

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(μ -trans-1,2-Di-4-pyridylethylene- $\kappa^2 N:N'$)bis[bis(N,N-diisopropyldithio-carbamato- $\kappa^2 S,S'$)zinc(II)]

Hadi D. Arman,^a Pavel Poplaukhin^b and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, ^bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

conceptingence e main curranticana eginameeni

Received 24 October 2009; accepted 24 October 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.103; data-to-parameter ratio = 21.5.

The dinuclear title compound, $[Zn_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_2)]$, is centrosymmetric about the central C=C bond. The fivecoordinate Zn atom is bonded to two asymmetrically chelating dithiocarbamate ligands and a pyridine N atom to define an NS₄ coordination geometry tending towards a square pyramid, with the N atom in the apical site. In the crystal structure, C– H···S contacts lead to supramolecular chains.

Related literature

For background to supramolecular polymers of zinc 1,1dithiolates, see: Lai *et al.* (2002); Chen *et al.* (2006); Benson *et al.* (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison *et al.* (1984).

Experimental

Crystal data

 $\begin{bmatrix} Zn_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_2) \end{bmatrix} \qquad \begin{array}{ll} \gamma = 72.566 \ (5)^{\circ} \\ W_r = 1018.21 \\ Triclinic, P\overline{1} \\ a = 8.2690 \ (14) \ \mathring{A} \\ b = 11.1640 \ (18) \ \mathring{A} \\ c = 14.156 \ (2) \ \mathring{A} \\ \alpha = 80.806 \ (10)^{\circ} \\ \beta = 84.878 \ (9)^{\circ} \end{array} \qquad \begin{array}{ll} \gamma = 72.566 \ (5)^{\circ} \\ V = 1229.6 \ (3) \ \mathring{A}^3 \\ Z = 1 \\ Mo \ K\alpha \ radiation \\ \mu = 1.35 \ mm^{-1} \\ T = 98 \ K \\ 0.43 \times 0.35 \times 0.22 \ mm \end{array}$

Data collection

Rigaku AFC12K/SATURN724	9453 measured reflections
diffractometer	5613 independent reflections
Absorption correction: multi-scan	5323 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.027$
$T_{\min} = 0.810, \ T_{\max} = 1$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	261 parameters
$vR(F^2) = 0.103$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$
5613 reflections	$\Delta \rho_{\rm min} = -0.93 \text{ e } \text{\AA}^{-3}$

Table 1

			0
$C \rightarrow 1$	1 1	1 41	/ A \
Nelected	nona	lenging	(A)
Sciected	UUIIU	Tenguns	1 1 1 1
			· ·

Zn-N3	2.0621 (18)	Zn-S2	2.5320 (7)
Zn-S1	2.3655 (7)	Zn-S4	2.5720 (7)
Zn-S3	2.3662 (7)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C20-H20\cdots S4^{i}$	0.95	2.77	3.545 (2)	139

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5178).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). *CrystEngComm*, **8**, 51–58.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). *CrystEngComm*, 4, 596–600.
- Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1475 [https://doi.org/10.1107/S1600536809044250]

(μ -trans-1,2-Di-4-pyridylethylene- $\kappa^2 N:N'$)bis[bis(N,N-diisopropyldithio-carbamato- $\kappa^2 S,S'$)zinc(II)]

Hadi D. Arman, Pavel Poplaukhin and Edward R. T. Tiekink

S1. Comment

Crystal engineering studies of zinc(II) 1,1-dithiolates (Lai *et al.*, 2002; Chen *et al.*, 2006; Benson *et al.* 2007) motivated the synthesis of the title compound (I). The dinuclear compound is centrosymmetric and features a five coordinate Zn atom. Two asymmetrically chelating dithiocarbamate ligands (range of Zn–S = 2.3655 (7) to 2.5720 (7) Å) and a pyridine-N atom (Zn–N 2.0621 (18) Å) define a NS₄ donor set. The coordination geometry is distorted towards square pyramidal (SP). This is quantified by the value of $\tau = 1/3$, which compares with the ideal values of 0.0 and 1.0 for SP and TB, respectively (Addison *et al.*, 1984).

In the crystal structure, C—H···S contacts link molecules into a supramolecular chain, Table 1 and Fig. 2. Chains are linked into a 2-D array *via* C—H··· π contacts where the π -system is defined by the ZnS₂C chelate ring containing the S3 atom [C13—H13*a*···*Cg* = 2.86 Å, C13···*Cg* = 3.630 (3) Å with an angle of 136° at the H13*a* atom for symmetry operation 1 - *x*, 1 - *y*, -*z*].

