metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(O,O′-diiso­propyl di­thio­phosphato-κ2S,S′)nickel(II)]-μ-bis­­(4-pyridylmethyl­ene)di­azane-κ2N:N′]

aDepartment of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 October 2009; accepted 22 October 2009; online 28 October 2009)

The Ni atom in the title linear supra­molecular polymer, [Ni(C6H14O2PS2)2(C12H10N4)]n, exists within a trans-N2S4 octa­hedral donor set defined by two symmetrically coordinating dithio­phosphate ligands and pyridine N atoms derived from two bridging bis­(4-pyridylmethyl­ene)diazane ligands. The Ni atom lies on a centre of inversion and the bis­(4-pyridylmethyl­ene)diazane ligand is also disposed about a centre of inversion. The chains are arranged into layers sustained by C—H⋯S contacts and inter­digitate with neighbouring layers, forming the crystal structure.

Related literature

For background to supra­molecular polymers of metal dithio­phosphates, see: Lai & Tiekink (2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Aragoni et al. (2007[Aragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873-878.]). For a related iso-butyl structure and the synthesis, see: Berdugo & Tiekink (2008[Berdugo, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m911.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H14O2PS2)2(C12H10N4)]

  • Mr = 695.47

  • Triclinic, [P \overline 1]

  • a = 8.661 (2) Å

  • b = 8.753 (2) Å

  • c = 11.159 (3) Å

  • α = 88.110 (8)°

  • β = 81.502 (7)°

  • γ = 89.813 (10)°

  • V = 836.2 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 98 K

  • 0.50 × 0.08 × 0.05 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.794, Tmax = 1

  • 7552 measured reflections

  • 3810 independent reflections

  • 3555 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.09

  • 3810 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—S1 2.4827 (7)
Ni—S2 2.4835 (7)
Ni—N1 2.1051 (19)
S1—Ni—S2 82.46 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯S2i 0.95 2.77 3.694 (3) 164
Symmetry code: (i) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Interest in molecules related to the title compound (I) revolve around intriguing crystal engineering possibilities whereby different supramolecular topologies may be constructed by careful choice of organic substituents and bridging ligands (Lai & Tiekink, 2004; Chen et al., 2006; Aragoni et al., 2007). The Ni atom in (I), Fig. 1, lies on a crystallographic centre of inversion and the bis(4-pyridylmethylene)diazane molecule is similarly disposed about a centre of inversion. The Ni atom exists within an octahedral trans-N2S4 donor set defined by two symmetrically chelating dithiophosphate ligands and two trans-disposed pyridine-N atoms, Table 1. The bridging ligands lead to a linear polymer, Fig. 2, and these are arranged into layers, being connected by C—H···S contacts, Table 2 and Fig. 3. Layers interdigitate to consolidate the crystal packing, Fig. 4.

A similar coordination geometry and linear supramolecular polymer were observed in the iso-butyl derivative of (I) which was characterized crystallographically as a di-toluene solvate (Berdugo & Tiekink, 2008).

Related literature top

For background to supramolecular polymers of metal dithiophosphates, see: Lai & Tiekink (2004); Chen et al. (2006); Aragoni et al. (2007). For a related iso-butyl structure and the synthesis, see: Berdugo & Tiekink (2008).

Experimental top

Compound (I) was prepared by refluxing the parent nickel dithiophosphate with bis(4-pyridylmethylene)diazane, following a literature procedure (Berdugo & Tiekink, 2008).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C).

Structure description top

Interest in molecules related to the title compound (I) revolve around intriguing crystal engineering possibilities whereby different supramolecular topologies may be constructed by careful choice of organic substituents and bridging ligands (Lai & Tiekink, 2004; Chen et al., 2006; Aragoni et al., 2007). The Ni atom in (I), Fig. 1, lies on a crystallographic centre of inversion and the bis(4-pyridylmethylene)diazane molecule is similarly disposed about a centre of inversion. The Ni atom exists within an octahedral trans-N2S4 donor set defined by two symmetrically chelating dithiophosphate ligands and two trans-disposed pyridine-N atoms, Table 1. The bridging ligands lead to a linear polymer, Fig. 2, and these are arranged into layers, being connected by C—H···S contacts, Table 2 and Fig. 3. Layers interdigitate to consolidate the crystal packing, Fig. 4.

A similar coordination geometry and linear supramolecular polymer were observed in the iso-butyl derivative of (I) which was characterized crystallographically as a di-toluene solvate (Berdugo & Tiekink, 2008).

