metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-trans-1,2-Di-4-pyridylethyl­ene-κ2N:N′)bis­­[bis­­(N,N-diiso­propyl­di­thio­carbamato-κ2S,S′)zinc(II)]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2009; accepted 24 October 2009; online 31 October 2009)

The dinuclear title compound, [Zn2(C7H14NS2)4(C12H10N2)], is centrosymmetric about the central C=C bond. The five-coordinate Zn atom is bonded to two asymmetrically chelating dithio­carbamate ligands and a pyridine N atom to define an NS4 coordination geometry tending towards a square pyramid, with the N atom in the apical site. In the crystal structure, C—H⋯S contacts lead to supra­molecular chains.

Related literature

For background to supra­molecular polymers of zinc 1,1-dithiol­ates, see: Lai et al. (2002[Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]). For a related structure and the synthesis, see: Lai & Tiekink (2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). For additional geometrical analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H14NS2)4(C12H10N2)]

  • Mr = 1018.21

  • Triclinic, [P \overline 1]

  • a = 8.2690 (14) Å

  • b = 11.1640 (18) Å

  • c = 14.156 (2) Å

  • α = 80.806 (10)°

  • β = 84.878 (9)°

  • γ = 72.566 (5)°

  • V = 1229.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 98 K

  • 0.43 × 0.35 × 0.22 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 1

  • 9453 measured reflections

  • 5613 independent reflections

  • 5323 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.08

  • 5613 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N3 2.0621 (18)
Zn—S1 2.3655 (7)
Zn—S3 2.3662 (7)
Zn—S2 2.5320 (7)
Zn—S4 2.5720 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯S4i 0.95 2.77 3.545 (2) 139
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal engineering studies of zinc(II) 1,1-dithiolates (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007) motivated the synthesis of the title compound (I). The dinuclear compound is centrosymmetric and features a five coordinate Zn atom. Two asymmetrically chelating dithiocarbamate ligands (range of Zn–S = 2.3655 (7) to 2.5720 (7) Å) and a pyridine-N atom (Zn–N 2.0621 (18) Å) define a NS4 donor set. The coordination geometry is distorted towards square pyramidal (SP). This is quantified by the value of τ = 1/3, which compares with the ideal values of 0.0 and 1.0 for SP and TB, respectively (Addison et al., 1984).

In the crystal structure, C—H···S contacts link molecules into a supramolecular chain, Table 1 and Fig. 2. Chains are linked into a 2-D array via C—H···π contacts where the π-system is defined by the ZnS2C chelate ring containing the S3 atom [C13—H13a···Cg = 2.86 Å, C13···Cg = 3.630 (3) Å with an angle of 136° at the H13a atom for symmetry operation 1 - x, 1 - y, -z].

Related literature top

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984).

Experimental top

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003) whereby two equivalents of Zn(S2CN(iPr)2)2 were added to trans-1,2-bis(4-pyridyl)ethylene. Golden blocks of (I) were obtained from the slow evaporation of a chloroform/acetonitrile solution (3/1) of (I); m. pt. 513–515 K.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Crystal engineering studies of zinc(II) 1,1-dithiolates (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007) motivated the synthesis of the title compound (I). The dinuclear compound is centrosymmetric and features a five coordinate Zn atom. Two asymmetrically chelating dithiocarbamate ligands (range of Zn–S = 2.3655 (7) to 2.5720 (7) Å) and a pyridine-N atom (Zn–N 2.0621 (18) Å) define a NS4 donor set. The coordination geometry is distorted towards square pyramidal (SP). This is quantified by the value of τ = 1/3, which compares with the ideal values of 0.0 and 1.0 for SP and TB, respectively (Addison et al., 1984).

In the crystal structure, C—H···S contacts link molecules into a supramolecular chain, Table 1 and Fig. 2. Chains are linked into a 2-D array via C—H···π contacts where the π-system is defined by the ZnS2C chelate ring containing the S3 atom [C13—H13a···Cg = 2.86 Å, C13···Cg = 3.630 (3) Å with an angle of 136° at the H13a atom for symmetry operation 1 - x, 1 - y, -z].