S2. Experimental

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003) whereby two equivalents of $Zn(S_2CN(iPr)_2)_2$ were added to *trans*-1,2-bis(4-pyridyl)ethylene. Golden blocks of (I) were obtained from the slow evaporation of a chloroform/acetonitrile solution (3/1) of (I); m. pt. 513–515 K.

S3. Refinement

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figure 1

The molecular structure of (I) with the asymmetric unit labelled; unlabelled atoms are related by the symmetry operation -1 - x, 1 - y, 1 - z. Displacement ellipsoids are shown at the 70% probability level.

Figure 2

Supramolecular chain formation in (I) mediated by C—H…S contacts (orange dashed lines).

(μ -trans-1,2-Di-4-pyridylethylene- $\kappa^2 N:N'$)bis[bis(N,N-diisopropyldithiocarbamato- $\kappa^2 S,S'$)zinc(II)]

Crystal data

 $[Zn_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_2)]$ $M_r = 1018.21$ Triclinic, P1 Hall symbol: -P 1 *a* = 8.2690 (14) Å *b* = 11.1640 (18) Å c = 14.156 (2) Å $\alpha = 80.806 (10)^{\circ}$ $\beta = 84.878 \ (9)^{\circ}$ $\gamma = 72.566 (5)^{\circ}$ V = 1229.6 (3) Å³

Data collection

Rigaku AFC12K/SATURN724	9453 measured reflections
diffractometer	5613 independent reflections
Radiation source: fine-focus sealed tube	5323 reflections with $I > 2\sigma$
Graphite monochromator	$R_{\rm int} = 0.027$
ωscans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 14$
$T_{\min} = 0.810, T_{\max} = 1$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.103$ S = 1.085613 reflections 261 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Z = 1F(000) = 536 $D_{\rm x} = 1.375 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71069$ Å Cell parameters from 4206 reflections $\theta = 2.6 - 40.2^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 98 KBlock, gold $0.43 \times 0.35 \times 0.22 \text{ mm}$

s (I)

