organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5-Ethenyl-1-azabicyclo[2.2.2]octan-2yl)(6-methoxy-3-quinolyl)methanol methanol solvate

Savitha Muramulla,^a Hadi D. Arman,^a Cong-Gui Zhao^a‡ and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 27 October 2009; accepted 28 October 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 10.5.

In the title methanol solvate, $C_{20}H_{24}N_2O_2 \cdot CH_4O$, an L-shaped conformation is found as the two substituents at the central hydroxy group are almost orthogonal to each other [the C-C-C angle at the central sp^3 -C atom is 110.12 (13)°]. The most notable feature of the crystal packing is the formation of supramolecular chains along the *b* direction mediated by O-H···N hydrogen bonds occurring between the hydroxy and quinoline N atoms; the methanol molecules are linked to these chains *via* O-H···N_{amine} hydrogen bonds. C-H···O interactions also occur.

Related literature

For background to pre-catalyst molecules for the Michael addition of acetone to *trans-\beta*-nitrostyrene, see: Mandal & Zhao (2008).

Experimental

Crystal data

 $\begin{array}{lll} C_{20}H_{24}N_2O_2{\cdot}CH_4O & V = 1965.4 \ (4) \ \text{\AA}^3 \\ M_r = 356.45 & Z = 4 \\ \\ Orthorhombic, \ P2_12_12_1 & Mo \ K\alpha \ radiation \\ a = 9.5374 \ (13) \ \text{\AA} & \mu = 0.08 \ \text{mm}^{-1} \\ b = 12.9842 \ (17) \ \text{\AA} & T = 98 \ \text{K} \\ c = 15.871 \ (2) \ \text{\AA} & 0.12 \times 0.10 \times 0.04 \ \text{mm} \end{array}$

Data collection

Rigaku AFC12K/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.788, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	2 restraints
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
2561 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
243 parameters	

14410 measured reflections

 $R_{\rm int} = 0.043$

2561 independent reflections

2501 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C18-H18\cdots O3^{m}$ 0.95 2.58 3.471 (2) 155	$03 - H30 \cdots N1$	0.84	1.95	2.783 (2)	171
	$01 - H10 \cdots N2^{i}$	0.84	1.92	2.751 (2)	173
	$C20 - H20b \cdots O1^{ii}$	0.98	2.33	3.298 (2)	171
	$C18 - H18 \cdots O3^{iii}$	0.95	2.58	3.471 (2)	155

Symmetry codes: (i) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, y, z; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5191).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
Mandal, T. & Zhao, C.-G. (2008). *Angew. Chem. Int. Ed.* 47, 7714–7717.
Rigaku/MSC (2005). *CrystalClear*. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

[‡] Additional correspondence author, e-mail: cong.zhao@utsa.edu.

supporting information

Acta Cryst. (2009). E65, o2962 [https://doi.org/10.1107/S1600536809045073]

(5-Ethenyl-1-azabicyclo[2.2.2]octan-2-yl)(6-methoxy-3-quinolyl)methanol methanol solvate

Savitha Muramulla, Hadi D. Arman, Cong-Gui Zhao and Edward R. T. Tiekink

S1. Comment

Molecules related to and including the title compound, (I), have been evaluated as pre-catalysts for the Michael addition of acetone to *trans-\beta*-nitrostyrene, see: Mandal & Zhao (2008).

The molecule of (I), Fig. 1, adopts an `L'-shaped conformation whereby the substituted quinoline and dabco residues are linked at the central sp^3 -C10 atom carrying the hydroxy group, the C1–C10–C11 angle is 110.12 (13)°. Viewed down the N1···C3 axis, the dabco molecule adopts an essentially eclipsed conformation. Both the hydroxy and vinyl groups are orientated towards the same side of the molecule.

In the crystal structure, molecules are connected into a supramolecular chain along the *b* axis *via* O—H···N2 hydrogen bonds formed between the O1-hydroxy group and the N2 atom of the quinoline residue, Table 1 and Fig. 2. The lattice methanol molecules associate with this chain *via* O—H···N1 hydrogen bonds. Chains are consolidated in the crystal packing by C–H···O interactions, Table 1.

S2. Experimental

Quinidine (TCI America Chemicals) and `L'-proline (Sigma Aldrich) were obtained commercially and used as received. A 1:1 molar ratio of quinidine (100 mg) and `L'-proline (35 mg) were taken in methanol (8 ml) and upon upon vapour diffusion of hexane, colourless crystals formed within 7 days.

S3. Refinement

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O, methyl-C)$. In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement.

Figure 1

Molecular structure of the asymmetric unit in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H…N hydrogen bond is shown as a dashed line.

Figure 2

Supramolecular chain in (I) mediated by O–H···N hydrogen bonds (orange dashed lines). Methanol molecules are associated with this chain *via* O–H···N hydrogen bonds (black dashed lines).

(5-Ethenyl-1-azabicyclo[2.2.2]octan-2-yl)(6-methoxy-3-quinolyl)methanol methanol solvate

F(000) = 768

 $\theta = 2.0-40.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 98 K

 $D_{\rm x} = 1.205 {\rm Mg} {\rm m}^{-3}$

Platelet. colourless

 $0.12 \times 0.10 \times 0.04 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7299 reflections

Crystal data

 $C_{20}H_{24}N_2O_2 \cdot CH_4O$ $M_r = 356.45$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.5374 (13) Å b = 12.9842 (17) Å c = 15.871 (2) Å V = 1965.4 (4) Å³ Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer	14410 measured reflections 2561 independent reflections
Radiation source: fine-focus sealed tube	2501 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 16$
$T_{\min} = 0.788, \ T_{\max} = 1.000$	$l = -18 \rightarrow 20$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.108$	neighbouring sites
S = 1.08	H-atom parameters constrained
2561 reflections	$w = 1/[\sigma^2(F_o^2) + (0.067P)^2 + 0.3164P]$
243 parameters	where $P = (F_0^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
	Absolute structure: nd

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.09211 (13)	0.48893 (9)	0.86000 (8)	0.0208 (3)	
H1O	-0.0859	0.5528	0.8526	0.031*	
O2	0.56486 (13)	0.36533 (10)	0.77309 (8)	0.0235 (3)	
03	0.32503 (17)	0.60866 (12)	0.92437 (9)	0.0349 (4)	

