11 119.8	5
C10—N4—H4N 119.7 C11—C12—C7 120.4	+ (2)
C13—N4—H4N 112.9 C11—C12—H12 119.8	5
N1—C1—N2 128.24 (19) C7—C12—H12 119.8	5
N1—C1—N3 117.29 (19) N4—C13—O3 108.7	' (2)
N2—C1—N3 114.47 (18) N4—C13—C16 116.1	(2)
N1—C2—C3 121.2 (2) O3—C13—C16 103.8	3 (2)
N1—C2—C5 116.0 (2) N4—C13—H13 109.3	;
C3—C2—C5 122.79 (19) O3—C13—H13 109.3	;
C2—C3—C4 118.66 (19) C16—C13—H13 109.3	3

С2—С3—Н3	120.7	O3—C14—C15	108.2 (2)
С4—С3—Н3	120.7	O3—C14—H14A	110.1
N2—C4—C3	121.1 (2)	C15—C14—H14A	110.1
N2—C4—C6	116.5 (2)	O3—C14—H14B	110.1
C3—C4—C6	122.36 (19)	C15—C14—H14B	110.1
С2—С5—Н5А	109.5	H14A—C14—H14B	108.4
С2—С5—Н5В	109.5	C14—C15—C16	101.9 (2)
H5A—C5—H5B	109.5	C14—C15—H15A	111.4
С2—С5—Н5С	109.5	C16—C15—H15A	111.4
H5A—C5—H5C	109.5	C14—C15—H15B	111.4
H5B—C5—H5C	109.5	C16—C15—H15B	111.4
С4—С6—Н6А	109.5	H15A—C15—H15B	109.3
C4—C6—H6B	109.5	C13—C16—C15	101.4 (2)
H6A—C6—H6B	109.5	C13—C16—H16A	111.5
C4—C6—H6C	109.5	C15—C16—H16A	111.5
H6A—C6—H6C	109.5	C13—C16—H16B	111.5
H6B—C6—H6C	109.5	C15—C16—H16B	111.5
C12—C7—C8	119.9 (2)	H16A—C16—H16B	109.3
C12—C7—S1	118.99 (17)		
O2—S1—N3—C1	56.4 (2)	N3—S1—C7—C8	95.14 (19)
O1—S1—N3—C1	-176.07 (18)	C12—C7—C8—C9	0.4 (3)
C7—S1—N3—C1	-61.7 (2)	S1—C7—C8—C9	-179.57 (16)
C2—N1—C1—N2	0.0 (3)	C7—C8—C9—C10	-0.1 (3)
C2—N1—C1—N3	179.72 (19)	C13—N4—C10—C11	-22.4 (4)
C4—N2—C1—N1	0.5 (3)	C13—N4—C10—C9	161.0 (2)
C4—N2—C1—N3	-179.25 (19)	C8—C9—C10—N4	176.2 (2)
S1—N3—C1—N1	1.0 (3)	C8—C9—C10—C11	-0.6 (3)
S1—N3—C1—N2	-179.18 (16)	N4-C10-C11-C12	-175.7 (2)
C1—N1—C2—C3	-0.2 (3)	C9—C10—C11—C12	0.9 (4)
C1—N1—C2—C5	179.3 (2)	C10-C11-C12-C7	-0.6 (4)
N1—C2—C3—C4	-0.1 (3)	C8—C7—C12—C11	0.0 (3)
C5—C2—C3—C4	-179.6 (2)	S1—C7—C12—C11	179.91 (18)
C1—N2—C4—C3	-0.8 (3)	C10—N4—C13—O3	-104.0 (3)
C1—N2—C4—C6	-179.43 (19)	C10—N4—C13—C16	139.5 (3)
C2—C3—C4—N2	0.6 (3)	C14—O3—C13—N4	-153.7 (2)
C2—C3—C4—C6	179.2 (2)	C14—O3—C13—C16	-29.5 (3)
O2—S1—C7—C12	156.85 (17)	C13—O3—C14—C15	5.4 (3)
O1—S1—C7—C12	25.8 (2)	O3—C14—C15—C16	20.2 (4)
N3—S1—C7—C12	-84.79 (19)	N4—C13—C16—C15	160.5 (3)
O2—S1—C7—C8	-23.2 (2)	O3—C13—C16—C15	41.3 (3)
O1—S1—C7—C8	-154.31 (18)	C14—C15—C16—C13	-37.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N3—H3n····O3 ⁱ	0.88	1.98	2.854 (3)	174

supporting information

N4—H4n…N2 ⁱⁱ	0.88	2.22	3.086 (3)	167	

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.