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 0.8556P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn	0.26250 (3)	0.37511 (2)	0.262741 (17)	0.01954 (9)
S1	0.50382 (7)	0.25806 (5)	0.35054 (4)	0.02363 (13)
S2	0.31926 (7)	0.14535 (5)	0.24038 (4)	0.02353 (13)
S3	0.18968 (7)	0.47710 (5)	0.10606 (4)	0.02045 (12)
S4	0.29663 (7)	0.59904 (5)	0.24745 (4)	0.02168 (12)
N1	0.6241 (2)	0.01811 (18)	0.31035 (14)	0.0237 (4)
N2	0.2671 (2)	0.69764 (16)	0.06127 (12)	0.0191 (3)
N3	0.0406 (2)	0.39861 (17)	0.34610 (13)	0.0203 (3)
C1	0.4978 (3)	0.1269 (2)	0.30131 (15)	0.0193 (4)
C2	0.7810 (3)	-0.0048(2)	0.36315 (18)	0.0302 (5)
H2	0.8458	-0.0952	0.3587	0.036*
C3	0.7483 (4)	0.0018 (3)	0.46940 (19)	0.0377 (6)
H3A	0.7019	0.0906	0.4798	0.057*
H3B	0.8549	-0.0362	0.5023	0.057*
H3C	0.6668	-0.0448	0.4949	0.057*
C4	0.8972 (3)	0.0716 (3)	0.3145 (2)	0.0356 (6)
H4A	0.9121	0.0632	0.2462	0.053*
H4B	1.0078	0.0397	0.3438	0.053*
H4C	0.8467	0.1610	0.3222	0.053*
C5	0.6116 (3)	-0.0926 (2)	0.26693 (19)	0.0300 (5)
Н5	0.5131	-0.0596	0.2243	0.036*
C6	0.7657 (4)	-0.1476 (3)	0.2036 (2)	0.0455 (7)
H6A	0.7888	-0.0796	0.1564	0.068*
H6B	0.7436	-0.2112	0.1703	0.068*
H6C	0.8642	-0.1874	0.2432	0.068*
C7	0.5682 (6)	-0.1896 (3)	0.3430 (2)	0.0585 (10)
H7A	0.6630	-0.2270	0.3856	0.088*
H7B	0.5470	-0.2563	0.3129	0.088*
H7C	0.4664	-0.1490	0.3802	0.088*
C8	0.2528 (2)	0.60365 (19)	0.12971 (14)	0.0173 (4)
С9	0.3395 (3)	0.7973 (2)	0.08196 (16)	0.0230 (4)
Н9	0.3809	0.7714	0.1485	0.028*
C10	0.4919 (3)	0.8049 (3)	0.0156 (2)	0.0356 (6)
H10A	0.5762	0.7213	0.0199	0.053*
H10B	0.5422	0.8662	0.0346	0.053*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10C	0.4558	0.8323	-0.0504	0.053*
C11	0.2042 (3)	0.9242 (2)	0.0808 (2)	0.0342 (6)
H11A	0.1617	0.9535	0.0162	0.051*
H11B	0.2532	0.9863	0.0996	0.051*
H11C	0.1105	0.9147	0.1260	0.051*
C12	0.2101 (3)	0.7146 (2)	-0.03856 (15)	0.0230 (4)
H12	0.2300	0.7958	-0.0707	0.028*
C13	0.3156 (3)	0.6133 (2)	-0.09784 (17)	0.0302 (5)
H13A	0.4362	0.5970	-0.0873	0.045*
H13B	0.2948	0.6428	-0.1659	0.045*
H13C	0.2835	0.5349	-0.0785	0.045*
C14	0.0198 (3)	0.7356 (2)	-0.04095 (18)	0.0271 (5)
H14A	-0.0069	0.6565	-0.0153	0.041*
H14B	-0.0155	0.7621	-0.1072	0.041*
H14C	-0.0405	0.8017	-0.0019	0.041*
C15	0.0365 (3)	0.3549 (2)	0.44008 (17)	0.0294 (5)
H15	0.1404	0.3103	0.4696	0.035*
C16	-0.1129 (3)	0.3724 (2)	0.49564 (16)	0.0297 (5)
H16	-0.1101	0.3407	0.5621	0.036*
C17	-0.2677 (3)	0.4365 (2)	0.45415 (15)	0.0200 (4)
C18	-0.2633 (3)	0.4766 (2)	0.35583 (15)	0.0224 (4)
H18	-0.3658	0.5165	0.3236	0.027*
C19	-0.1086 (3)	0.4576 (2)	0.30552 (16)	0.0228 (4)
H19	-0.1078	0.4879	0.2389	0.027*
C20	-0.4262 (3)	0.4592 (2)	0.51333 (15)	0.0207 (4)
H20	-0.4230	0.4119	0.5755	0.025*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.01645 (14)	0.02258 (14)	0.01769 (14)	-0.00523 (10)	0.00223 (9)	0.00022 (9)
S 1	0.0225 (3)	0.0227 (3)	0.0275 (3)	-0.0087 (2)	-0.0054 (2)	-0.0022 (2)
S2	0.0220 (3)	0.0234 (3)	0.0256 (3)	-0.0055 (2)	-0.0057 (2)	-0.0041 (2)
S3	0.0237 (3)	0.0223 (2)	0.0171 (2)	-0.0098 (2)	0.00010 (19)	-0.00222 (18)
S4	0.0266 (3)	0.0246 (3)	0.0151 (2)	-0.0099 (2)	-0.0018 (2)	-0.00120 (18)
N1	0.0215 (9)	0.0222 (9)	0.0260 (10)	-0.0062 (7)	-0.0042 (7)	0.0016 (7)
N2	0.0201 (8)	0.0203 (8)	0.0158 (8)	-0.0052 (7)	-0.0011 (7)	-0.0008 (6)
N3	0.0180 (8)	0.0230 (8)	0.0184 (9)	-0.0055 (7)	0.0028 (7)	-0.0010 (7)
C1	0.0183 (9)	0.0232 (10)	0.0165 (9)	-0.0084 (8)	0.0013 (7)	0.0006 (7)
C2	0.0224 (11)	0.0340 (12)	0.0316 (13)	-0.0067 (9)	-0.0065 (9)	0.0032 (10)
C3	0.0390 (14)	0.0450 (15)	0.0295 (13)	-0.0128 (12)	-0.0069 (11)	-0.0022 (11)
C4	0.0227 (11)	0.0472 (15)	0.0392 (14)	-0.0146 (11)	-0.0009 (10)	-0.0041 (11)
C5	0.0306 (12)	0.0234 (11)	0.0343 (13)	-0.0040 (9)	-0.0037 (10)	-0.0054 (9)
C6	0.0463 (17)	0.0485 (16)	0.0402 (16)	-0.0061 (13)	0.0026 (13)	-0.0187 (13)
C7	0.099 (3)	0.0461 (18)	0.0459 (18)	-0.0458 (19)	0.0196 (18)	-0.0164 (14)
C8	0.0153 (9)	0.0202 (9)	0.0151 (9)	-0.0037 (7)	0.0008 (7)	-0.0028 (7)
C9	0.0254 (11)	0.0218 (10)	0.0234 (11)	-0.0098 (8)	-0.0024 (8)	-0.0015 (8)
C10	0.0341 (13)	0.0345 (13)	0.0452 (15)	-0.0209 (11)	0.0083 (11)	-0.0099 (11)