For background to supramolecular polymers of metal dithiophosphates, see: Lai & Tiekink (2004); Chen et al. (2006); Aragoni et al. (2007). For a related iso-butyl structure and the synthesis, see: Berdugo & Tiekink (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC 2005); cell refinement: CrystalClear (Rigaku/MSC 2005); data reduction: CrystalClear (Rigaku/MSC 2005); program(s) used to solve structure: SHEXLS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) extended to show the Ni atom coordination geometry and a full molecule of the 4-pyridineazine ligand, showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 + x, 1 + y, -1 + z.
[Figure 2] Fig. 2. Supramolecular chain in (I) with base vector [111].
[Figure 3] Fig. 3. Layers of supramolecular chains mediated by C—H···S contacts (orange dashed lines), viewed in projection down the c axis.
[Figure 4] Fig. 4. View of the interdigitation of layers in the crystal structure of (I), viewed in projection down the b axis.
catena-Poly[[bis(O,O'-diisopropyl dithiophosphato-κ2S,S')nickel(II)]-µ-bis(4- pyridylmethylene)diazane-κ2N:N'] top
Crystal data top
[Ni(C6H14O2PS2)2(C12H10N4)]Z = 1
Mr = 695.47F(000) = 364
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.661 (2) ÅCell parameters from 2817 reflections
b = 8.753 (2) Åθ = 3.0–32.3°
c = 11.159 (3) ŵ = 0.96 mm1
α = 88.110 (8)°T = 98 K
β = 81.502 (7)°Prism, brown-orange
γ = 89.813 (10)°0.50 × 0.08 × 0.05 mm
V = 836.2 (4) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3810 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 911
Tmin = 0.794, Tmax = 1k = 1111
7552 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.6278P]
where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ni(C6H14O2PS2)2(C12H10N4)]γ = 89.813 (10)°
Mr = 695.47V = 836.2 (4) Å3
Triclinic, P1Z = 1
a = 8.661 (2) ÅMo Kα radiation
b = 8.753 (2) ŵ = 0.96 mm1
c = 11.159 (3) ÅT = 98 K
α = 88.110 (8)°0.50 × 0.08 × 0.05 mm
β = 81.502 (7)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3810 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3555 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 1Rint = 0.036
7552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
3810 reflectionsΔρmin = 0.70 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.01506 (12)
S10.73976 (6)0.43573 (6)0.58844 (5)0.01900 (14)
S20.46123 (7)0.68201 (6)0.66788 (5)0.01887 (14)
P10.64607 (7)0.57524 (7)0.71650 (5)0.01822 (15)
O10.5953 (2)0.48949 (19)0.84272 (15)0.0223 (4)
O20.7711 (2)0.6930 (2)0.75100 (15)0.0241 (4)
N10.3710 (2)0.3357 (2)0.61516 (17)0.0177 (4)
N20.0259 (2)0.0611 (2)0.95949 (18)0.0230 (4)
C10.6944 (3)0.3733 (3)0.8926 (2)0.0261 (5)
H10.77300.33450.82570.031*
C20.5865 (3)0.2446 (3)0.9442 (2)0.0315 (6)
H2A0.53780.20090.87920.047*
H2B0.50530.28401.00610.047*
H2C0.64640.16530.98100.047*
C30.7778 (3)0.4463 (3)0.9858 (2)0.0305 (6)
H3A0.84730.52720.94640.046*
H3B0.83930.36881.02300.046*
H3C0.70090.49031.04860.046*
C40.8388 (3)0.8094 (3)0.6614 (2)0.0266 (5)
H40.79520.79810.58400.032*
C51.0132 (3)0.7830 (3)0.6398 (3)0.0384 (7)
H5A1.03500.68220.60550.058*
H5B1.05440.78760.71680.058*