For background to supramolecular polymers of zinc 1,1-dithiolates, see: Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For a related structure and the synthesis, see: Lai & Tiekink (2003). For additional geometrical analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the asymmetric unit labelled; unlabelled atoms are related by the symmetry operation -1 - x, 1 - y, 1 - z. Displacement ellipsoids are shown at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation in (I) mediated by C—H···S contacts (orange dashed lines).
(µ-trans-1,2-Di-4-pyridylethylene- κ2N:N')bis[bis(N,N-diisopropyldithiocarbamato- κ2S,S')zinc(II)] top
Crystal data top
[Zn2(C7H14NS2)4(C12H10N2)]Z = 1
Mr = 1018.21F(000) = 536
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.2690 (14) ÅCell parameters from 4206 reflections
b = 11.1640 (18) Åθ = 2.6–40.2°
c = 14.156 (2) ŵ = 1.35 mm1
α = 80.806 (10)°T = 98 K
β = 84.878 (9)°Block, gold
γ = 72.566 (5)°0.43 × 0.35 × 0.22 mm
V = 1229.6 (3) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5613 independent reflections
Radiation source: fine-focus sealed tube5323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.810, Tmax = 1k = 1314
9453 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.8556P]
where P = (Fo2 + 2Fc2)/3
5613 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Zn2(C7H14NS2)4(C12H10N2)]γ = 72.566 (5)°
Mr = 1018.21V = 1229.6 (3) Å3
Triclinic, P1Z = 1
a = 8.2690 (14) ÅMo Kα radiation
b = 11.1640 (18) ŵ = 1.35 mm1
c = 14.156 (2) ÅT = 98 K
α = 80.806 (10)°0.43 × 0.35 × 0.22 mm
β = 84.878 (9)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5613 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5323 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 1Rint = 0.027
9453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.73 e Å3
5613 reflectionsΔρmin = 0.93 e Å3
261 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.26250 (3)0.37511 (2)0.262741 (17)0.01954 (9)
S10.50382 (7)0.25806 (5)0.35054 (4)0.02363 (13)
S20.31926 (7)0.14535 (5)0.24038 (4)0.02353 (13)
S30.18968 (7)0.47710 (5)0.10606 (4)0.02045 (12)
S40.29663 (7)0.59904 (5)0.24745 (4)0.02168 (12)
N10.6241 (2)0.01811 (18)0.31035 (14)0.0237 (4)
N20.2671 (2)0.69764 (16)0.06127 (12)0.0191 (3)
N30.0406 (2)0.39861 (17)0.34610 (13)0.0203 (3)
C10.4978 (3)0.1269 (2)0.30131 (15)0.0193 (4)
C20.7810 (3)0.0048 (2)0.36315 (18)0.0302 (5)
H20.84580.09520.35870.036*
C30.7483 (4)0.0018 (3)0.46940 (19)0.0377 (6)
H3A0.70190.09060.47980.057*
H3B0.85490.03620.50230.057*
H3C0.66680.04480.49490.057*
C40.8972 (3)0.0716 (3)0.3145 (2)0.0356 (6)
H4A0.91210.06320.24620.053*
H4B1.00780.03970.34380.053*
H4C0.84670.16100.32220.053*
C50.6116 (3)0.0926 (2)0.26693 (19)0.0300 (5)
H50.51310.05960.22430.036*
C60.7657 (4)0.1476 (3)0.2036 (2)0.0455 (7)
H6A0.78880.07960.15640.068*
H6B0.74360.21120.17030.068*
H6C0.86420.18740.24320.068*