supporting information

C11	0.0288 (12)	0.0276 (12)	0.0483 (16)	-0.0057 (10)	-0.0019 (11)	-0.0162 (11)
C12	0.0271 (11)	0.0239 (10)	0.0169 (10)	-0.0066 (8)	-0.0036 (8)	-0.0001 (8)
C13	0.0356 (13)	0.0348 (12)	0.0190 (11)	-0.0075 (10)	0.0027 (9)	-0.0072 (9)
C14	0.0249 (11)	0.0269 (11)	0.0293 (12)	-0.0056 (9)	-0.0076 (9)	-0.0038 (9)
C15	0.0194 (10)	0.0407 (13)	0.0209 (11)	-0.0023 (9)	-0.0004 (9)	0.0043 (9)
C16	0.0209 (11)	0.0438 (14)	0.0174 (11)	-0.0035 (10)	0.0020 (9)	0.0036 (9)
C17	0.0182 (10)	0.0221 (10)	0.0209 (10)	-0.0081 (8)	0.0017 (8)	-0.0031 (8)
C18	0.0175 (10)	0.0281 (11)	0.0187 (10)	-0.0038 (8)	0.0008 (8)	-0.0014 (8)
C19	0.0192 (10)	0.0289 (11)	0.0183 (10)	-0.0062 (8)	0.0013 (8)	-0.0002 (8)
C20	0.0197 (10)	0.0262 (10)	0.0162 (9)	-0.0075 (8)	0.0031 (8)	-0.0034 (8)

Geometric parameters (Å, °)

Zn—N3	2.0621 (18)	С7—Н7А	0.9800
Zn—S1	2.3655 (7)	С7—Н7В	0.9800
Zn—S3	2.3662 (7)	С7—Н7С	0.9800
Zn—S2	2.5320 (7)	C9—C10	1.518 (3)
Zn—S4	2.5720 (7)	C9—C11	1.519 (3)
S1—C1	1.734 (2)	С9—Н9	1.0000
S2—C1	1.719 (2)	C10—H10A	0.9800
S3—C8	1.733 (2)	C10—H10B	0.9800
S4—C8	1.727 (2)	C10—H10C	0.9800
N1—C1	1.340 (3)	C11—H11A	0.9800
N1—C2	1.490 (3)	C11—H11B	0.9800
N1—C5	1.499 (3)	C11—H11C	0.9800
N2—C8	1.335 (3)	C12—C14	1.522 (3)
N2—C9	1.489 (3)	C12—C13	1.525 (3)
N2—C12	1.495 (3)	C12—H12	1.0000
N3—C15	1.343 (3)	C13—H13A	0.9800
N3—C19	1.344 (3)	C13—H13B	0.9800
C2—C3	1.514 (4)	C13—H13C	0.9800
C2—C4	1.520 (4)	C14—H14A	0.9800
С2—Н2	1.0000	C14—H14B	0.9800
С3—НЗА	0.9800	C14—H14C	0.9800
С3—Н3В	0.9800	C15—C16	1.384 (3)
С3—НЗС	0.9800	С15—Н15	0.9500
C4—H4A	0.9800	C16—C17	1.395 (3)
C4—H4B	0.9800	C16—H16	0.9500
C4—H4C	0.9800	C17—C18	1.393 (3)
С5—С7	1.501 (4)	C17—C20	1.469 (3)
С5—С6	1.519 (4)	C18—C19	1.383 (3)
С5—Н5	1.0000	C18—H18	0.9500
С6—Н6А	0.9800	C19—H19	0.9500
С6—Н6В	0.9800	C20-C20 ⁱ	1.330 (4)
С6—Н6С	0.9800	С20—Н20	0.9500
N3—Zn—S1	112.29 (5)	H7A—C7—H7C	109.5
N3—Zn—S3	107.48 (5)	H7B—C7—H7C	109.5

