metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[(Z)-O-Ethyl N-(4-nitrophenyl)thiocarbamato-*kS*](triphenylphosphine-*kP*)gold(I) dichloromethane solvate

Soo Yei Ho^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, National University of Singapore, Singapore 117543, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 22 October 2009; accepted 23 October 2009

Key indicators: single-crystal X-ray study; T = 238 K; mean σ (C–C) = 0.013 Å; R factor = 0.055; wR factor = 0.128; data-to-parameter ratio = 19.0.

An S,P-donor set in the title solvate, [Au(C₉H₉N₂O₃S)- $(C_{18}H_{15}P)$]·CH₂Cl₂, defines a linear geometry for the Au^I atom $[S-Au-P = 177.75 (7)^{\circ}]$, with the minor distortion ascribed to the influence of an intramolecular $Au \cdots O$ contact [3.019 (6) Å]. In the crystal, the packing is stabilized by a network of C-H···S, C-H···N and C-H···O contacts.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993).

Experimental

 $\alpha = 104.311(2)^{\circ}$

Crystal data [Au(C9H9N2O3S)(C18H15P)]-- CH_2Cl_2 $M_{\rm m} = 769.40$ Triclinic, P1 a = 8.7525 (7) Å b = 11.1373 (9) Å c = 15.8981 (13) Å

 $\beta = 105.559 \ (2)^{\circ}$ $\gamma = 91.775 \ (2)^{\circ}$ V = 1438.7 (2) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 5.46 \text{ mm}^-$ T = 238 K $0.39 \times 0.34 \times 0.10 \text{ mm}$

Data collection

```
Bruker SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2000)
  T_{\min} = 0.561, T_{\max} = 1
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	343 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 2.69 \text{ e } \text{\AA}^{-3}$
6534 reflections	$\Delta \rho_{\rm min} = -1.19 \text{ e } \text{\AA}^{-3}$

10007 measured reflections

 $R_{\rm int} = 0.064$

6534 independent reflections

5162 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Au-S1	2.3019 (19)	Au-P1	2.2545 (18)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C23-H23\cdots N1^{i}$	0.94	2.55	3.318 (11)	139
C14−H14···O3 ⁱⁱ	0.94	2.47	3.366 (12)	160
C28−H28a···O1 ⁱⁱⁱ	0.98	2.52	3.330 (13)	140
$C28 - H28b \cdots S1^{iv}$	0.98	2.86	3.617 (11)	134

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y, -z; (iii) x + 1, y, z + 1; (iv) -x + 1, -v, -z + 1

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

The National University of Singapore (grant No. R-143-000-213-112) is thanked for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5169).

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.
- Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg.
- Chem. 45, 8165-8174.
- Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.
- Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1468 [https://doi.org/10.1107/S1600536809043876]

[(Z)-O-Ethyl N-(4-nitrophenyl)thiocarbamato- κS](triphenylphosphine- κP)gold(I) dichloromethane solvate

Soo Yei Ho and Edward R. T. Tiekink

S1. Comment

As a continuation of studies into the structural systematics of molecules with the general formula $R_3PAu[SC(OR')NR'']$ for R, R' and R'' = alkyl and aryl (Ho *et al.* 2006; Ho & Tiekink, 2007; Kuan *et al.*, 2008), the title dichloromethane solvate, (I), was characterized. The Au atom in (I) exists in the expected linear geometry defined by S and P atoms, Table 1 and Fig. 1, with the deviation from the ideal 180° angle being related to the close approach of the O1 atom, 3.019 (6) Å. The structure follows closely literature precedents.

The crystal structure of (I) is stabilized by a series of large rings mediated by C—H···S, O and N contacts, Table 2 and Fig. 2. Thus, C_{phenyl} —H···O_{nitro} contacts link centrosymmetrically related molecules *via* 30-membered {···ONC₄NCSAuPC₃H}₂ synthons. Smaller centrosymmetric rings are formed through the agency of C_{phenyl} —H···N_{imine} contacts that lead to 16-membered {···NCSAuPC₂H}₂ synthons. Centrosymmetrically related dichloromethane molecules bridge a pair of complex molecules, forming C—H···O1, S1 contacts, leading to the formation of 12-membered {···OCS···HCH}₂ synthons.