C70.5682 (6)0.1896 (3)0.3430 (2)0.0585 (10)
H7A0.66300.22700.38560.088*
H7B0.54700.25630.31290.088*
H7C0.46640.14900.38020.088*
C80.2528 (2)0.60365 (19)0.12971 (14)0.0173 (4)
C90.3395 (3)0.7973 (2)0.08196 (16)0.0230 (4)
H90.38090.77140.14850.028*
C100.4919 (3)0.8049 (3)0.0156 (2)0.0356 (6)
H10A0.57620.72130.01990.053*
H10B0.54220.86620.03460.053*
H10C0.45580.83230.05040.053*
C110.2042 (3)0.9242 (2)0.0808 (2)0.0342 (6)
H11A0.16170.95350.01620.051*
H11B0.25320.98630.09960.051*
H11C0.11050.91470.12600.051*
C120.2101 (3)0.7146 (2)0.03856 (15)0.0230 (4)
H120.23000.79580.07070.028*
C130.3156 (3)0.6133 (2)0.09784 (17)0.0302 (5)
H13A0.43620.59700.08730.045*
H13B0.29480.64280.16590.045*
H13C0.28350.53490.07850.045*
C140.0198 (3)0.7356 (2)0.04095 (18)0.0271 (5)
H14A0.00690.65650.01530.041*
H14B0.01550.76210.10720.041*
H14C0.04050.80170.00190.041*
C150.0365 (3)0.3549 (2)0.44008 (17)0.0294 (5)
H150.14040.31030.46960.035*
C160.1129 (3)0.3724 (2)0.49564 (16)0.0297 (5)
H160.11010.34070.56210.036*
C170.2677 (3)0.4365 (2)0.45415 (15)0.0200 (4)
C180.2633 (3)0.4766 (2)0.35583 (15)0.0224 (4)
H180.36580.51650.32360.027*
C190.1086 (3)0.4576 (2)0.30552 (16)0.0228 (4)
H190.10780.48790.23890.027*
C200.4262 (3)0.4592 (2)0.51333 (15)0.0207 (4)
H200.42300.41190.57550.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01645 (14)0.02258 (14)0.01769 (14)0.00523 (10)0.00223 (9)0.00022 (9)
S10.0225 (3)0.0227 (3)0.0275 (3)0.0087 (2)0.0054 (2)0.0022 (2)
S20.0220 (3)0.0234 (3)0.0256 (3)0.0055 (2)0.0057 (2)0.0041 (2)
S30.0237 (3)0.0223 (2)0.0171 (2)0.0098 (2)0.00010 (19)0.00222 (18)
S40.0266 (3)0.0246 (3)0.0151 (2)0.0099 (2)0.0018 (2)0.00120 (18)
N10.0215 (9)0.0222 (9)0.0260 (10)0.0062 (7)0.0042 (7)0.0016 (7)
N20.0201 (8)0.0203 (8)0.0158 (8)0.0052 (7)0.0011 (7)0.0008 (6)
N30.0180 (8)0.0230 (8)0.0184 (9)0.0055 (7)0.0028 (7)0.0010 (7)
C10.0183 (9)0.0232 (10)0.0165 (9)0.0084 (8)0.0013 (7)0.0006 (7)
C20.0224 (11)0.0340 (12)0.0316 (13)0.0067 (9)0.0065 (9)0.0032 (10)
C30.0390 (14)0.0450 (15)0.0295 (13)0.0128 (12)0.0069 (11)0.0022 (11)
C40.0227 (11)0.0472 (15)0.0392 (14)0.0146 (11)0.0009 (10)0.0041 (11)
C50.0306 (12)0.0234 (11)0.0343 (13)0.0040 (9)0.0037 (10)0.0054 (9)
C60.0463 (17)0.0485 (16)0.0402 (16)0.0061 (13)0.0026 (13)0.0187 (13)
C70.099 (3)0.0461 (18)0.0459 (18)0.0458 (19)0.0196 (18)0.0164 (14)
C80.0153 (9)0.0202 (9)0.0151 (9)0.0037 (7)0.0008 (7)0.0028 (7)
C90.0254 (11)0.0218 (10)0.0234 (11)0.0098 (8)0.0024 (8)0.0015 (8)
C100.0341 (13)0.0345 (13)0.0452 (15)0.0209 (11)0.0083 (11)0.0099 (11)
C110.0288 (12)0.0276 (12)0.0483 (16)0.0057 (10)0.0019 (11)0.0162 (11)
C120.0271 (11)0.0239 (10)0.0169 (10)0.0066 (8)0.0036 (8)0.0001 (8)
C130.0356 (13)0.0348 (12)0.0190 (11)0.0075 (10)0.0027 (9)0.0072 (9)
C140.0249 (11)0.0269 (11)0.0293 (12)0.0056 (9)0.0076 (9)0.0038 (9)
C150.0194 (10)0.0407 (13)0.0209 (11)0.0023 (9)0.0004 (9)0.0043 (9)