S1—Zn—S3	140.23 (2)	N2—C8—S4	122.56 (15)
N3—Zn—S2	99.44 (5)	N2—C8—S3	122.09 (15)
S1—Zn—S2	73.21 (2)	S4—C8—S3	115.36 (12)
S3—Zn—S2	100.61 (2)	N2-C9-C10	111.56 (18)
N3—Zn—S4	100.23 (5)	N2—C9—C11	111.17 (18)
S1—Zn—S4	99.98 (2)	C10—C9—C11	112.7 (2)
S3—Zn—S4	72.47 (2)	N2—C9—H9	107.0
S2—Zn—S4	160.31 (2)	С10—С9—Н9	107.0
C1—S1—Zn	87.45 (7)	С11—С9—Н9	107.0
C1 - S2 - Zn	82.55 (7)	С9—С10—Н10А	109.5
C8 = S3 = Zn	88 80 (7)	C9-C10-H10B	109 5
C8 - S4 - Zn	82,47 (7)	H10A—C10—H10B	109.5
C1 - N1 - C2	124.9(2)	C9-C10-H10C	109.5
C1 - N1 - C5	119 88 (19)	H_{10A} $-C_{10}$ H_{10C}	109.5
$C_2 N_1 C_5$	115.18 (19)	HIOR CIO HIOC	109.5
$C_2 = N_1 = C_3$	113.18(19) 120.53(17)	$C_{0} C_{11} H_{11} \Lambda$	109.5
$C_{8} = N_{2} = C_{7}$	120.33(17) 124.50(18)	C_{0} C_{11} H_{11}	109.5
$C_0 = N_2 = C_{12}$	124.30(16)		109.5
C_{9} N2 C_{12}	114.95 (10)	HIIA—CII—HIIB	109.5
C15—N3—C19	117.40 (19)	C9—CII—HIIC	109.5
C15 - N3 - Zn	123.08 (15)	HIIA—CII—HIIC	109.5
C19 - N3 - Zn	119.50 (14)	HIIB—CII—HIIC	109.5
NI—CI—S2	122.16 (16)	N2—C12—C14	112.12 (18)
N1—C1—S1	122.17 (16)	N2-C12-C13	113.96 (18)
S2—C1—S1	115.67 (12)	C14—C12—C13	113.47 (19)
N1—C2—C3	113.7 (2)	N2—C12—H12	105.4
N1—C2—C4	113.0 (2)	C14—C12—H12	105.4
C3—C2—C4	114.1 (2)	C13—C12—H12	105.4
N1—C2—H2	104.9	C12—C13—H13A	109.5
С3—С2—Н2	104.9	C12—C13—H13B	109.5
С4—С2—Н2	104.9	H13A—C13—H13B	109.5
С2—С3—НЗА	109.5	C12—C13—H13C	109.5
С2—С3—Н3В	109.5	H13A—C13—H13C	109.5
НЗА—СЗ—НЗВ	109.5	H13B—C13—H13C	109.5
С2—С3—Н3С	109.5	C12—C14—H14A	109.5
НЗА—СЗ—НЗС	109.5	C12—C14—H14B	109.5
НЗВ—СЗ—НЗС	109.5	H14A—C14—H14B	109.5
C2—C4—H4A	109.5	C12—C14—H14C	109.5
C2—C4—H4B	109.5	H14A—C14—H14C	109.5
H4A—C4—H4B	109.5	H14B—C14—H14C	109.5
C2—C4—H4C	109.5	N3-C15-C16	122.7(2)
H4A - C4 - H4C	109.5	N3-C15-H15	118 7
H4B-C4-H4C	109.5	C16—C15—H15	118.7
N1-C5-C7	110.4 (2)	C_{15} C_{16} C_{17}	120.0(2)
N1-C5-C6	113 3 (2)	C15-C16-H16	120.0 (2)
C7 C5 C6	113.3(2) 113.4(3)	$C_{12} - C_{10} - H_{10}$	120.0
N1 C5 H5	106 /	C18 C17 C16	120.0 1171(2)
-0.5 H5	106.4	$C_{10} = C_{17} = C_{10}$	117.1(2)
$C_{1} = C_{2} = C_{11}$	100.4	$C_{10} - C_{17} - C_{20}$	122.04(19)
00-03-113	100.4	$U_1 U_1 U_1 U_2 U_2 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3 U_3$	120.3 (2)

