organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(5-Nitro-2-oxoindolin-3-ylidene)-4-o-tolylthiosemicarbazide methanol monosolvate

Humayun Pervez,^a Muhammad Yaqub,^a Nazia Manzoor,^a M. Nawaz Tahir^b* and M. Saeed Igbal^c

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 21 October 2009; accepted 22 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.098; data-to-parameter ratio = 16.1.

In the title compound, $C_{16}H_{13}N_5O_3S \cdot CH_4O$, the dihedral angle between the isatin unit and the 2-methylphenyl group is 41.81 (2)° and intramolecular N-H···O and N-H···N hydrogen bonds occur, generating *S*(6) and *S*(5) rings, respectively. In the crystal, polymeric chains arise as a result of N-H···O, O-H···S and C-H···O interactions.

Related literature

For related structures, see: Revenko *et al.* (1994); Pervez *et al.* (2009). For graph-set theory, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{16}H_{13}N_5O_3S \cdot CH_4O$ $M_r = 387.42$

Monoclinic, $P2_1/c$ *a* = 14.2485 (5) Å b = 7.6986 (3) Å c = 18.5937 (6) Å $\beta = 119.847 (2)^{\circ}$ $V = 1769.07 (11) \text{ Å}^{3}$ Z = 4

Data collection

Bruker Kappa APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\min} = 0.963, T_{\max} = 0.974$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 249 parameters $wR(F^2) = 0.098$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 4005 reflections $\Delta \rho_{min} = -0.22$ e Å $^{-3}$

Mo $K\alpha$ radiation

 $0.30 \times 0.16 \times 0.12 \text{ mm}$

18543 measured reflections 4005 independent reflections

2975 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.031$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3···O1	0.86	2.04	2.7074 (17)	134
$N4 - H4A \cdots N2$	0.86	2.20	2.6254 (18)	110
$N1 - H1 \cdots O4^{i}$	0.86	2.02	2.8394 (19)	160
$O4-H4B\cdots S1^{ii}$	0.82	2.55	3.3485 (14)	164
$C16-H16C\cdots O3^{iii}$	0.96	2.45	3.342 (3)	154

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

We acknowledge partial funding of this research work and the award of an Indigenous Ph.D. scholarship to NM by the Higher Education Commission, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5167).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, 02698–02699.

Revenko, M. D., Kravtsov, V. K. & Simonov, Yu. A. (1994). Crystallogr. Rep. 39, 42–46.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o2858 [https://doi.org/10.1107/S1600536809043633]

1-(5-Nitro-2-oxoindolin-3-ylidene)-4-o-tolylthiosemicarbazide methanol monosolvate

Humayun Pervez, Muhammad Yaqub, Nazia Manzoor, M. Nawaz Tahir and M. Saeed Iqbal

S1. Comment

Recently we have reported the preparation and crystal structure of (Z)-4-Hexyl-1-(5-nitro-2-oxo-2,3-dihydro-1H-indol-3-ylidene) thiosemicarbazide (Pervez *et al.*, 2009). The title compound (I, Fig. 1) has been prepared and being reported in continuation of synthesizing various isatin derivatives due to their importance.

The crystal structure of (II) Isatin β -4-(p-tolyl)thiosemicarbazone (Revenko *et al.*, 1994) has been published. The title compound (I) differs from (II) due to attachment of NO₂ group with isatin and positional change of CH₃ group on the benzene ring.

In the crystal structure of (I), the group A (C1—C8/N1/N2/N3/O1) of isatin moiety and 2-methylphenyl group B (C10–C17) are planar with a maximum r. m. s. deviations of 0.0187 and 0.0065 Å respectively, from their mean square plane. The dihedral angle between A/B is 41.81 (2)°. The nitro group C (N2/O2/O3) is oriented at a dihedral angle of 5.7 (2)° with group A. In (I), there exist two interamolecular H-bondings resulting in S(5) and S(6) ring motifs (Bernstein *et al.*, 1995). Methanol monosolvate interlinks the molecules through H-bondings (Table 1., Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains.