S2. Experimental

The unsolvated compound was prepared following the standard literature procedure from the reaction of Ph₃PAuCl and EtOC(S)N(H)C₆H₄NO₂-4 in the presence of base (Hall *et al.*, 1993); m. pt. 423–425 K. Analysis for C₂₇H₂₄AuN₂O₃PS: found (calculated): C: 47.25 (47.38); H: 3.39 (3.53); N: 4.33 (4.09); S: 4.50 (4.68). IR (cm⁻¹): v(C—S) 1102 s, 849*m*; v(C —N) 1582 s; v(C—O) 1145*m*. ³¹P{¹H} NMR: δ 37.7 p.p.m. Yellow crystals of the dichloromethane solvate (I) were obtained from the layering of ethanol on a dichloromethane solution of the characterized product.

S3. Refinement

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The maximum and minimum residual electron density peaks of 2.69 and 1.19 e Å⁻³, respectively, were located 0.99 Å and 0.97 Å from the Au atom.

Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2

Unit-cell contents for (I) viewed in projection down the *a* axis. Colour code: Au, orange; Cl, cyan; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.

 $[(Z)-O-Ethyl N-(4-nitrophenyl)thiocarbamato-\kappa S](triphenylphosphine- \kappa P)gold(I) dichloromethane solvate$

Crystal data [Au(C₉H₉N₂O₃S)(C₁₈H₁₅P)]·CH₂Cl₂ $M_r = 769.40$

Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.7525 (7) Å b = 11.1373 (9) Å c = 15.8981 (13) Å $a = 104.311 (2)^{\circ}$ $\beta = 105.559 (2)^{\circ}$ $\gamma = 91.775 (2)^{\circ}$ $V = 1438.7 (2) \text{ Å}^{3}$ Z = 2F(000) = 752

Data collection

	1
Bruker SMART CCD	10007 measured reflections
diffractometer	6534 independent reflections
Radiation source: fine-focus sealed tube	5162 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.064$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2000)	$k = -12 \rightarrow 14$
$T_{\min} = 0.561, \ T_{\max} = 1$	$l = -20 \rightarrow 18$

 $D_{\rm x} = 1.776 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.7 - 25.5^{\circ}$

 $\mu = 5.46 \text{ mm}^{-1}$

Block, yellow

 $0.39 \times 0.34 \times 0.10 \text{ mm}$

T = 238 K

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 3380 reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.128$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 0.94	H-atom parameters constrained