С5—С6—Н6А	109.5	C19—C18—C17	119.4 (2)
С5—С6—Н6В	109.5	C19—C18—H18	120.3
H6A—C6—H6B	109.5	C17—C18—H18	120.3
С5—С6—Н6С	109.5	N3-C19-C18	123.3 (2)
H6A—C6—H6C	109.5	N3—C19—H19	118.3
H6B—C6—H6C	109.5	С18—С19—Н19	118.3
С5—С7—Н7А	109.5	C20 ⁱ —C20—C17	125.1 (3)
С5—С7—Н7В	109.5	C20 ⁱ —C20—H20	117.4
H7A—C7—H7B	109.5	С17—С20—Н20	117.4
С5—С7—Н7С	109.5		
N3—Zn—S1—C1	99.95 (9)	C1—N1—C2—C4	-68.5 (3)
S3—Zn—S1—C1	-80.02(8)	C5—N1—C2—C4	112.6 (2)
S2—Zn—S1—C1	6.43 (7)	C1—N1—C5—C7	-103.7(3)
S4—Zn—S1—C1	-154.56 (7)	C2—N1—C5—C7	75.3 (3)
N3—Zn—S2—C1	-117.11 (9)	C1—N1—C5—C6	128.0 (2)
S1—Zn—S2—C1	-6.53 (7)	C2—N1—C5—C6	-53.1 (3)
S3—Zn—S2—C1	132.96 (7)	C9—N2—C8—S4	6.4 (3)
S4—Zn—S2—C1	65.65 (9)	C12—N2—C8—S4	-171.92 (16)
N3—Zn—S3—C8	101.33 (9)	C9—N2—C8—S3	-173.29 (15)
S1—Zn—S3—C8	-78.70 (7)	C12—N2—C8—S3	8.4 (3)
S2—Zn—S3—C8	-155.14 (7)	Zn—S4—C8—N2	-171.20 (18)
S4—Zn—S3—C8	5.83 (7)	Zn—S4—C8—S3	8.52 (10)
N3—Zn—S4—C8	-111.15 (9)	Zn—S3—C8—N2	170.53 (17)
S1—Zn—S4—C8	133.82 (7)	Zn—S3—C8—S4	-9.19 (11)
S3—Zn—S4—C8	-5.90 (7)	C8—N2—C9—C10	122.8 (2)
S2—Zn—S4—C8	66.08 (9)	C12—N2—C9—C10	-58.7(2)
S1—Zn—N3—C15	1.8 (2)	C8—N2—C9—C11	-110.5(2)
S3—Zn—N3—C15	-178.20(18)	C12—N2—C9—C11	67.9 (2)
S2—Zn—N3—C15	77.44 (19)	C8—N2—C12—C14	61.8 (3)
S4—Zn—N3—C15	-103.51 (19)	C9—N2—C12—C14	-116.6 (2)
S1—Zn—N3—C19	-176.66 (15)	C8—N2—C12—C13	-68.8 (3)
S3—Zn—N3—C19	3.32 (17)	C9—N2—C12—C13	112.8 (2)
S2—Zn—N3—C19	-101.04 (16)	C19—N3—C15—C16	-2.2(4)
S4—Zn—N3—C19	78.01 (16)	Zn—N3—C15—C16	179.3 (2)
C2—N1—C1—S2	-179.16 (17)	N3-C15-C16-C17	0.6 (4)
C5—N1—C1—S2	-0.3 (3)	C15—C16—C17—C18	2.3 (4)
C2—N1—C1—S1	0.7 (3)	C15—C16—C17—C20	-177.9(2)
C5—N1—C1—S1	179.53 (17)	C16—C17—C18—C19	-3.5(3)
Zn - S2 - C1 - N1	-170.64(18)	C20-C17-C18-C19	176.7 (2)
Zn—S2—C1—S1	9.49 (10)	C15—N3—C19—C18	0.9 (3)
Zn—S1—C1—N1	170.04 (18)	Zn—N3—C19—C18	179.48 (17)
Zn—S1—C1—S2	-10.09(11)	C17—C18—C19—N3	2.0 (4)
C1—N1—C2—C3	63.5 (3)	$C18 - C17 - C20 - C20^{i}$	-15.2 (4)
C5—N1—C2—C3	-115.3 (2)	C16—C17—C20—C20 ⁱ	164.9 (3)
	× /		(-)

Symmetry code: (i) -x-1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C20—H20…S4 ⁱⁱ	0.95	2.77	3.545 (2)	139

Symmetry code: (ii) -x, -y+1, -z+1.