S2. Experimental

4-*o*-Tolylthiosemicarbazide (0.45 g, 2.5 mmol) dissolved in ethanol (10 ml) was added to a hot solution of 5-nitroisatin (0.46 g, 2.5 mmol) in 50% aqueous ethanol (30 ml) containing a few drops of glacial acetic acid. The reaction mixture was then refluxed for 2 h. The yellow crystalline solid formed during heating under reflux was collected by suction filtration. Thorough washing with hot aqueous ethanol furnished the title compound (I) in pure form (0.71 g, 80%), m.p. 499 K. The yellow needles of (I) were grown in ethanol:n-hexane (1:4) system at room temperature by diffusion method.

S3. Refinement

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl C})$.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by circles of arbitrary radius and the dotted lines represent the intramolecular H-bonds.

Figure 2

The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains.

1-(5-Nitro-2-oxoindolin-3-ylidene)-4-o-tolylthiosemicarbazide methanol monosolvate

Crystal data

a = 14.2485 (5) Å
b = 7.6986 (3) Å
c = 18.5937 (6) Å
$\beta = 119.847 \ (2)^{\circ}$

 $V = 1769.07 (11) \text{ Å}^3$ Z = 4 F(000) = 808 $D_x = 1.455 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2975 reflections

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.60 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.963, T_{\max} = 0.974$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.03	H-atom parameters constrained
4005 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2 + 0.4905P]$
249 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $\theta = 2.5 - 27.5^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$

Cut needle, yellow

 $0.30 \times 0.16 \times 0.12 \text{ mm}$

18543 measured reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

4005 independent reflections

2975 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.031$

 $h = -18 \rightarrow 18$

 $k = -10 \rightarrow 10$

 $l = -23 \rightarrow 23$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.36128 (4)	-0.18526 (6)	0.42815 (3)	0.0480 (2)	
01	0.43184 (10)	0.09444 (15)	0.66176 (7)	0.0471 (4)	
02	0.09516 (11)	0.88792 (17)	0.44105 (8)	0.0535 (5)	
03	0.14063 (12)	1.04229 (17)	0.54995 (9)	0.0631 (5)	
N1	0.39348 (11)	0.35294 (18)	0.70502 (8)	0.0388 (4)	
N2	0.28711 (10)	0.24879 (17)	0.49325 (8)	0.0342 (4)	
N3	0.33161 (11)	0.09298 (17)	0.49406 (8)	0.0390 (4)	
N4	0.20990 (10)	0.06337 (17)	0.35699 (8)	0.0364 (4)	
N5	0.14422 (11)	0.90750 (18)	0.51621 (9)	0.0408 (5)	
C1	0.28486 (11)	0.4853 (2)	0.58087 (9)	0.0309 (4)	
C2	0.22200 (12)	0.6183 (2)	0.52973 (10)	0.0329 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3	0.21086 (12)	0.7648 (2)	0.56800 (10)	0.0342 (5)
C4	0.25938 (13)	0.7812 (2)	0.65330 (10)	0.0380 (5)
C5	0.32173 (13)	0.6488 (2)	0.70422 (10)	0.0385 (5)
C6	0.33402 (12)	0.5016 (2)	0.66721 (9)	0.0330 (4)
C7	0.38889 (12)	0.2370 (2)	0.64829 (10)	0.0362 (5)
C8	0.31690 (12)	0.3173 (2)	0.56487 (9)	0.0314 (4)
C9	0.29577 (12)	-0.0024(2)	0.42330 (9)	0.0346 (5)
C10	0.14634 (12)	-0.0135 (2)	0.27704 (9)	0.0330 (5)
C11	0.11584 (12)	0.0923 (2)	0.20843 (10)	0.0367 (5)
C12	0.04962 (14)	0.0193 (3)	0.13070 (10)	0.0470 (6)
C13	0.01474 (14)	-0.1498 (3)	0.12170 (11)	0.0501 (6)
C14	0.04524 (13)	-0.2512 (2)	0.19058 (12)	0.0466 (6)
C15	0.11076 (14)	-0.1830 (2)	0.26893 (11)	0.0413 (5)
C16	0.15262 (16)	0.2771 (3)	0.21779 (12)	0.0543 (6)
04	0.46564 (14)	0.2556 (2)	0.37038 (8)	0.0764 (6)
C17	0.43827 (17)	0.4240 (3)	0.37829 (13)	0.0599 (7)
H1	0.42879	0.33638	0.75775	0.0465*
H2	0.18875	0.60978	0.47231	0.0395*
H3	0.38341	0.05337	0.53999	0.0468*
H4	0.24971	0.88234	0.67621	0.0456*
H4A	0.19014	0.16531	0.36307	0.0437*
H5	0.35450	0.65800	0.76159	0.0462*
H12	0.02844	0.08685	0.08361	0.0563*
H13	-0.02945	-0.19550	0.06905	0.0601*
H14	0.02187	-0.36585	0.18459	0.0559*
H15	0.13064	-0.25081	0.31575	0.0496*
H16A	0.23026	0.28089	0.24674	0.0814*
H16B	0.12630	0.34033	0.24866	0.0814*
H16C	0.12490	0.32864	0.16396	0.0814*
H4B	0.50868	0.21697	0.41631	0.0916*
H17A	0.38390	0.42215	0.39442	0.0898*
H17B	0.41066	0.48319	0.32618	0.0898*
H17C	0.50125	0.48363	0.41975	0.0898*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0570 (3)	0.0429 (3)	0.0355 (3)	0.0174 (2)	0.0165 (2)	-0.0014 (2)
O1	0.0506 (7)	0.0385 (7)	0.0345 (7)	0.0088 (5)	0.0077 (5)	0.0026 (5)
O2	0.0627 (8)	0.0480 (8)	0.0382 (8)	0.0117 (6)	0.0164 (6)	0.0063 (6)
O3	0.0910 (10)	0.0387 (8)	0.0612 (9)	0.0172 (7)	0.0390 (8)	-0.0016 (7)
N1	0.0443 (7)	0.0392 (8)	0.0220 (7)	-0.0009 (6)	0.0083 (6)	-0.0004 (6)
N2	0.0372 (7)	0.0302 (7)	0.0291 (7)	0.0014 (5)	0.0119 (6)	-0.0027 (6)
N3	0.0428 (7)	0.0361 (8)	0.0265 (7)	0.0084 (6)	0.0084 (6)	-0.0021 (6)
N4	0.0441 (7)	0.0288 (7)	0.0285 (7)	0.0046 (6)	0.0121 (6)	-0.0030 (6)
N5	0.0475 (8)	0.0347 (8)	0.0436 (9)	0.0026 (6)	0.0253 (7)	0.0013 (7)
C1	0.0333 (7)	0.0308 (8)	0.0254 (8)	-0.0043 (6)	0.0122 (6)	-0.0032 (6)
C2	0.0359 (8)	0.0346 (8)	0.0251 (8)	-0.0021 (6)	0.0129 (6)	-0.0012 (7)