6534 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2]$
343 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.69 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au	0.08336 (3)	0.29401 (3)	0.155405 (19)	0.02476 (11)	
S 1	0.1369 (2)	0.2101 (2)	0.02002 (14)	0.0337 (5)	
P1	0.0409 (2)	0.37531 (18)	0.29087 (13)	0.0227 (4)	
01	-0.0966 (6)	0.3429 (5)	-0.0214 (4)	0.0304 (12)	
O2	0.3929 (8)	-0.1228 (7)	-0.3297 (5)	0.061 (2)	
O3	0.4680 (9)	0.0425 (7)	-0.3643 (5)	0.066 (2)	
N1	0.0125 (8)	0.2734 (6)	-0.1360 (5)	0.0347 (16)	
N2	0.3922 (9)	-0.0126 (8)	-0.3252 (5)	0.048 (2)	

C1	0.0107 (9)	0.2789 (7)	-0.0565 (5)	0.0289 (17)
C2	0.1120 (9)	0.2009 (7)	-0.1789 (5)	0.0281 (17)
C3	0.1034 (10)	0.0715 (8)	-0.1934 (6)	0.038 (2)
Н3	0.0336	0.0315	-0.1707	0.046*
C4	0.1951 (9)	0.0029 (8)	-0.2401 (6)	0.037 (2)
H4	0.1889	-0.0840	-0.2493	0.044*
C5	0.2968 (9)	0.0618 (8)	-0.2736 (6)	0.0337 (19)
C6	0.3108 (11)	0.1898 (9)	-0.2601 (6)	0.044 (2)
H6	0.3810	0.2292	-0.2830	0.053*
C7	0.2176 (11)	0.2575 (8)	-0.2117 (6)	0.038 (2)
H7	0.2264	0.3446	-0.2008	0.046*
C8	-0.2083 (10)	0.4005 (8)	-0.0801 (6)	0.035 (2)
H8A	-0.2696	0.3377	-0.1349	0.042*
H8B	-0.1517	0.4629	-0.0979	0.042*
C9	-0.3173 (11)	0.4610 (9)	-0.0275 (7)	0.047 (2)
H9A	-0.3948	0.5008	-0.0648	0.070*
H9B	-0.2552	0.5230	0.0264	0.070*
H9C	-0.3722	0.3983	-0.0101	0.070*
C10	0.0794 (8)	0.2722 (6)	0.3657 (5)	0.0175 (14)
C11	-0.0100 (9)	0.2683 (7)	0.4250 (5)	0.0289 (17)
H11	-0.0928	0.3197	0.4274	0.035*
C12	0.0222 (10)	0.1895 (8)	0.4802 (6)	0.0348 (19)
H12	-0.0391	0.1861	0.5200	0.042*
C13	0.1461 (11)	0.1148 (8)	0.4770 (6)	0.043 (2)
H13	0.1698	0.0627	0.5162	0.051*
C14	0.2344 (10)	0.1157 (8)	0.4174 (6)	0.040(2)
H14	0.3160	0.0633	0.4144	0.048*
C15	0.2008 (9)	0.1957 (8)	0.3617 (6)	0.0328 (19)
H15	0.2607	0.1979	0.3210	0.039*
C16	-0.1630 (8)	0.4119 (7)	0.2803 (5)	0.0244 (16)
C17	-0.1997 (10)	0.5095 (8)	0.3435 (5)	0.0346 (19)
H17	-0.1180	0.5601	0.3917	0.042*
C18	-0.4767 (11)	0.4562 (10)	0.2640 (7)	0.049 (3)
H18	-0.5836	0.4713	0.2583	0.059*
C19	-0.3572 (11)	0.5311 (9)	0.3346 (6)	0.043 (2)
H19	-0.3830	0.5969	0.3767	0.052*
C20	-0.4417 (10)	0.3609 (10)	0.2025 (8)	0.054 (3)
H20	-0.5240	0.3094	0.1553	0.065*
C21	-0.2840(9)	0.3400 (8)	0.2099 (6)	0.037(2)
H21	-0.2596	0.2759	0.1661	0.045*
C22	0.1646 (8)	0.5220(7)	0.3530 (5)	0.0241 (16)
C23	0.1571 (9)	0.6150 (7)	0.3100 (5)	0.0281 (17)
H23	0.0886	0.6027	0.2512	0.034*
C24	0.2522 (11)	0.7291 (8)	0.3543 (6)	0.042 (2)
H24	0.2473	0.7942	0.3260	0.051*
C25	0.3540 (11)	0.7435 (8)	0.4411 (6)	0.041 (2)
H25	0.4198	0.8186	0.4710	0.049*
C26	0.3595 (9)	0.6500 (8)	0.4834 (6)	0.0351 (19)

supporting information

H26	0.4270	0.6619	0.5424	0.042*	
C27	0.2666 (9)	0.5388 (8)	0.4397 (5)	0.0293 (17)	
H27	0.2719	0.4740	0.4685	0.035*	
C28	0.6962 (11)	0.0796 (10)	0.9653 (7)	0.052 (3)	
H28A	0.7867	0.1437	0.9962	0.063*	
H28B	0.7087	0.0138	0.9970	0.063*	
Cl1	0.5199 (3)	0.1453 (2)	0.9715 (2)	0.0559 (7)	
C12	0.6994 (4)	0.0171 (4)	0.8542 (2)	0.0823 (10)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au	0.02296 (16)	0.03345 (18)	0.01681 (16)	0.00492 (11)	0.00790 (11)	0.00206 (11)
S 1	0.0337 (11)	0.0484 (12)	0.0218 (10)	0.0176 (10)	0.0134 (9)	0.0068 (9)
P1	0.0173 (9)	0.0305 (10)	0.0186 (10)	0.0038 (8)	0.0062 (7)	0.0019 (8)
01	0.029 (3)	0.038 (3)	0.029 (3)	0.015 (2)	0.014 (2)	0.010 (2)
O2	0.057 (5)	0.050 (4)	0.070 (5)	0.012 (4)	0.034 (4)	-0.011 (4)
03	0.071 (5)	0.092 (6)	0.065 (5)	0.044 (5)	0.051 (4)	0.036 (4)
N1	0.039 (4)	0.040 (4)	0.031 (4)	0.016 (3)	0.018 (3)	0.011 (3)
N2	0.034 (4)	0.065 (6)	0.036 (5)	0.020 (4)	0.012 (4)	-0.003 (4)
C1	0.024 (4)	0.038 (5)	0.026 (4)	0.013 (3)	0.010 (3)	0.007 (3)
C2	0.031 (4)	0.039 (5)	0.011 (4)	0.015 (4)	0.002 (3)	0.004 (3)
C3	0.035 (5)	0.042 (5)	0.032 (5)	-0.004 (4)	0.013 (4)	-0.004 (4)
C4	0.031 (4)	0.033 (4)	0.034 (5)	-0.002 (4)	0.008 (4)	-0.014 (4)
C5	0.022 (4)	0.049 (5)	0.027 (4)	0.008 (4)	0.008 (3)	0.003 (4)
C6	0.045 (5)	0.057 (6)	0.044 (6)	0.017 (5)	0.028 (5)	0.021 (5)
C7	0.051 (5)	0.038 (5)	0.042 (5)	0.022 (4)	0.028 (5)	0.022 (4)
C8	0.034 (4)	0.044 (5)	0.034 (5)	0.025 (4)	0.012 (4)	0.018 (4)
C9	0.045 (5)	0.047 (5)	0.062 (7)	0.021 (5)	0.036 (5)	0.014 (5)
C10	0.016 (3)	0.019 (3)	0.014 (3)	0.003 (3)	-0.001 (3)	0.004 (3)
C11	0.031 (4)	0.027 (4)	0.030 (4)	0.003 (3)	0.014 (4)	0.001 (3)
C12	0.037 (5)	0.042 (5)	0.030 (5)	0.007 (4)	0.014 (4)	0.012 (4)
C13	0.050 (5)	0.037 (5)	0.044 (6)	0.003 (4)	0.005 (5)	0.024 (4)
C14	0.038 (5)	0.034 (5)	0.049 (6)	0.014 (4)	0.010 (4)	0.012 (4)
C15	0.022 (4)	0.048 (5)	0.027 (4)	0.010 (4)	0.010 (3)	0.003 (4)
C16	0.022 (4)	0.024 (4)	0.028 (4)	0.006 (3)	0.006 (3)	0.010 (3)
C17	0.031 (4)	0.049 (5)	0.023 (4)	0.012 (4)	0.011 (4)	0.004 (4)
C18	0.029 (5)	0.073 (7)	0.055 (7)	0.023 (5)	0.011 (5)	0.031 (6)
C19	0.040 (5)	0.058 (6)	0.044 (6)	0.031 (5)	0.023 (5)	0.022 (5)
C20	0.017 (4)	0.073 (7)	0.064 (7)	0.004 (4)	0.003 (4)	0.011 (6)
C21	0.024 (4)	0.047 (5)	0.031 (5)	0.007 (4)	0.002 (4)	-0.001 (4)
C22	0.019 (3)	0.030 (4)	0.020 (4)	0.004 (3)	0.006 (3)	0.001 (3)
C23	0.030 (4)	0.031 (4)	0.026 (4)	0.005 (3)	0.012 (3)	0.007 (3)
C24	0.052 (6)	0.039 (5)	0.045 (6)	0.006 (4)	0.030 (5)	0.010 (4)
C25	0.042 (5)	0.032 (5)	0.039 (5)	-0.011 (4)	0.012 (4)	-0.008 (4)
C26	0.024 (4)	0.046 (5)	0.028 (5)	-0.009(4)	0.006 (3)	0.002 (4)
C27	0.030 (4)	0.040 (5)	0.016 (4)	0.006 (4)	0.007 (3)	0.003 (3)
C28	0.031 (5)	0.058 (6)	0.065 (7)	0.006 (5)	0.009 (5)	0.015 (5)

supporting information

Cl1	0.0490 (14)	0.0489 (14)	0.0709 (19)	0.0094 (12)	0.0188 (13)	0.0154 (13)
Cl2	0.0596 (18)	0.116 (3)	0.064 (2)	0.0261 (18)	0.0179 (16)	0.0083 (18)

Geometric parameters (Å, °)

Au—S1	2.3019 (19)	C12—C13	1.391 (12)
Au—P1	2.2545 (18)	C12—H12	0.9400
S1—C1	1.755 (8)	C13—C14	1.376 (13)
P1-C16	1.816 (7)	C13—H13	0.9400
P1-C10	1.825 (7)	C14—C15	1.389 (12)
P1-C22	1.826 (8)	C14—H14	0.9400
01—C1	1.352 (8)	C15—H15	0.9400
O1—C8	1.444 (9)	C16—C21	1.373 (11)
O2—N2	1.212 (10)	C16—C17	1.396 (10)
O3—N2	1.260 (11)	C17—C19	1.383 (11)
N1—C1	1.255 (10)	C17—H17	0.9400
N1-C2	1.401 (9)	C18—C20	1.356 (13)
N2—C5	1.460 (10)	C18—C19	1.380 (13)
C2—C7	1.382 (11)	C18—H18	0.9400
C2—C3	1.397 (12)	C19—H19	0.9400
C3—C4	1.362 (11)	C20—C21	1.386 (11)
С3—Н3	0.9400	C20—H20	0.9400
C4—C5	1.377 (12)	C21—H21	0.9400
C4—H4	0.9400	C22—C23	1.370 (11)
C5—C6	1.385 (12)	C22—C27	1.390 (10)
С6—С7	1.383 (11)	C23—C24	1.408 (12)
С6—Н6	0.9400	С23—Н23	0.9400
С7—Н7	0.9400	C24—C25	1.395 (13)
С8—С9	1.500 (10)	C24—H24	0.9400
C8—H8A	0.9800	C25—C26	1.367 (13)
C8—H8B	0.9800	C25—H25	0.9400
С9—Н9А	0.9700	C26—C27	1.374 (11)
С9—Н9В	0.9700	C26—H26	0.9400
С9—Н9С	0.9700	C27—H27	0.9400
C10—C11	1.385 (10)	C28—C12	1.740 (11)
C10—C15	1.387 (9)	C28—C11	1.743 (9)
C11—C12	1.373 (11)	C28—H28A	0.9800
C11—H11	0.9400	C28—H28B	0.9800
P1—Au—S1	177.75 (7)	C11—C12—H12	120.1
C1—S1—Au	104.1 (2)	C13—C12—H12	120.1
C16—P1—C10	106.1 (3)	C14—C13—C12	121.1 (8)
C16—P1—C22	105.1 (3)	C14—C13—H13	119.5
C10—P1—C22	106.5 (3)	C12—C13—H13	119.5
C16—P1—Au	112.4 (3)	C13—C14—C15	118.8 (8)
C10—P1—Au	113.5 (2)	C13—C14—H14	120.6
C22—P1—Au	112.5 (2)	C15—C14—H14	120.6
C1—O1—C8	116.9 (6)	C10-C15-C14	120.5 (8)
-			(-)

C1—N1—C2	123.2 (7)	C10—C15—H15	119.7
O2—N2—O3	123.5 (7)	C14—C15—H15	119.7
O2—N2—C5	119.3 (8)	C21—C16—C17	119.3 (7)
O3—N2—C5	117.1 (8)	C21—C16—P1	119.2 (6)
N1—C1—O1	120.4 (7)	C17—C16—P1	121.4 (6)
N1-C1-S1	126.9 (6)	C19—C17—C16	119.4 (8)
01-C1-S1	112.7 (6)	C19-C17-H17	120.3
C7-C2-C3	112.7(0) 118.4(7)	C16-C17-H17	120.3
C7 - C2 - N1	110.1(7) 119.4(7)	C_{20} C_{18} C_{19}	120.5
C_{1}^{2} C_{2}^{2} N_{1}^{2}	112.7(7)	C_{20} C_{18} H_{18}	110.6
C_{4} C_{2} C_{2}	122.2(0) 120.7(8)	$C_{20} = C_{10} = H_{10}$	119.6
C4 = C3 = C2	120.7 (8)	C19 - C10 - C17	119.0
$C_4 = C_5 = H_5$	119.0	$C_{10} - C_{19} - C_{17}$	120.0 (8)
$C_2 = C_3 = H_3$	119.0	C13 - C19 - H19	120.0
$C_3 = C_4 = C_5$	119.5 (8)		120.0
C3-C4-H4	120.2	C18 - C20 - C21	119.6 (9)
C5—C4—H4	120.2	C18 - C20 - H20	120.2
C4—C5—C6	121.9 (7)	C21—C20—H20	120.2
C4—C5—N2	119.2 (8)	C16—C21—C20	120.8 (8)
C6—C5—N2	118.9 (8)	C16—C21—H21	119.6
C7—C6—C5	117.4 (8)	C20—C21—H21	119.6
С7—С6—Н6	121.3	C23—C22—C27	120.6 (7)
С5—С6—Н6	121.3	C23—C22—P1	117.4 (6)
C2—C7—C6	122.0 (8)	C27—C22—P1	122.0 (6)
С2—С7—Н7	119.0	C22—C23—C24	119.7 (8)
С6—С7—Н7	119.0	C22—C23—H23	120.2
O1—C8—C9	106.9 (7)	C24—C23—H23	120.2
O1—C8—H8A	110.3	C25—C24—C23	118.7 (8)
С9—С8—Н8А	110.3	C25—C24—H24	120.7
O1—C8—H8B	110.3	C23—C24—H24	120.7
С9—С8—Н8В	110.3	C26—C25—C24	121.0 (8)
H8A—C8—H8B	108.6	C26—C25—H25	119.5
С8—С9—Н9А	109.5	C24—C25—H25	119.5
С8—С9—Н9В	109.5	C25—C26—C27	120.1 (8)
H9A—C9—H9B	109.5	C25—C26—H26	119.9
С8—С9—Н9С	109.5	C27—C26—H26	119.9
Н9А—С9—Н9С	109.5	C26—C27—C22	120.0 (8)
H9B—C9—H9C	109.5	C26—C27—H27	120.0
$C_{11} - C_{10} - C_{15}$	119.9 (7)	C22—C27—H27	120.0
$C_{11} - C_{10} - P_{1}$	1216(5)	$C_{12}^{12} = C_{28}^{12} = C_{11}^{12}$	112.4 (6)
C_{15} C_{10} P_{1}	118 5 (6)	$C_{12}^{12} - C_{28}^{28} + H_{28A}^{28}$	109.1
C_{12} C_{11} C_{10} C_{10}	1200(7)	$C_{11} = C_{28} = H_{28A}$	109.1
C12—C11—H11	120.0 (7)	C 2-C28-H28R	109.1
	120.0	$C_{12} = C_{20} = H_{20} B$	109.1
$C_{11} - C_{12} - C_{13}$	120.0	$H_{20} = C_{20} = H_{20} = H_{20}$	107.0
011-012-013	117.7 (0)	1120A-020-1120D	107.7
C2—N1—C1—O1	-174.9 (7)	C12—C13—C14—C15	1.8 (14)
C2—N1—C1—S1	5.0 (13)	C11—C10—C15—C14	-0.6 (12)
C8—O1—C1—N1	1.3 (11)	P1-C10-C15-C14	180.0 (6)

C8—O1—C1—S1	-178.6 (6)	C13-C14-C15-C10	-0.6 (13)
Au—S1—C1—N1	170.3 (8)	C10—P1—C16—C21	-92.8 (7)
Au—S1—C1—O1	-9.8 (6)	C22—P1—C16—C21	154.5 (7)
C1—N1—C2—C7	-122.3 (9)	Au—P1—C16—C21	31.8 (7)
C1—N1—C2—C3	60.6 (12)	C10—P1—C16—C17	85.6 (7)
C7—C2—C3—C4	-1.1 (13)	C22—P1—C16—C17	-27.1 (8)
N1—C2—C3—C4	176.0 (8)	Au—P1—C16—C17	-149.8 (6)
C2—C3—C4—C5	-0.3 (13)	C21—C16—C17—C19	0.7 (13)
C3—C4—C5—C6	1.0 (13)	P1-C16-C17-C19	-177.6 (7)
C3—C4—C5—N2	-178.7 (8)	C20-C18-C19-C17	0.0 (15)
O2—N2—C5—C4	-7.6 (12)	C16—C17—C19—C18	0.3 (14)
O3—N2—C5—C4	171.2 (8)	C19—C18—C20—C21	-1.2 (17)
O2—N2—C5—C6	172.6 (8)	C17—C16—C21—C20	-2.0 (14)
O3—N2—C5—C6	-8.5 (12)	P1-C16-C21-C20	176.4 (8)
C4—C5—C6—C7	-0.4 (14)	C18—C20—C21—C16	2.3 (16)
N2-C5-C6-C7	179.4 (8)	C16—P1—C22—C23	-68.1 (6)
C3—C2—C7—C6	1.8 (13)	C10—P1—C22—C23	179.5 (5)
N1—C2—C7—C6	-175.4 (8)	Au—P1—C22—C23	54.5 (6)
C5—C6—C7—C2	-1.1 (14)	C16—P1—C22—C27	113.7 (6)
C1—O1—C8—C9	178.0 (7)	C10—P1—C22—C27	1.3 (7)
C16—P1—C10—C11	-21.5 (7)	Au—P1—C22—C27	-123.7 (6)
C22—P1—C10—C11	90.1 (6)	C27—C22—C23—C24	-0.6 (11)
Au—P1—C10—C11	-145.5 (5)	P1-C22-C23-C24	-178.9 (6)
C16—P1—C10—C15	157.9 (6)	C22—C23—C24—C25	0.9 (11)
C22—P1—C10—C15	-90.4 (6)	C23—C24—C25—C26	-1.3 (13)
Au—P1—C10—C15	34.0 (6)	C24—C25—C26—C27	1.4 (13)
C15—C10—C11—C12	0.5 (11)	C25—C26—C27—C22	-1.2 (12)
P1-C10-C11-C12	179.9 (6)	C23—C22—C27—C26	0.8 (11)
C10-C11-C12-C13	0.7 (12)	P1-C22-C27-C26	178.9 (6)
C11—C12—C13—C14	-1.9 (14)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.94	2.55	3.318 (11)	139
0.94	2.47	3.366 (12)	160
0.98	2.52	3.330 (13)	140
0.98	2.86	3.617 (11)	134
	<i>D</i> —H 0.94 0.94 0.98 0.98	D—H H···A 0.94 2.55 0.94 2.47 0.98 2.52 0.98 2.86	D—HH···AD···A0.942.553.318 (11)0.942.473.366 (12)0.982.523.330 (13)0.982.863.617 (11)

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1, -*y*, -*z*; (iii) *x*+1, *y*, *z*+1; (iv) -*x*+1, -*y*, -*z*+1.