H3O	0.2607	0.5712	0.9435	0.052*
N1	0.12984 (17)	0.48168 (12)	1.00313 (9)	0.0245 (3)
N2	0.05966 (17)	0.19494 (12)	0.67553 (10)	0.0228 (3)
C1	0.08927 (18)	0.39987 (13)	0.94193 (10)	0.0191 (3)
H1	0.1754	0.3580	0.9312	0.023*
C2	-0.0200 (2)	0.32607 (14)	0.98034 (12)	0.0250 (4)
H2A	-0.1135	0.3393	0.9556	0.030*
H2B	0.0061	0.2537	0.9684	0.030*
C3	-0.0236 (2)	0.34482 (17)	1.07595 (13)	0.0299 (4)
H3	-0.0827	0.2913	1.1041	0.036*
C4	0.1270 (2)	0.33999 (17)	1.10976 (13)	0.0324 (5)
H4A	0.1711	0.2738	1.0936	0.039*
H4B	0.1266	0.3449	1.1720	0.039*
C5	0.2101 (2)	0.43074 (17)	1.07174 (13)	0.0304 (4)
H5A	0.2310	0.4816	1.1165	0.036*
H5B	0.3004	0.4051	1.0491	0.036*
C6	0.0053 (2)	0.53057 (16)	1.04185 (12)	0.0327 (5)
H6A	-0.0539	0.5607	0.9970	0.039*
H6B	0.0362	0.5872	1.0792	0.039*
C7	-0.0833(2)	0.45269 (18)	1.09371 (12)	0.0329 (5)
H7	-0.0694	0.4681	1.1549	0.039*
C8	-0.2379 (3)	0.4605 (2)	1.07452 (16)	0.0498 (7)
H8	-0.2650	0.4626	1.0170	0.060*
C9	-0.3375 (3)	0.4646(2)	1.13121 (18)	0.0534(7)
H9A	-0.3145	0.4626	1.1894	0.064*
H9B	-0.4327	0.4695	1.1141	0.064*
C10	0.04468 (16)	0.44563 (13)	0.85620 (11)	0.0175 (3)
H10	0.1126	0.5010	0.8402	0.021*
C11	0.04985 (18)	0.36143 (13)	0.78993(10)	0.0182 (3)
C12	-0.07008(19)	0.31535 (14)	0.76062 (12)	0.0227(4)
H12	-0.1593	0.3392	0.7787	0.027*
C13	-0.06039(19)	0.23226(15)	0.70350(12)	0.0249(4)
H13	-0.1449	0.2015	0.6842	0.030*
C14	0 18062 (18)	0.24173(13)	0.70160(10)	0.0196(3)
C15	0.18147(17)	0.32619(13)	0.75884(10)	0.0170(3)
C16	0 31191 (18)	0.37064(13)	0 78240 (10)	0.01/2(3)
H16	0.3137	0.4283	0.8193	0.022*
C17	0.3157 0.43522(18)	0.33065 (13)	0.75211 (11)	0.022
C18	0.43402(19)	0.24588(14)	0.69502 (11)	0.0191(3) 0.0213(3)
H18	0.5199	0.2187	0.6743	0.0213 (5)
C19	0.31040(19)	0.2107 0.20397 (14)	0.67016 (11)	0.020
H19	0.3106	0.1485	0.6311	0.0210(3)
C20	0.57014 (19)	0.44156 (15)	0.83814(14)	0.020 0.0288(4)
U20 H204	0.5219	0.5040	0.83814 (14)	0.0288 (4)
H20R	0.5217	0.4570	0.8510	0.043*
H20C	0.5240	0.4150	0.8888	0.043*
C21	0.3789 (1)	0.4100	0.00005 (18)	0.0703 (12)
U21 H21A	0.3787	0.0099 (3)	0.90995 (10)	0.0795 (15)
1121A	0.310/	0.7505	U.77/7	0.119

supporting information

H21B	0.4740	0.6925	0.9755	0.119*
H21C	0.3816	0.6296	1.0421	0.119*

Atomic displacement parameters $(Å^2)$

	U	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0171 (6)	0.0161 (5)	0.0292 (6)	0.0017 (5)	0.0012 (5)	-0.0008 (5)
02	0.0157 (5)	0.0233 (6)	0.0314 (6)	-0.0006 (5)	0.0013 (5)	-0.0028 (5)
03	0.0421 (9)	0.0361 (8)	0.0265 (6)	-0.0121 (7)	0.0075 (6)	-0.0059 (6)
N1	0.0303 (8)	0.0229 (7)	0.0203 (6)	-0.0048 (6)	-0.0025 (6)	-0.0006 (6)
N2	0.0230 (7)	0.0193 (7)	0.0262 (7)	-0.0012 (6)	-0.0012 (6)	-0.0032 (6)
C1	0.0206 (8)	0.0166 (7)	0.0202 (7)	-0.0011 (6)	0.0009 (6)	0.0007 (6)
C2	0.0281 (9)	0.0209 (8)	0.0259 (8)	-0.0048 (7)	0.0028 (7)	0.0031 (7)
C3	0.0292 (9)	0.0362 (11)	0.0242 (8)	-0.0031 (8)	0.0029 (8)	0.0098 (8)
C4	0.0322 (10)	0.0360 (11)	0.0291 (9)	0.0001 (9)	-0.0013 (8)	0.0110 (8)
C5	0.0320 (10)	0.0346 (10)	0.0244 (8)	-0.0049 (8)	-0.0060 (8)	0.0027 (8)
C6	0.0487 (12)	0.0262 (10)	0.0234 (8)	0.0091 (9)	-0.0014 (9)	-0.0047 (8)
C7	0.0318 (10)	0.0468 (12)	0.0201 (8)	0.0083 (10)	0.0039 (8)	-0.0020 (8)
C8	0.0360 (12)	0.080(2)	0.0335 (11)	0.0157 (13)	-0.0006 (10)	-0.0086 (13)
С9	0.0388 (12)	0.0715 (19)	0.0500 (14)	0.0109 (13)	0.0095 (11)	0.0000 (14)
C10	0.0151 (7)	0.0161 (7)	0.0212 (7)	0.0002 (6)	0.0008 (6)	-0.0003 (6)
C11	0.0189 (7)	0.0155 (7)	0.0201 (7)	-0.0002 (6)	0.0010 (6)	0.0012 (6)
C12	0.0178 (7)	0.0216 (8)	0.0288 (8)	0.0019 (7)	0.0005 (7)	-0.0039 (7)
C13	0.0208 (8)	0.0230 (8)	0.0311 (9)	-0.0020 (7)	-0.0030 (7)	-0.0047 (7)
C14	0.0218 (8)	0.0175 (8)	0.0195 (7)	0.0009 (7)	0.0005 (6)	-0.0014 (6)
C15	0.0181 (7)	0.0151 (7)	0.0184 (7)	0.0002 (6)	0.0003 (6)	0.0009 (6)
C16	0.0190 (7)	0.0163 (7)	0.0186 (7)	-0.0009 (6)	0.0003 (6)	0.0007 (6)
C17	0.0186 (7)	0.0180 (8)	0.0207 (7)	-0.0003 (6)	0.0004 (6)	0.0033 (6)
C18	0.0210 (7)	0.0211 (8)	0.0217 (8)	0.0039 (7)	0.0046 (7)	0.0008 (7)
C19	0.0252 (8)	0.0183 (8)	0.0212 (7)	0.0025 (7)	0.0019 (7)	-0.0023 (6)
C20	0.0171 (7)	0.0270 (9)	0.0422 (10)	-0.0017 (7)	-0.0009 (8)	-0.0092 (8)
C21	0.106 (3)	0.092 (3)	0.0397 (14)	-0.069 (2)	0.0241 (16)	-0.0203 (15)

Geometric parameters (Å, °)

O1—C10	1.4218 (19)	С7—С8	1.509 (3)
01—H10	0.8400	С7—Н7	1.0000
O2—C17	1.357 (2)	C8—C9	1.309 (4)
O2—C20	1.431 (2)	C8—H8	0.9500
O3—C21	1.407 (3)	С9—Н9А	0.9500
O3—H3O	0.8401	С9—Н9В	0.9500
N1-C6	1.480(3)	C10—C11	1.518 (2)
N1—C5	1.487 (2)	C10—H10	1.0000
N1-C1	1.490 (2)	C11—C12	1.372 (2)
N2—C13	1.320 (2)	C11—C15	1.424 (2)
N2-C14	1.368 (2)	C12—C13	1.412 (2)
C1—C2	1.541 (2)	C12—H12	0.9500
C1—C10	1.544 (2)	С13—Н13	0.9500

C1 H1	1 0000	C14 C10	1 422 (2)
$C_2 = C_3$	1.537 (3)	$C_{14} = C_{15}$	1.422(2) 1.424(2)
$C_2 = C_3$	0.0000	$C_{14} = C_{15}$	1.424(2)
C2—H2A	0.9900	C16 - C10	1.421(2)
$C_2 = C_1$	0.9900		1.373(2)
$C_3 = C_4$	1.534 (5)		0.9300
$C_3 = C_1$	1.538 (3)	C17 - C18	1.426 (2)
C3—H3	1.0000		1.357 (3)
C4—C5	1.543 (3)	C18—H18	0.9500
C4—H4A	0.9900	С19—Н19	0.9500
C4—H4B	0.9900	C20—H20A	0.9800
С5—Н5А	0.9900	C20—H20B	0.9800
C5—H5B	0.9900	C20—H20C	0.9800
C6—C7	1.553 (3)	C21—H21A	0.9800
С6—Н6А	0.9900	C21—H21B	0.9800
C6—H6B	0.9900	C21—H21C	0.9800
C10—O1—H1O	108.6	С9—С8—Н8	117.5
C17—O2—C20	116.01 (13)	С7—С8—Н8	117.5
С21—О3—НЗО	109.2	С8—С9—Н9А	120.0
C6—N1—C5	107.46 (15)	С8—С9—Н9В	120.0
C6—N1—C1	111.58 (15)	H9A—C9—H9B	120.0
C5—N1—C1	107.09 (15)	O1—C10—C11	110.12 (13)
C13—N2—C14	117.82 (15)	01—C10—C1	111.56 (13)
N1-C1-C2	111 16 (14)	$C_{11} - C_{10} - C_{1}$	108 93 (14)
N1-C1-C10	111.80 (14)	$01 - C_{10} - H_{10}$	108.7
C_{2} C_{1} C_{10}	113 66 (14)	$C_{11} - C_{10} - H_{10}$	108.7
N1_C1_H1	106.6	C1 - C10 - H10	108.7
$C_2 = C_1 = H_1$	106.6	$C_1^2 = C_1^1 = C_1^5$	118 50 (15)
$C_2 = C_1 = H_1$	106.6	$C_{12} = C_{11} = C_{13}$	110.50(15)
$C_{10} = C_{1} = H_{1}$	100.0	$C_{12} = C_{11} = C_{10}$	121.40(13) 120.01(14)
C_{2} C_{2} U_{2}	107.00 (15)	C13 - C12 - C12	120.01(14)
$C_3 = C_2 = H_2 A$	110.1		119.75 (10)
C1 - C2 - H2A	110.1	C11—C12—H12	120.1
C3—C2—H2B	110.1	C13—C12—H12	120.1
C1—C2—H2B	110.1	N2—C13—C12	123.58 (17)
H2A—C2—H2B	108.4	N2—C13—H13	118.2
C4—C3—C2	108.53 (17)	С12—С13—Н13	118.2
C4—C3—C7	108.63 (18)	N2—C14—C19	118.35 (15)
C2—C3—C7	109.48 (16)	N2—C14—C15	122.68 (15)
С4—С3—Н3	110.1	C19—C14—C15	118.98 (15)
С2—С3—Н3	110.1	C16—C15—C14	119.04 (15)
С7—С3—Н3	110.1	C16—C15—C11	123.35 (15)
C3—C4—C5	108.25 (16)	C14—C15—C11	117.60 (15)
C3—C4—H4A	110.0	C17—C16—C15	120.28 (15)
C5—C4—H4A	110.0	С17—С16—Н16	119.9
C3—C4—H4B	110.0	C15—C16—H16	119.9
C5—C4—H4B	110.0	O2—C17—C16	124.69 (16)
H4A—C4—H4B	108.4	O2—C17—C18	114.79 (15)
N1—C5—C4	111.18 (16)	C16—C17—C18	120.52 (16)

N1—C5—H5A	109.4	C19—C18—C17	120.08 (16)
C4—C5—H5A	109.4	C19—C18—H18	120.0
N1—C5—H5B	109.4	C17—C18—H18	120.0
C4—C5—H5B	109.4	C18—C19—C14	121.07 (16)
H5A—C5—H5B	108.0	С18—С19—Н19	119.5
N1—C6—C7	112.16 (16)	C14—C19—H19	119.5
N1—C6—H6A	109.2	O2—C20—H20A	109.5
С7—С6—Н6А	109.2	O2—C20—H20B	109.5
N1—C6—H6B	109.2	H20A—C20—H20B	109.5
С7—С6—Н6В	109.2	O2—C20—H20C	109.5
H6A—C6—H6B	107.9	H20A-C20-H20C	109.5
C8—C7—C3	112.7 (2)	H20B-C20-H20C	109.5
C8—C7—C6	112.37 (19)	O3—C21—H21A	109.5
C3—C7—C6	107.13 (15)	O3—C21—H21B	109.5
С8—С7—Н7	108.2	H21A—C21—H21B	109.5
С3—С7—Н7	108.2	O3—C21—H21C	109.5
С6—С7—Н7	108.2	H21A—C21—H21C	109.5
C9—C8—C7	124.9 (2)	H21B—C21—H21C	109.5
C6—N1—C1—C2	-48.65 (19)	C1—C10—C11—C12	103.71 (18)
C5—N1—C1—C2	68.68 (19)	O1—C10—C11—C15	163.18 (14)
C6—N1—C1—C10	79.54 (17)	C1—C10—C11—C15	-74.18 (19)
C5-N1-C1-C10	-163.12 (14)	C15-C11-C12-C13	2.5 (3)
N1—C1—C2—C3	-14.0 (2)	C10-C11-C12-C13	-175.43 (16)
C10—C1—C2—C3	-141.20 (16)	C14—N2—C13—C12	-2.0 (3)
C1—C2—C3—C4	-51.1 (2)	C11—C12—C13—N2	-0.1 (3)
C1—C2—C3—C7	67.3 (2)	C13—N2—C14—C19	-178.37 (17)
C2—C3—C4—C5	65.3 (2)	C13—N2—C14—C15	1.8 (3)
C7—C3—C4—C5	-53.6 (2)	N2-C14-C15-C16	-179.73 (16)
C6—N1—C5—C4	66.4 (2)	C19—C14—C15—C16	0.4 (2)
C1—N1—C5—C4	-53.6 (2)	N2-C14-C15-C11	0.6 (2)
C3—C4—C5—N1	-10.8 (2)	C19—C14—C15—C11	-179.29 (15)
C5—N1—C6—C7	-54.7 (2)	C12-C11-C15-C16	177.65 (17)
C1—N1—C6—C7	62.44 (19)	C10-C11-C15-C16	-4.4 (2)
C4—C3—C7—C8	-171.49 (17)	C12-C11-C15-C14	-2.7 (2)
C2—C3—C7—C8	70.1 (2)	C10-C11-C15-C14	175.28 (15)
C4—C3—C7—C6	64.42 (19)	C14—C15—C16—C17	-1.8 (2)
C2—C3—C7—C6	-53.9 (2)	C11—C15—C16—C17	177.88 (16)
N1—C6—C7—C8	-133.14 (19)	C20—O2—C17—C16	6.9 (2)
N1—C6—C7—C3	-8.8 (2)	C20—O2—C17—C18	-172.46 (15)
C3—C7—C8—C9	106.1 (3)	C15—C16—C17—O2	-177.66 (16)
C6—C7—C8—C9	-132.7 (3)	C15—C16—C17—C18	1.6 (2)
N1-C1-C10-O1	-76.08 (17)	O2—C17—C18—C19	179.34 (16)
C2-C1-C10-O1	50.77 (19)	C16—C17—C18—C19	0.0 (3)
N1-C1-C10-C11	162.15 (14)	C17—C18—C19—C14	-1.4 (3)
C2-C1-C10-C11	-71.00 (17)	N2-C14-C19-C18	-178.68 (17)
O1-C10-C11-C12	-18.9 (2)	C15—C14—C19—C18	1.2 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A
O3—H3o…N1	0.84	1.95	2.783 (2)	171
O1—H10····N2 ⁱ	0.84	1.92	2.751 (2)	173
C20—H20b···O1 ⁱⁱ	0.98	2.33	3.298 (2)	171
C18—H18…O3 ⁱⁱⁱ	0.95	2.58	3.471 (2)	155

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+3/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, *y*-1/2, -*z*+3/2.