C160.0209 (11)0.0438 (14)0.0174 (11)0.0035 (10)0.0020 (9)0.0036 (9)
C170.0182 (10)0.0221 (10)0.0209 (10)0.0081 (8)0.0017 (8)0.0031 (8)
C180.0175 (10)0.0281 (11)0.0187 (10)0.0038 (8)0.0008 (8)0.0014 (8)
C190.0192 (10)0.0289 (11)0.0183 (10)0.0062 (8)0.0013 (8)0.0002 (8)
C200.0197 (10)0.0262 (10)0.0162 (9)0.0075 (8)0.0031 (8)0.0034 (8)
Geometric parameters (Å, º) top
Zn—N32.0621 (18)C7—H7A0.9800
Zn—S12.3655 (7)C7—H7B0.9800
Zn—S32.3662 (7)C7—H7C0.9800
Zn—S22.5320 (7)C9—C101.518 (3)
Zn—S42.5720 (7)C9—C111.519 (3)
S1—C11.734 (2)C9—H91.0000
S2—C11.719 (2)C10—H10A0.9800
S3—C81.733 (2)C10—H10B0.9800
S4—C81.727 (2)C10—H10C0.9800
N1—C11.340 (3)C11—H11A0.9800
N1—C21.490 (3)C11—H11B0.9800
N1—C51.499 (3)C11—H11C0.9800
N2—C81.335 (3)C12—C141.522 (3)
N2—C91.489 (3)C12—C131.525 (3)
N2—C121.495 (3)C12—H121.0000
N3—C151.343 (3)C13—H13A0.9800
N3—C191.344 (3)C13—H13B0.9800
C2—C31.514 (4)C13—H13C0.9800
C2—C41.520 (4)C14—H14A0.9800
C2—H21.0000C14—H14B0.9800
C3—H3A0.9800C14—H14C0.9800
C3—H3B0.9800C15—C161.384 (3)
C3—H3C0.9800C15—H150.9500
C4—H4A0.9800C16—C171.395 (3)
C4—H4B0.9800C16—H160.9500
C4—H4C0.9800C17—C181.393 (3)
C5—C71.501 (4)C17—C201.469 (3)
C5—C61.519 (4)C18—C191.383 (3)
C5—H51.0000C18—H180.9500
C6—H6A0.9800C19—H190.9500
C6—H6B0.9800C20—C20i1.330 (4)
C6—H6C0.9800C20—H200.9500
N3—Zn—S1112.29 (5)H7A—C7—H7C109.5
N3—Zn—S3107.48 (5)H7B—C7—H7C109.5
S1—Zn—S3140.23 (2)N2—C8—S4122.56 (15)
N3—Zn—S299.44 (5)N2—C8—S3122.09 (15)
S1—Zn—S273.21 (2)S4—C8—S3115.36 (12)
S3—Zn—S2100.61 (2)N2—C9—C10111.56 (18)
N3—Zn—S4100.23 (5)N2—C9—C11111.17 (18)
S1—Zn—S499.98 (2)C10—C9—C11112.7 (2)
S3—Zn—S472.47 (2)N2—C9—H9107.0
S2—Zn—S4160.31 (2)C10—C9—H9107.0
C1—S1—Zn87.45 (7)C11—C9—H9107.0
C1—S2—Zn82.55 (7)C9—C10—H10A109.5
C8—S3—Zn88.80 (7)C9—C10—H10B109.5
C8—S4—Zn82.47 (7)H10A—C10—H10B109.5
C1—N1—C2124.9 (2)C9—C10—H10C109.5
C1—N1—C5119.88 (19)H10A—C10—H10C109.5
C2—N1—C5115.18 (19)H10B—C10—H10C109.5
C8—N2—C9120.53 (17)C9—C11—H11A109.5
C8—N2—C12124.50 (18)C9—C11—H11B109.5
C9—N2—C12114.95 (16)H11A—C11—H11B109.5
C15—N3—C19117.40 (19)C9—C11—H11C109.5
C15—N3—Zn123.08 (15)H11A—C11—H11C109.5
C19—N3—Zn119.50 (14)H11B—C11—H11C109.5
N1—C1—S2122.16 (16)N2—C12—C14112.12 (18)
N1—C1—S1122.17 (16)N2—C12—C13113.96 (18)
S2—C1—S1115.67 (12)C14—C12—C13113.47 (19)
N1—C2—C3113.7 (2)N2—C12—H12105.4
N1—C2—C4113.0 (2)C14—C12—H12105.4
C3—C2—C4114.1 (2)C13—C12—H12105.4
N1—C2—H2104.9C12—C13—H13A109.5
C3—C2—H2104.9C12—C13—H13B109.5
C4—C2—H2104.9H13A—C13—H13B109.5
C2—C3—H3A109.5C12—C13—H13C109.5
C2—C3—H3B109.5H13A—C13—H13C109.5
H3A—C3—H3B109.5H13B—C13—H13C109.5
C2—C3—H3C109.5C12—C14—H14A109.5
H3A—C3—H3C109.5C12—C14—H14B109.5
H3B—C3—H3C109.5H14A—C14—H14B109.5
C2—C4—H4A109.5C12—C14—H14C109.5
C2—C4—H4B109.5H14A—C14—H14C109.5
H4A—C4—H4B109.5H14B—C14—H14C109.5
C2—C4—H4C109.5N3—C15—C16122.7 (2)
H4A—C4—H4C109.5N3—C15—H15118.7
H4B—C4—H4C109.5C16—C15—H15118.7
N1—C5—C7110.4 (2)C15—C16—C17120.0 (2)