C3	0.0361 (8)	0.0322 (8)	0.0341 (9)	-0.0005 (6)	0.0174 (7)	0.0012 (7)
C4	0.0428 (8)	0.0359 (9)	0.0364 (9)	-0.0039 (7)	0.0205 (7)	-0.0094 (7)
C5	0.0430 (9)	0.0437 (10)	0.0258 (8)	-0.0063 (7)	0.0149 (7)	-0.0077 (7)
C6	0.0346 (7)	0.0333 (8)	0.0269 (8)	-0.0052 (6)	0.0122 (6)	-0.0016 (7)
C7	0.0355 (8)	0.0348 (9)	0.0285 (8)	-0.0031 (7)	0.0085 (6)	-0.0006 (7)
C8	0.0325 (7)	0.0305 (8)	0.0254 (8)	-0.0024 (6)	0.0100 (6)	-0.0006 (7)
C9	0.0397 (8)	0.0339 (9)	0.0288 (8)	0.0004 (7)	0.0159 (7)	-0.0005 (7)
C10	0.0339 (7)	0.0347 (9)	0.0278 (8)	0.0030 (6)	0.0134 (6)	-0.0027 (7)
C11	0.0347 (8)	0.0391 (9)	0.0333 (9)	0.0045 (7)	0.0146 (7)	0.0024 (7)
C12	0.0433 (9)	0.0588 (12)	0.0279 (9)	0.0085 (8)	0.0095 (7)	0.0049 (8)
C13	0.0396 (9)	0.0605 (12)	0.0356 (10)	0.0019 (8)	0.0077 (8)	-0.0153 (9)
C14	0.0428 (9)	0.0401 (10)	0.0518 (11)	-0.0056 (8)	0.0196 (8)	-0.0132 (9)
C15	0.0472 (9)	0.0368 (9)	0.0390 (10)	-0.0003 (7)	0.0207 (8)	0.0001 (8)
C16	0.0581 (11)	0.0461 (11)	0.0468 (11)	-0.0016 (9)	0.0171 (9)	0.0114 (9)
O4	0.1094 (13)	0.0594 (9)	0.0329 (8)	0.0304 (9)	0.0147 (8)	-0.0028 (7)
C17	0.0589 (11)	0.0478 (12)	0.0609 (14)	0.0006 (9)	0.0206 (10)	-0.0080 (10)

