

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(5Z)-5-(2-Hydroxybenzylidene)-3phenyl-2-thioxo-1.3-thiazolidin-4-one

Durre Shahwar,^a M. Nawaz Tahir,^b* Muhammad Asam Raza^a and Bushra Iqbal^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 24 October 2009; accepted 24 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.102; data-to-parameter ratio = 18.2.

In the title compound, $C_{16}H_{11}NO_2S_2$, the dihedral angles between the heterocyclic ring and the phenyl and anilinic benzene rings are 9.68 (13) and 79.26 (6)°, respectively, and an intramolecular $C-H \cdot \cdot \cdot S$ interaction occurs. In the crystal, inversion dimers linked by pairs of $O-H \cdots O$ hydrogen bonds occur, leading to $R_2^2(10)$ loops, and C-H···O and weak C- $H \cdot \cdot \pi$ interactions further consolidate the packing.

Related literature

For related structures, see: Linden et al. (1999); Shahwar et al. (2009a, 2009b). For graph-set theory, see: Bernstein et al. (1995).

Experimental

Crystal data $C_{16}H_{11}NO_2S_2$ $M_r = 313.40$ Monoclinic, $P2_1/n$ a = 11.6553 (7) Å b = 7.3424 (4) Å c = 16.8256 (10) Å $\beta = 95.131 \ (2)^{\circ}$

 $V = 1434.13 (14) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K $0.26 \times 0.18 \times 0.17~\mathrm{mm}$ 15580 measured reflections

 $R_{\rm int} = 0.048$

3481 independent reflections

2194 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.924, \ T_{\rm max} = 0.937$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	191 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
3481 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C16—H16···S1	0.93	2.50	3.213 (2)	133
$O2-H2A\cdotsO1^{i}$	0.82	1.97	2.767 (2)	163
$C10-H10\cdots O2^{i}$	0.93	2.49	3.375 (3)	160
C2−H2···CgB ⁱⁱ	0.93	2.91	3.774 (2)	155
C14−H14···CgB ⁱⁱⁱ	0.93	2.91	3.515 (2)	124

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$. CgB is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5180).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Linden, A., Awad, E. M. A. H. & Heimgartner, H. (1999). Acta Cryst. C55, 1877-1881
- Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009a). Acta Cryst. E65. o2637
- Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009b). Acta Cryst. E65, 02638.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2903 [https://doi.org/10.1107/S1600536809044286]

(5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one

Durre Shahwar, M. Nawaz Tahir, Muhammad Asam Raza and Bushra Iqbal

S1. Comment

We have recently reported the crystal structure of (II) (5*Z*)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4- one methanol hemisolvate (Shahwar *et al.*, 2009*a*) and (III) (5*E*)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin- 4-one methanol monosolvate (Shahwar *et al.*, 2009*b*) which contain the rhodanine. In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported. The crystal structure of (IV) 3-Phenyl-5-(phenylmethylidene)-2-thioxo-1,3-thiazolidin-4-one (Linden *et al.*, 1999) has also been published. Title compound (I) differs from (IV) due to attachement of hydroxy group with benzylidene.

In (I) the heterocyclic ring A (N1/C7/S1/C8/C9), two benzene rings B (C1—C6) and C (C11–C16) are planar with maximum r. m. s. deviations of 0.0145, 0.0038 and 0.0070 Å respectively, from the respective mean square planes. The dihedral angles between A/B, A/C and B/C are 79.26 (6), 9.68 (13) and 69.62 (6)°, respectively. The intramolecular H-bondings of C—H…S (Table 1, Fig. 1) form twisted S(6) ring motif (Bernstein *et al.*, 1995). The molecules of (I) are stabilized in the form of dimers due to intermolecular H-bondings (Table 1, Fig. 2) froming $R_2^2(7)$ and $R_2^2(10)$ ring motifs. The C–H… π interactions (Table 1) also play role in stabilizing the molecules.

S2. Experimental

3-Phenyl-2-thioxo-1,3-thiazolidin-4-one (0.419 g, 0.2 mol), 2-Hydroxybenzaldehyde (0.244 g, 0.2 mol) and K_2CO_3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in ethyl acetate to affoard orange yellow prisms of (I).

S3. Refinement

The H-atoms were positioned geometrically (O–H = 0.82 Å, C–H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular H-bond.

Figure 2

The partial packing of (I), which shows that molecules form inversion dimers.

(5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3-thiazolidin-4-one

Crystal data	
$C_{16}H_{11}NO_2S_2$	$\beta = 95.131 \ (2)^{\circ}$
$M_r = 313.40$	$V = 1434.13 (14) \text{ Å}^3$
Monoclinic, $P2_1/n$	Z = 4
Hall symbol: -P 2yn	F(000) = 648
a = 11.6553 (7) Å	$D_{\rm x} = 1.452 {\rm ~Mg} {\rm ~m}^{-3}$
b = 7.3424 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.8256 (10) Å	Cell parameters from 3481 reflections

 $\theta = 2.0 - 28.0^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K

...

Data collection	
Bruker Kappa APEXII CCD	15580 measured reflections
diffractometer	3481 independent reflections
Radiation source: fine-focus sealed tube	2194 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 7.40 pixels mm ⁻¹	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω scans	$h = -15 \rightarrow 14$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
(SADABS; Bruker, 2005)	$l = -22 \rightarrow 22$
$T_{\min} = 0.924, \ T_{\max} = 0.937$	
Refinement	
Refinement on F^2	Secondary atom site location: difference

Prisms, orange yellow

 $0.26 \times 0.18 \times 0.17 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.01	H-atom parameters constrained
3481 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 0.326P]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.16936 (5)	0.50419 (7)	0.48587 (3)	0.0463 (2)
S2	0.12725 (6)	0.16709 (8)	0.57270 (4)	0.0591 (2)
01	0.45774 (15)	0.5967 (2)	0.60654 (9)	0.0572 (6)
O2	0.40155 (14)	1.1358 (2)	0.44795 (9)	0.0515 (6)
N1	0.30920 (15)	0.3922 (2)	0.60195 (9)	0.0376 (6)
C1	0.35642 (18)	0.2866 (3)	0.66982 (12)	0.0370 (7)
C2	0.3410 (2)	0.3461 (3)	0.74551 (12)	0.0432 (7)
C3	0.3835 (2)	0.2416 (3)	0.81002 (12)	0.0477 (8)
C4	0.4398 (2)	0.0815 (3)	0.79786 (14)	0.0497 (8)
C5	0.4550(2)	0.0235 (3)	0.72188 (14)	0.0524 (9)
C6	0.4139 (2)	0.1273 (3)	0.65678 (13)	0.0466 (8)
C7	0.20684 (19)	0.3439 (3)	0.55947 (12)	0.0399 (7)
C8	0.29274 (19)	0.6347 (3)	0.51013 (11)	0.0385 (7)
C9	0.3643 (2)	0.5470 (3)	0.57636 (12)	0.0401 (7)

supporting information

C10	0.32304 (19)	0.7938 (3)	0.47846 (12)	0.0418 (7)
C11	0.26629 (19)	0.9014 (3)	0.41462 (11)	0.0379 (7)
C12	0.31041 (19)	1.0743 (3)	0.39934 (12)	0.0389 (7)
C13	0.2611 (2)	1.1796 (3)	0.33719 (13)	0.0494 (8)
C14	0.1673 (2)	1.1153 (3)	0.28976 (13)	0.0540 (9)
C15	0.1207 (2)	0.9486 (3)	0.30463 (13)	0.0533 (9)
C16	0.1702 (2)	0.8438 (3)	0.36550 (13)	0.0478 (8)
H2	0.30268	0.45483	0.75331	0.0518*
H2A	0.43058	1.22336	0.42710	0.0772*
H3	0.37382	0.28003	0.86166	0.0572*
H4	0.46807	0.01166	0.84139	0.0596*
H5	0.49284	-0.08572	0.71418	0.0629*
H6	0.42501	0.08995	0.60520	0.0559*
H10	0.39181	0.84263	0.50141	0.0502*
H13	0.29121	1.29390	0.32743	0.0593*
H14	0.13538	1.18544	0.24737	0.0648*
H15	0.05592	0.90715	0.27356	0.0640*
H16	0.13881	0.72999	0.37452	0.0574*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0458 (4)	0.0443 (3)	0.0466 (3)	-0.0085 (3)	-0.0083 (2)	0.0067 (2)
S2	0.0556 (4)	0.0454 (3)	0.0756 (4)	-0.0154 (3)	0.0014 (3)	0.0099 (3)
O1	0.0538 (11)	0.0551 (10)	0.0582 (10)	-0.0197 (8)	-0.0194 (8)	0.0209 (8)
O2	0.0534 (11)	0.0476 (9)	0.0518 (9)	-0.0149 (8)	-0.0042 (8)	0.0148 (7)
N1	0.0414 (11)	0.0340 (9)	0.0369 (9)	-0.0023 (8)	0.0001 (8)	0.0047 (7)
C1	0.0387 (13)	0.0322 (10)	0.0397 (11)	-0.0023 (9)	0.0020 (9)	0.0042 (8)
C2	0.0475 (14)	0.0371 (11)	0.0449 (12)	0.0020 (10)	0.0036 (10)	0.0007 (9)
C3	0.0533 (16)	0.0514 (13)	0.0380 (12)	-0.0027 (12)	0.0027 (10)	0.0026 (10)
C4	0.0480 (15)	0.0486 (13)	0.0514 (14)	-0.0004 (11)	-0.0012 (11)	0.0169 (11)
C5	0.0556 (17)	0.0388 (12)	0.0631 (15)	0.0100 (11)	0.0071 (12)	0.0076 (10)
C6	0.0573 (16)	0.0412 (12)	0.0424 (12)	0.0060 (10)	0.0100 (11)	0.0015 (9)
C7	0.0418 (14)	0.0364 (11)	0.0418 (11)	-0.0014 (10)	0.0053 (9)	0.0003 (9)
C8	0.0427 (13)	0.0362 (11)	0.0357 (11)	-0.0038 (9)	-0.0014 (9)	0.0027 (8)
C9	0.0463 (15)	0.0355 (11)	0.0378 (11)	-0.0051 (9)	0.0004 (10)	0.0036 (8)
C10	0.0428 (14)	0.0422 (12)	0.0391 (11)	-0.0053 (10)	-0.0038 (9)	0.0042 (9)
C11	0.0391 (13)	0.0406 (11)	0.0337 (11)	0.0012 (10)	0.0025 (9)	0.0042 (8)
C12	0.0390 (13)	0.0428 (11)	0.0350 (11)	0.0039 (10)	0.0040 (9)	0.0054 (9)
C13	0.0561 (16)	0.0453 (12)	0.0478 (13)	0.0090 (11)	0.0097 (12)	0.0138 (10)
C14	0.0571 (17)	0.0631 (16)	0.0413 (13)	0.0211 (13)	0.0025 (12)	0.0134 (11)
C15	0.0471 (16)	0.0672 (16)	0.0438 (13)	0.0075 (12)	-0.0066 (11)	0.0018 (11)
C16	0.0488 (15)	0.0485 (13)	0.0451 (12)	-0.0022 (11)	-0.0019 (10)	0.0041 (10)

Geometric parameters (Å, °)

S1—C7	1.736 (2)	C10—C11	1.445 (3)
S1—C8	1.746 (2)	C11—C16	1.397 (3)

S2—C7	1.623 (2)	C11—C12	1.402 (3)
O1—C9	1.216 (3)	C12—C13	1.384 (3)
02-C12	1 359 (3)	C13—C14	1 378 (3)
02 424	0.8200	C14 $C15$	1.370(3)
02—HZA	0.8200		1.371(3)
NI—C/	1.381 (3)	015-016	1.367 (3)
N1—C9	1.393 (3)	C2—H2	0.9300
N1—C1	1.448 (3)	С3—Н3	0.9300
C1—C6	1.375 (3)	C4—H4	0.9300
C1—C2	1.373 (3)	С5—Н5	0.9300
C2—C3	1.384 (3)	С6—Н6	0.9300
$C_3 - C_4$	1 371 (3)	C10H10	0.9300
C_{3}	1.371(3) 1.274(2)	C12 H12	0.9300
C4—C3	1.374 (3)		0.9300
C5—C6	1.384 (3)	C14—H14	0.9300
C8—C9	1.479 (3)	С15—Н15	0.9300
C8—C10	1.344 (3)	С16—Н16	0.9300
	00.00 (10)		100 = (0)
C/—S1—C8	93.20 (10)	C11—C12—C13	120.7 (2)
C12—O2—H2A	109.00	O2—C12—C11	118.06 (18)
C1—N1—C9	121.85 (17)	C12—C13—C14	120.1 (2)
C7—N1—C9	116.78 (17)	C13—C14—C15	120.5 (2)
C1—N1—C7	121.37 (16)	C14—C15—C16	119.5 (2)
N1 - C1 - C6	119.07 (18)	C11—C16—C15	122.4 (2)
$C_{2}-C_{1}-C_{6}$	1216(2)	C1 - C2 - H2	121.00
$C_2 C_1 C_0$	121.0(2) 110.28(10)	$C_1 C_2 H_2$	121.00
NI = CI = C2	119.28 (19)	$C_3 = C_2 = H_2$	121.00
C1 - C2 - C3	118.9 (2)	С2—С3—Н3	120.00
C2—C3—C4	120.1 (2)	С4—С3—Н3	120.00
C3—C4—C5	120.5 (2)	C3—C4—H4	120.00
C4—C5—C6	120.1 (2)	C5—C4—H4	120.00
C1—C6—C5	118.8 (2)	C4—C5—H5	120.00
S1—C7—S2	122.00 (13)	С6—С5—Н5	120.00
S1-C7-N1	110 23 (15)	C1—C6—H6	121.00
S2	127 77 (16)	C5-C6-H6	121.00
S1 C8 C9	127.77(10) 109.54(15)	C8 C10 H10	115.00
S1_C8_C10	109.54(15)		115.00
	128.04(17)		113.00
09-08-010	121.8 (2)	C12—C13—H13	120.00
01	127.4 (2)	C14—C13—H13	120.00
N1—C9—C8	110.11 (18)	C13—C14—H14	120.00
O1—C9—N1	122.45 (19)	C15—C14—H14	120.00
C8—C10—C11	130.6 (2)	C14—C15—H15	120.00
C10-C11-C16	124.3 (2)	C16—C15—H15	120.00
C12—C11—C16	116.97 (19)	C11—C16—H16	119.00
C10-C11-C12	118.71 (19)	C15—C16—H16	119.00
O2—C12—C13	121.3 (2)		
C8—S1—C7—S2	-179.12 (15)	C3—C4—C5—C6	0.3 (4)
C8—S1—C7—N1	1.29 (16)	C4—C5—C6—C1	-1.1 (3)
C7—S1—C8—C9	0.95 (16)	S1—C8—C9—O1	177.26 (19)
C7—S1—C8—C10	-177.2 (2)	S1—C8—C9—N1	-2.9 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -99.9 (2) \\ 78.9 (3) \\ 80.0 (3) \\ -101.2 (2) \\ 176.46 (14) \\ -3.1 (3) \\ -3.5 (2) \\ 176.98 (17) \\ 4.1 (3) \\ -175.75 (17) \\ -176.0 (2) \\ 4.2 (2) \\ 178.1 (2) \\ -0.7 (3) \\ -177.6 (2) \\ 1.3 (3) \\ -0.1 (3) \end{array}$	$\begin{array}{c} C10-C8-C9-O1\\ C10-C8-C9-N1\\ S1-C8-C10-C11\\ C9-C8-C10-C11\\ C9-C8-C10-C11-C12\\ C8-C10-C11-C12\\ C8-C10-C11-C12\\ C8-C10-C11-C12-O2\\ C10-C11-C12-O2\\ C10-C11-C12-C13\\ C16-C11-C12-C13\\ C16-C11-C12-C13\\ C10-C11-C16-C15\\ C12-C11-C16-C15\\ C12-C13-C14\\ C11-C12-C13-C14\\ C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16\\ C14-C15\\ C14$	-4.5 (4) 175.33 (19) -1.9 (4) -179.8 (2) 172.8 (2) -8.2 (4) -3.0 (3) 177.9 (2) 177.90 (19) -1.2 (3) -178.6 (2) 0.5 (3) -178.7 (2) 0.3 (3) 1.3 (3) -2.0 (3) 1.1 (3)
C2-C1-C6-C5 C1-C2-C3-C4 C2-C3-C4-C5	1.3 (3) -0.1 (3) 0.2 (4)	C13—C14—C15—C16 C14—C15—C16—C11	-2.0 (3) 1.1 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
0.93	2.50	3.213 (2)	133
0.82	1.97	2.767 (2)	163
0.93	2.49	3.375 (3)	160
0.93	2.91	3.774 (2)	155
0.93	2.91	3.515 (2)	124
	<i>D</i> —H 0.93 0.82 0.93 0.93 0.93	D—H H···A 0.93 2.50 0.82 1.97 0.93 2.49 0.93 2.91	D—HH…AD…A0.932.503.213 (2)0.821.972.767 (2)0.932.493.375 (3)0.932.913.774 (2)0.932.913.515 (2)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x-1/2, -y+3/2, z-1/2.