N1—C5—C6113.3 (2)C15—C16—H16120.0
C7—C5—C6113.4 (3)C17—C16—H16120.0
N1—C5—H5106.4C18—C17—C16117.1 (2)
C7—C5—H5106.4C18—C17—C20122.64 (19)
C6—C5—H5106.4C16—C17—C20120.3 (2)
C5—C6—H6A109.5C19—C18—C17119.4 (2)
C5—C6—H6B109.5C19—C18—H18120.3
H6A—C6—H6B109.5C17—C18—H18120.3
C5—C6—H6C109.5N3—C19—C18123.3 (2)
H6A—C6—H6C109.5N3—C19—H19118.3
H6B—C6—H6C109.5C18—C19—H19118.3
C5—C7—H7A109.5C20i—C20—C17125.1 (3)
C5—C7—H7B109.5C20i—C20—H20117.4
H7A—C7—H7B109.5C17—C20—H20117.4
C5—C7—H7C109.5
N3—Zn—S1—C199.95 (9)C1—N1—C2—C468.5 (3)
S3—Zn—S1—C180.02 (8)C5—N1—C2—C4112.6 (2)
S2—Zn—S1—C16.43 (7)C1—N1—C5—C7103.7 (3)
S4—Zn—S1—C1154.56 (7)C2—N1—C5—C775.3 (3)
N3—Zn—S2—C1117.11 (9)C1—N1—C5—C6128.0 (2)
S1—Zn—S2—C16.53 (7)C2—N1—C5—C653.1 (3)
S3—Zn—S2—C1132.96 (7)C9—N2—C8—S46.4 (3)
S4—Zn—S2—C165.65 (9)C12—N2—C8—S4171.92 (16)
N3—Zn—S3—C8101.33 (9)C9—N2—C8—S3173.29 (15)
S1—Zn—S3—C878.70 (7)C12—N2—C8—S38.4 (3)
S2—Zn—S3—C8155.14 (7)Zn—S4—C8—N2171.20 (18)
S4—Zn—S3—C85.83 (7)Zn—S4—C8—S38.52 (10)
N3—Zn—S4—C8111.15 (9)Zn—S3—C8—N2170.53 (17)
S1—Zn—S4—C8133.82 (7)Zn—S3—C8—S49.19 (11)
S3—Zn—S4—C85.90 (7)C8—N2—C9—C10122.8 (2)
S2—Zn—S4—C866.08 (9)C12—N2—C9—C1058.7 (2)
S1—Zn—N3—C151.8 (2)C8—N2—C9—C11110.5 (2)
S3—Zn—N3—C15178.20 (18)C12—N2—C9—C1167.9 (2)
S2—Zn—N3—C1577.44 (19)C8—N2—C12—C1461.8 (3)
S4—Zn—N3—C15103.51 (19)C9—N2—C12—C14116.6 (2)
S1—Zn—N3—C19176.66 (15)C8—N2—C12—C1368.8 (3)
S3—Zn—N3—C193.32 (17)C9—N2—C12—C13112.8 (2)
S2—Zn—N3—C19101.04 (16)C19—N3—C15—C162.2 (4)
S4—Zn—N3—C1978.01 (16)Zn—N3—C15—C16179.3 (2)
C2—N1—C1—S2179.16 (17)N3—C15—C16—C170.6 (4)
C5—N1—C1—S20.3 (3)C15—C16—C17—C182.3 (4)
C2—N1—C1—S10.7 (3)C15—C16—C17—C20177.9 (2)
C5—N1—C1—S1179.53 (17)C16—C17—C18—C193.5 (3)
Zn—S2—C1—N1170.64 (18)C20—C17—C18—C19176.7 (2)
Zn—S2—C1—S19.49 (10)C15—N3—C19—C180.9 (3)
Zn—S1—C1—N1170.04 (18)Zn—N3—C19—C18179.48 (17)
Zn—S1—C1—S210.09 (11)C17—C18—C19—N32.0 (4)
C1—N1—C2—C363.5 (3)C18—C17—C20—C20i15.2 (4)
C5—N1—C2—C3115.3 (2)C16—C17—C20—C20i164.9 (3)
Symmetry code: (i) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···S4ii0.952.773.545 (2)139
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C7H14NS2)4(C12H10N2)]
Mr1018.21
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.2690 (14), 11.1640 (18), 14.156 (2)
α, β, γ (°)80.806 (10), 84.878 (9), 72.566 (5)
V3)1229.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.43 × 0.35 × 0.22
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.810, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9453, 5613, 5323
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.08
No. of reflections5613
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.93

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Zn—N32.0621 (18)Zn—S22.5320 (7)
Zn—S12.3655 (7)Zn—S42.5720 (7)
Zn—S32.3662 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···S4i0.952.773.545 (2)139
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds