Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

($1 R, 1$ 'S)-1,1'-Dihydroxy-1,1'-biisobenzo-furan- $3,3^{\prime}\left(1 H, 1^{\prime} H\right)$-dione

Fang-Fang Jian, ${ }^{\text {a* }}$ Shan-Shan Zhao, ${ }^{\text {b }}$ Huan-Mei Guo, ${ }^{\text {a }}$ Yu-Feng Lia ${ }^{\text {a }}$ and Pu-Su Zhao ${ }^{\text {b }}$

${ }^{\text {a Microscale Science Institute, Weifang University, Weifang 261061, People's }}$ Republic of China, and ${ }^{\mathbf{b}}$ New Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042,
People's Republic of China
Correspondence e-mail: ffjian2008@163.com

Received 22 October 2009; accepted 28 October 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.056 ; w R$ factor $=0.170$; data-to-parameter ratio $=10.4$.

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$, the complete molecule is generated by a crystallographic centre of symmetry. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into (100) sheets and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ links also occur.

Related literature

For background to phthalides as natural products, see: Pedrosa et al. (2006). For a related structure, see: Wang et al. (2001).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$
$M_{r}=298.24$

Monoclinic, $P 2_{1} / c$
$a=8.2260$ (16) \AA
$b=7.9690(16) \AA$
$c=10.859$ (4) \AA
$\beta=114.03$ (2) ${ }^{\circ}$
$V=650.1(3) \mathrm{A}^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART CCD
diffractometer
Absorption correction: none
1352 measured reflections
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.170 \quad$ independent and constrained
$S=1.02$
1263 reflections
121 parameters

1263 independent reflections 622 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.070$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2B $\cdots \mathrm{O} 1^{\mathrm{i}}$	$0.91(7)$	$1.82(7)$	$2.691(5)$	$159(5)$
C5-H5A $\cdots 1^{\text {ii }}$	0.96 (3)	2.58 (4)	$3.475(5)$	$155(3)$
Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$ (ii) $-x,-y+1,-z$				

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors would like to thank the National Natural Science Foundation of Shandong (Y2007B14, Y2008B29) and Weifang University for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5170).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Pedrosa, R., Sayalero, S. \& Vicente, M. (2006). Tetrahedron, 62, 10400-10404. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Wang, X. Q., Song, M. Y. \& Long, Y. C. (2001). J. Solid State Chem. 156, 325330

supporting information

Acta Cryst. (2009). E65, o2961 [https://doi.org/10.1107/S1600536809044961]
($1 R, 1^{\prime} S$)-1, 1^{\prime}-Dihydroxy-1, 1^{\prime}-biisobenzofuran- $3,3^{\prime}\left(1 H, 1^{\prime} H\right)$-dione

Fang-Fang Jian, Shan-Shan Zhao, Huan-Mei Guo, Yu-Feng Li and Pu-Su Zhao

S1. Comment

Substituted phthalides (isobenzofuran-1 $(3 H)$-ones) represent an important class of natural products that posses significant biological properties (e.g. Pedrosa et al., 2006). As part of our search for new biologically active compounds, we unexpected obtained the title compound, (I), which is a typical derivative of phthalides.
In the crystal structure of compound (I) (Fig. 1),there is an inversion center, which is located at the mid-point of C(8)$\mathrm{C}(8 \mathrm{~A})$ bond. All of the bond lengths and bond angles are in the normal ranges (Wang et al., 2001). In the crystal lattice, there are a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond, which stabilize the molecule structure.

S2. Experimental

Phthalic anhydride (0.05 mol) was dissolved in dichloromethane $(100 \mathrm{ml})$. Then, $\mathrm{AlCl}_{3}(0.05 \mathrm{~mol})$ was added. The mixture was stirred at room temperature and the whole reaction was under the protection of nitrogen. After 5 h , the reaction was stopped and the mixture poured into ice-water. The organic layer was collected and then was dried with MgSO_{4}. Finally, the organic layer was concentrated by rotary vacuum evaporation to obtain yellow solids. Yellow blocks of (I) were obtailed by recrystallization from acetonitrile at room temperature.

S3. Refinement

The H atoms were located in difference maps and freely refined.

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

($1 R, 1^{\prime} S$)-1, 1^{\prime}-dihydroxy-1, 1^{\prime}-biisobenzofuran- $3,3^{\prime}\left(1 H, 1^{\prime} H\right)$-dione

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$
$M_{r}=298.24$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.2260(16) \AA$
$b=7.9690(16) \AA$
$c=10.859$ (4) \AA
$\beta=114.03$ (2) ${ }^{\circ}$
$V=650.1(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
1352 measured reflections
1263 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.170$
$S=1.02$
1263 reflections
121 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$F(000)=308$
$D_{\mathrm{x}}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1978 reflections
$\theta=3.5-27.5^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

622 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=25.9^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=0 \rightarrow 9$
$k=-9 \rightarrow 0$
$l=-13 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0846 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.032 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.2464(4)$	$0.3665(4)$	$0.1300(3)$	$0.0549(9)$

O2	$0.6822(3)$	$0.5869(4)$	$0.4778(3)$	$0.0410(8)$
O3	$0.4600(3)$	$0.4127(3)$	$0.3342(2)$	$0.0376(8)$
C1	$0.3733(5)$	$0.6782(5)$	$0.3741(3)$	$0.0314(9)$
C2	$0.3529(6)$	$0.8340(5)$	$0.4222(4)$	$0.0398(11)$
C3	$0.2204(6)$	$0.9369(6)$	$0.3366(4)$	$0.0467(11)$
C4	$0.1095(6)$	$0.8864(6)$	$0.2078(4)$	$0.0484(12)$
C5	$0.1271(5)$	$0.7290(6)$	$0.1605(4)$	$0.0408(11)$
C6	$0.2612(5)$	$0.6276(5)$	$0.2465(3)$	$0.0316(9)$
C7	$0.3138(5)$	$0.4584(5)$	$0.2258(3)$	$0.0359(10)$
C8	$0.5080(5)$	$0.5441(5)$	$0.4390(3)$	$0.0330(10)$
H2A	$0.435(5)$	$0.868(4)$	$0.511(4)$	$0.036(10)^{*}$
H4A	$0.014(5)$	$0.956(6)$	$0.148(4)$	$0.052(12)^{*}$
H5A	$0.052(5)$	$0.686(5)$	$0.073(3)$	$0.036(10)^{*}$
H3A	$0.206(6)$	$1.043(7)$	$0.368(4)$	$0.069(15)^{*}$
H2B	$0.689(9)$	$0.669(8)$	$0.422(6)$	$0.12(2)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.067(2)$	$0.049(2)$	$0.0364(15)$	$0.0066(16)$	$0.0091(15)$	$-0.0153(15)$
O2	$0.0378(16)$	$0.0411(18)$	$0.0391(15)$	$-0.0008(14)$	$0.0105(13)$	$0.0080(13)$
O3	$0.0498(17)$	$0.0327(16)$	$0.0273(13)$	$0.0054(13)$	$0.0125(13)$	$-0.0038(12)$
C1	$0.036(2)$	$0.028(2)$	$0.0265(18)$	$-0.0023(16)$	$0.0096(17)$	$0.0042(16)$
C2	$0.052(3)$	$0.032(2)$	$0.0280(19)$	$-0.003(2)$	$0.008(2)$	$-0.0055(18)$
C3	$0.057(3)$	$0.035(3)$	$0.046(2)$	$0.010(2)$	$0.018(2)$	$0.000(2)$
C4	$0.045(3)$	$0.049(3)$	$0.043(2)$	$0.011(2)$	$0.009(2)$	$0.008(2)$
C5	$0.039(2)$	$0.048(3)$	$0.028(2)$	$0.000(2)$	$0.0058(18)$	$-0.003(2)$
C6	$0.035(2)$	$0.032(2)$	$0.0263(18)$	$0.0009(17)$	$0.0107(17)$	$0.0015(16)$
C7	$0.044(2)$	$0.037(3)$	$0.0251(19)$	$-0.0039(19)$	$0.0119(18)$	$-0.0032(17)$
C8	$0.037(2)$	$0.030(2)$	$0.0262(18)$	$0.0016(18)$	$0.0074(17)$	$-0.0005(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.207(4)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$0.96(4)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.362(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.382(6)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	$0.91(7)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$0.94(5)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.346(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(6)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.477(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$0.96(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.376(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.380(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(5)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$0.96(4)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.494(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.461(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.378(6)$	$\mathrm{C} 8-\mathrm{C} 8 \mathrm{i}$	$1.551(7)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$		$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$118(2)$
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8$	$108(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	$125(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$110.2(3)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$122.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 8$	$120.6(4)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$107.9(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	$109.2(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$129.9(3)$

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.6(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$123(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$119(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.6(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$118(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$120(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.9(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$122(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$117(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$117.1(4)$

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 3$	$121.5(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$129.2(4)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$109.3(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 3$	$109.5(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 1$	$116.8(3)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 1$	$103.2(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$107.1(4)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C}^{\mathrm{i}}$	$104.4(4)$
$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C}^{\mathrm{i}}$	$115.0(4)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.91(7)$	$1.82(7)$	$2.691(5)$	$159(5)$
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots 1^{\mathrm{iii}}$	$0.96(3)$	$2.58(4)$	$3.475(5)$	$155(3)$

Symmetry codes: (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $-x,-y+1,-z$.