H5C1.06340.86210.58310.058*
C60.7934 (3)0.9641 (3)0.7138 (3)0.0380 (7)
H6A0.67950.97470.72490.057*
H6B0.84101.04540.65810.057*
H6C0.83030.97180.79230.057*
C70.4224 (3)0.1924 (3)0.6265 (2)0.0198 (4)
H70.51440.16240.57550.024*
C80.3473 (3)0.0860 (3)0.7094 (2)0.0210 (5)
H80.38650.01530.71380.025*
C90.2132 (3)0.1289 (3)0.7867 (2)0.0194 (4)
C100.1577 (3)0.2772 (3)0.7726 (2)0.0212 (5)
H100.06530.31020.82170.025*
C110.2384 (3)0.3754 (3)0.6868 (2)0.0208 (5)
H110.19900.47580.67750.025*
C120.1396 (3)0.0206 (3)0.8798 (2)0.0225 (5)
H120.17650.08170.88150.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0173 (2)0.0127 (2)0.0143 (2)0.00009 (15)0.00006 (15)0.00119 (14)
S10.0197 (3)0.0198 (3)0.0170 (3)0.0034 (2)0.0009 (2)0.0008 (2)
S20.0208 (3)0.0174 (3)0.0183 (3)0.0039 (2)0.0023 (2)0.0019 (2)
P10.0192 (3)0.0193 (3)0.0158 (3)0.0020 (2)0.0015 (2)0.0011 (2)
O10.0243 (8)0.0249 (8)0.0174 (8)0.0055 (7)0.0025 (6)0.0016 (6)
O20.0240 (9)0.0279 (9)0.0209 (9)0.0010 (7)0.0045 (7)0.0036 (7)
N10.0182 (9)0.0170 (9)0.0165 (9)0.0004 (7)0.0013 (7)0.0017 (7)
N20.0238 (10)0.0212 (10)0.0223 (11)0.0065 (8)0.0006 (8)0.0090 (8)
C10.0270 (12)0.0323 (13)0.0186 (12)0.0112 (10)0.0032 (10)0.0033 (9)
C20.0412 (15)0.0265 (13)0.0280 (14)0.0055 (11)0.0096 (11)0.0026 (10)
C30.0256 (13)0.0412 (15)0.0250 (13)0.0024 (11)0.0059 (10)0.0051 (11)
C40.0274 (12)0.0259 (12)0.0266 (13)0.0038 (10)0.0034 (10)0.0033 (10)
C50.0279 (14)0.0344 (15)0.0503 (19)0.0032 (12)0.0044 (12)0.0087 (13)
C60.0298 (14)0.0289 (14)0.056 (2)0.0019 (11)0.0081 (13)0.0088 (13)
C70.0222 (11)0.0181 (10)0.0184 (11)0.0002 (9)0.0008 (9)0.0019 (8)
C80.0240 (11)0.0155 (10)0.0233 (12)0.0003 (9)0.0028 (9)0.0013 (8)
C90.0193 (11)0.0199 (11)0.0191 (11)0.0027 (8)0.0040 (8)0.0028 (8)
C100.0198 (11)0.0209 (11)0.0210 (12)0.0004 (9)0.0023 (9)0.0019 (9)
C110.0209 (11)0.0184 (10)0.0213 (12)0.0023 (9)0.0020 (9)0.0049 (8)
C120.0229 (11)0.0224 (11)0.0228 (12)0.0046 (9)0.0062 (9)0.0056 (9)
Geometric parameters (Å, º) top
Ni—S12.4827 (7)C3—H3A0.9800
Ni—S22.4835 (7)C3—H3B0.9800
Ni—N12.1051 (19)C3—H3C0.9800
Ni—N1i2.1051 (19)C4—C51.513 (4)
Ni—S1i2.4827 (7)C4—C61.520 (4)
Ni—S2i2.4835 (7)C4—H41.0000
S1—P11.9895 (9)C5—H5A0.9800
S2—P11.9859 (9)C5—H5B0.9800
P1—O11.5779 (17)C5—H5C0.9800
P1—O21.5934 (18)C6—H6A0.9800
O1—C11.476 (3)C6—H6B0.9800
O2—C41.464 (3)C6—H6C0.9800
N1—C71.338 (3)C7—C81.384 (3)
N1—C111.350 (3)C7—H70.9500
N2—C121.283 (3)C8—C91.399 (3)
N2—N2ii1.408 (4)C8—H80.9500
C1—C21.510 (4)C9—C101.395 (3)
C1—C31.511 (4)C9—C121.459 (3)
C1—H11.0000C10—C111.377 (3)
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—H110.9500
C2—H2C0.9800C12—H120.9500
N1—Ni—S1i89.02 (6)C1—C3—H3B109.5
N1i—Ni—S1i90.98 (6)H3A—C3—H3B109.5
N1—Ni—S190.98 (6)C1—C3—H3C109.5
N1i—Ni—S189.02 (6)H3A—C3—H3C109.5
N1—Ni—S2i91.02 (6)H3B—C3—H3C109.5
N1i—Ni—S2i88.98 (6)O2—C4—C5107.1 (2)
S1i—Ni—S2i82.46 (2)O2—C4—C6107.0 (2)
S1—Ni—S2i97.54 (2)C5—C4—C6113.4 (2)
N1—Ni—S288.98 (6)O2—C4—H4109.8
N1i—Ni—S291.02 (6)C5—C4—H4109.8
S1i—Ni—S297.54 (2)C6—C4—H4109.8
S1—Ni—S282.46 (2)C4—C5—H5A109.5
S1i—Ni—S1180.0C4—C5—H5B109.5
S2i—Ni—S2180.0H5A—C5—H5B109.5
N1i—Ni—N1180.0C4—C5—H5C109.5
P1—S1—Ni82.80 (3)H5A—C5—H5C109.5