Geometric parameters (Å, °)

S1—C9	1.6666 (17)	C5—C6	1.381 (2)
O1—C7	1.220 (2)	С7—С8	1.502 (2)
O2—N5	1.2215 (19)	C10-C11	1.389 (2)
O3—N5	1.227 (2)	C10—C15	1.381 (2)
O4—C17	1.383 (3)	C11—C16	1.496 (3)
O4—H4B	0.8200	C11—C12	1.392 (2)
N1—C7	1.358 (2)	C12—C13	1.374 (3)
N1—C6	1.389 (2)	C13—C14	1.373 (3)
N2—N3	1.353 (2)	C14—C15	1.384 (3)
N2—C8	1.292 (2)	С2—Н2	0.9300
N3—C9	1.365 (2)	C4—H4	0.9300
N4—C10	1.428 (2)	С5—Н5	0.9300
N4—C9	1.331 (2)	C12—H12	0.9300
N5—C3	1.458 (2)	C13—H13	0.9300
N1—H1	0.8600	C14—H14	0.9300
N3—H3	0.8600	C15—H15	0.9300
N4—H4A	0.8600	C16—H16C	0.9600
C1—C2	1.381 (2)	C16—H16A	0.9600
C1—C8	1.451 (2)	C16—H16B	0.9600
C1—C6	1.402 (2)	C17—H17A	0.9600
C2—C3	1.384 (2)	C17—H17B	0.9600
C3—C4	1.385 (2)	C17—H17C	0.9600
C4—C5	1.374 (2)		
C17—O4—H4B	109.00	N4—C10—C15	120 89 (14)
C6-N1-C7	111 53 (13)	N4 C10 C11	117 36 (14)
$N_{3} N_{2} C_{8}$	116.02 (13)	C10-C11-C12	117.23 (16)
$N_2 = N_3 = C_9$	121 18 (13)	C10-C11-C16	121 31 (15)
C9-N4-C10	128.37 (14)	C12-C11-C16	121.31 (13)

O2—N5—C3	118.45 (14)	C11—C12—C13	121.76 (17)
O3—N5—C3	118.61 (14)	C12—C13—C14	119.86 (17)
O2—N5—O3	122.94 (15)	C13—C14—C15	120.05 (16)
C6—N1—H1	124.00	C10—C15—C14	119.48 (15)
C7—N1—H1	124.00	C1—C2—H2	122.00
N2—N3—H3	119.00	С3—С2—Н2	122.00
C9—N3—H3	119.00	C5—C4—H4	120.00
C10—N4—H4A	116.00	С3—С4—Н4	120.00
C9—N4—H4A	116.00	С4—С5—Н5	121.00
C2—C1—C6	120.36 (15)	С6—С5—Н5	121.00
C2—C1—C8	133.02 (14)	C13—C12—H12	119.00
C6—C1—C8	106.61 (13)	C11—C12—H12	119.00
C1—C2—C3	116.82 (15)	С12—С13—Н13	120.00
N5—C3—C4	118.52 (14)	C14—C13—H13	120.00
N5-C3-C2	118.56 (14)	C15—C14—H14	120.00
$C_2 - C_3 - C_4$	122.92(15)	C13—C14—H14	120.00
C_{3} C_{4} C_{5}	120.31(15)	C10-C15-H15	120.00
C4 - C5 - C6	117 66 (15)	C_{14} C_{15} H_{15}	120.00
N1 C6 C1	100.71(14)	C11 C16 H16B	100.00
N1 = C6 = C5	109.71(14) 128.35(14)	C_{11} C_{16} H_{16C}	109.00
N1 = C0 = C3	128.33(14) 121.04(15)	$C_{11} = C_{16} = H_{16A}$	109.00
$C_1 = C_0 = C_3$	121.94(13) 106.00(12)		109.00
N1 - C7 - C8	106.00(13)	H16A - C16 - H16C	109.00
01 - 07 - 08	120.00 (15)	HI6B-CI6-HI6C	109.00
UI_C/_NI	127.32 (15)	HI6A—CI6—HI6B	109.00
N2—C8—C1	126.86 (14)	04—C17—H17A	109.00
C1—C8—C7	106.14 (13)	O4—C17—H17B	109.00
N2—C8—C7	126.98 (15)	O4—C17—H17C	109.00
N3—C9—N4	114.76 (14)	H17A—C17—H17B	109.00
S1—C9—N4	127.11 (12)	H17A—C17—H17C	109.00
S1—C9—N3	118.14 (12)	H17B—C17—H17C	109.00
C11—C10—C15	121.60 (15)		
C7—N1—C6—C1	1.2 (2)	C6—C1—C8—N2	178.05 (18)
C7—N1—C6—C5	-178.24 (19)	C6—C1—C8—C7	-0.3 (2)
C6—N1—C7—O1	-179.54 (19)	C1—C2—C3—N5	-179.37 (17)
C6—N1—C7—C8	-1.4 (2)	C1—C2—C3—C4	0.0 (3)
C8—N2—N3—C9	171.16 (17)	N5—C3—C4—C5	179.22 (18)
N3—N2—C8—C1	177.28 (17)	C2—C3—C4—C5	-0.2 (3)
N3—N2—C8—C7	-4.8 (3)	C3—C4—C5—C6	0.3 (3)
N2—N3—C9—S1	175.23 (13)	C4—C5—C6—N1	179.14 (19)
N2N3C9N4	-51(2)	C4-C5-C6-C1	-0.3(3)
112 113 000 114	73(3)	01 - C7 - C8 - N2	0.5(3)
C10 N4 C9 N3	-172.36(17)	01 - 07 - 08 - 01	170 10 (10)
$C_{10} - 10 - 10 - 10$	-13733(10)	N1 - C7 - C8 - N2	-177 22 (19)
$C_{1} = C_{1} = C_{1} = C_{1}$	137.33(17)	N1 = C7 = C8 = C1	1, 1,,, (10)
$C_{2} = 104 - C_{10} - C_{13}$	$\pi (0)$	$M = C_1 = C_0 = C_1$	1.0(2) -177.02(19)
02 - 103 - 02 - 02	(3)	N4 = C10 = C11 = C12	1/1.02(10)
02 - 103 - 03 - 04	-1/4.0(18)	N4 - U10 - U11 - U10	2.9 (3)
U3—N5—U3—U2	-1/4./4 (18)	C15—C10—C11—C12	-1.4 (3)

O3—N5—C3—C4	5.9 (3)	C15-C10-C11-C16	178.6 (2)
C6—C1—C2—C3	0.0 (3)	N4-C10-C15-C14	177.10 (18)
C8—C1—C2—C3	-178.49 (19)	C11—C10—C15—C14	1.6 (3)
C2-C1-C6-N1	-179.38 (17)	C10-C11-C12-C13	0.6 (3)
C2-C1-C6-C5	0.1 (3)	C16—C11—C12—C13	-179.4 (2)
C8—C1—C6—N1	-0.5 (2)	C11—C12—C13—C14	0.0 (3)
C8—C1—C6—C5	178.98 (18)	C12—C13—C14—C15	0.2 (3)
C2-C1-C8-N2	-3.3 (3)	C13—C14—C15—C10	-1.0 (3)
C2-C1-C8-C7	178.38 (19)		

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H…A
N3—H3…O1	0.86	2.04	2.7074 (17)	134
N4—H4 <i>A</i> …N2	0.86	2.20	2.6254 (18)	110
N1—H1····O4 ⁱ	0.86	2.02	2.8394 (19)	160
$O4$ — $H4B$ ···· $S1^{ii}$	0.82	2.55	3.3485 (14)	164
C16—H16C····O3 ⁱⁱⁱ	0.96	2.45	3.342 (3)	154

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, -y, -z+1; (iii) x, -y+3/2, z-1/2.