P1—S2—Ni82.85 (3)H5B—C5—H5C109.5
O1—P1—O2100.84 (10)C4—C6—H6A109.5
O1—P1—S2108.61 (7)C4—C6—H6B109.5
O2—P1—S2111.61 (7)H6A—C6—H6B109.5
O1—P1—S1112.72 (7)C4—C6—H6C109.5
O2—P1—S1111.82 (7)H6A—C6—H6C109.5
S2—P1—S1110.84 (4)H6B—C6—H6C109.5
C1—O1—P1122.47 (15)N1—C7—C8122.9 (2)
C4—O2—P1119.75 (15)N1—C7—H7118.6
C7—N1—C11117.73 (19)C8—C7—H7118.6
C7—N1—Ni121.63 (15)C7—C8—C9119.4 (2)
C11—N1—Ni120.48 (15)C7—C8—H8120.3
C12—N2—N2ii111.3 (2)C9—C8—H8120.3
O1—C1—C2106.2 (2)C10—C9—C8117.6 (2)
O1—C1—C3108.7 (2)C10—C9—C12122.7 (2)
C2—C1—C3113.5 (2)C8—C9—C12119.7 (2)
O1—C1—H1109.5C11—C10—C9119.2 (2)
C2—C1—H1109.5C11—C10—H10120.4
C3—C1—H1109.5C9—C10—H10120.4
C1—C2—H2A109.5N1—C11—C10123.1 (2)
C1—C2—H2B109.5N1—C11—H11118.4
H2A—C2—H2B109.5C10—C11—H11118.4
C1—C2—H2C109.5N2—C12—C9121.1 (2)
H2A—C2—H2C109.5N2—C12—H12119.4
H2B—C2—H2C109.5C9—C12—H12119.4
C1—C3—H3A109.5
N1—Ni—S1—P182.10 (6)S2—Ni—N1—C7131.96 (18)
N1i—Ni—S1—P197.90 (6)S1i—Ni—N1—C1154.34 (18)
S2i—Ni—S1—P1173.26 (3)S1—Ni—N1—C11125.66 (18)
S2—Ni—S1—P16.74 (3)S2i—Ni—N1—C11136.78 (18)
N1—Ni—S2—P184.37 (6)S2—Ni—N1—C1143.22 (18)
N1i—Ni—S2—P195.63 (6)P1—O1—C1—C2137.26 (18)
S1i—Ni—S2—P1173.24 (3)P1—O1—C1—C3100.3 (2)
S1—Ni—S2—P16.76 (3)P1—O2—C4—C5119.8 (2)
Ni—S2—P1—O1115.40 (7)P1—O2—C4—C6118.37 (19)
Ni—S2—P1—O2134.30 (7)C11—N1—C7—C81.3 (3)
Ni—S2—P1—S18.96 (3)Ni—N1—C7—C8174.02 (18)
Ni—S1—P1—O1113.02 (8)N1—C7—C8—C91.1 (4)
Ni—S1—P1—O2134.19 (7)C7—C8—C9—C102.6 (3)
Ni—S1—P1—S28.96 (3)C7—C8—C9—C12175.8 (2)
O2—P1—O1—C175.87 (19)C8—C9—C10—C111.8 (3)
S2—P1—O1—C1166.73 (16)C12—C9—C10—C11176.6 (2)
S1—P1—O1—C143.51 (19)C7—N1—C11—C102.1 (4)
O1—P1—O2—C4173.76 (16)Ni—N1—C11—C10173.22 (18)
S2—P1—O2—C458.58 (17)C9—C10—C11—N10.6 (4)
S1—P1—O2—C466.22 (17)N2ii—N2—C12—C9179.5 (2)
S1i—Ni—N1—C7130.48 (18)C10—C9—C12—N25.2 (4)
S1—Ni—N1—C749.52 (18)C8—C9—C12—N2173.1 (2)
S2i—Ni—N1—C748.04 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2iii0.952.773.694 (3)164
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C6H14O2PS2)2(C12H10N4)]
Mr695.47
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.661 (2), 8.753 (2), 11.159 (3)
α, β, γ (°)88.110 (8), 81.502 (7), 89.813 (10)
V3)836.2 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.50 × 0.08 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.794, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
7552, 3810, 3555
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.09
No. of reflections3810
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.70

Computer programs: CrystalClear (Rigaku/MSC 2005), SHEXLS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Ni—S12.4827 (7)Ni—N12.1051 (19)
Ni—S22.4835 (7)
S1—Ni—S282.46 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···S2i0.952.773.694 (3)164
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors gratefully thank the MBRS–RISE program (GM60655) for support. Cheminova is also thanked for the gift of the dithiophosphate used in this study.

References

First citationAragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873–878.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerdugo, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds