Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-Bipyridine-pyroglutamic acid (1/2)

Hadi D. Arman,^a Trupta Kaulgud^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 27 October 2009; accepted 28 October 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.128; data-to-parameter ratio = 12.0.

In the title co-crystal, $C_{10}H_8N_2 \cdot 2C_5H_7NO_3$, the 4,4'-bipyridine molecule [dihedral angle between the pyridine rings = $36.33 (11)^{\circ}$ accepts O-H···N hydrogen bonds from the two pyroglutamic (pga) acid molecules. The pga molecules at each end of the trimeric aggregate self-associate via centrosymmetric eight-membered amide $\{\cdots HNCO\}_2$ synthons, so that the crystal structure comprises one-dimensional supramolecular chains propagating in [132]. C-H···O and π - π stacking interactions [centroid-centroid separation = 3.590(2) Å] consolidate the structure.

Related literature

For background to the co-crystallization of active pharmaceutical agents and discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008); Zukerman-Schpector & Tiekink (2008). For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Ellis et al. (2009). For structure analysis, see: Spek (2009). For hydrogenbonding considerations, see: Etter (1990).

Experimental

Crystal data $C_{10}H_8N_2 \cdot 2C_5H_7NO_3$ $M_r = 414.42$

Triclinic. $P\overline{1}$ a = 7.444 (3) Å

b = 11.511 (4) Å	
c = 12.845 (4) Å	
$\alpha = 66.274 \ (17)^{\circ}$	
$\beta = 74.203 \ (17)^{\circ}$	
$\gamma = 86.91 \ (2)^{\circ}$	
V = 967.6 (6) Å ³	

Data collection . .

Rigaku Saturn724 diffractometer	5618 measured reflections
Absorption correction: multi-scan	3375 independent reflections
(ABSCOR; Higashi, 1995)	2851 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.706, \ T_{\max} = 1.000$	$R_{\rm int} = 0.041$

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.056 \\ wR(F^2) = 0.128 \end{array}$ 2 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ S = 1.16 $\Delta \rho_{\rm min} = -0.26~{\rm e}~{\rm \AA}^{-3}$ 3375 reflections 281 parameters

Z = 2

....

Mo $K\alpha$ radiation

 $0.22 \times 0.15 \times 0.12 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 98 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1 <i>o</i> ···N3	0.84	1.75	2.588 (3)	177
$O4-H4o\cdots N4$	0.84	1.75	2.582 (3)	175
$N1 - H1n \cdot \cdot \cdot O3^{i}$	0.88	2.03	2.911 (3)	174
$N2-H2n \cdot \cdot \cdot O6^{ii}$	0.88	2.03	2.903 (3)	172
C15−H15···O4 ⁱⁱⁱ	0.95	2.38	3.294 (3)	162
$C18-H18\cdots O1^{iv}$	0.95	2.41	3.293 (3)	155

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y - 1, -z + 2; (iii) x, y + 1, z; (iv) x, y - 1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5194).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.

- Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.
- Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.

supporting information

Acta Cryst. (2009). E65, o2950 [https://doi.org/10.1107/S1600536809045000]

4,4'-Bipyridine-pyroglutamic acid (1/2)

Hadi D. Arman, Trupta Kaulgud and Edward R. T. Tiekink

S1. Comment

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008); see Zukerman-Schpector & Tiekink (2008) for a discussion of terminology. As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker *et al.*, 2008; Ellis *et al.*, 2009), the co-crystallization of DL-pyroglutamic acid with 4,4'-bipyridine was investigated.

The title co-crystal, (I), comprises two molecules of pyroglutamic acid and one of 4,4'-bipyridine, Fig. 1. The independent molecules of pyroglutamic acid are virtually identical with RMS values for bond distances and angles of 0.006 Å and 0.552 $^{\circ}$, respectively (Spek, 2009). The connections between molecules are hydrogen bonds of the type O–H…N, Table 1, in accord with the strongest donor associating with the strongest acceptor (Etter, 1990).

The trimeric aggregates associate into a supramolecular chain *via* eight-membered amide { \cdots HNCO}₂ synthons. The most convenient description of the chain is given in the following terms. Centrosymmetrically related pyroglutamic acid molecules are connected by the { \cdots HNCO}₂ synthons and these are bridged by the 4,4'-bipyridine molecules, Table 1 and Fig. 2. The supramolecular chains have a base vector [1 3 - 2] in which alternate 4,4'-bipyridine molecules are connected to pyroglutamic acid molecules of the same chirality.

The chains are consolidated into the 3-D crystal structure by a large number of C–H···O contacts, the shortest two are listed in Table 1, as well as π ··· π interactions involving both pyridyl rings [the closest Cg··· $Cg^i = 3.590$ (2) Å where Cg is the ring centroid of N2, C16–C20 for i: 2 - *x*, -*y*, 1 - *z*].

S2. Experimental

Colourless crystals of (I) were isolated from the co-crystallization of 1 molar equivalent of DL-pyroglutamic acid (Fluka, 20 mg) and 4,4'-bipyridine (Aldrich, 12 mg) in methanol/ethanol (1/1, 8 ml); m. pt. 425–427 K.

S3. Refinement

The H-atoms were placed in calculated positions (O–H = 0.84 Å, N–H = 0.88 Å and C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with U_{iso} (H) set to 1.2–1.5 U_{eq} (carrier atom).

Figure 1

Molecular structure of the asymmetric unit of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O–H…N hydrogen bonds are shown as orange dashed lines.

Figure 2

Supramolecular chain formation in (I) mediated by O—H…N (orange dashed lines) and N—H…N (blue dashed lines) hydrogen bonding.

4,4'-Bipyridine-pyroglutamic acid (1/2)

Crystal data

 $C_{10}H_8N_2 \cdot 2C_5H_7NO_3$ Z = 2 $M_r = 414.42$ F(000) = 436Triclinic, $P\overline{1}$ $D_{\rm x} = 1.422 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3819 reflections a = 7.444 (3) Å b = 11.511 (4) Å $\theta = 1.8 - 40.3^{\circ}$ c = 12.845 (4) Å $\mu = 0.11 \text{ mm}^{-1}$ T = 98 K $\alpha = 66.274 (17)^{\circ}$ $\beta = 74.203 \ (17)^{\circ}$ Block, colourless $0.22\times0.15\times0.12~mm$ $\gamma = 86.91 \ (2)^{\circ}$ V = 967.6 (6) Å³ Data collection Rigaku Saturn724 5618 measured reflections diffractometer 3375 independent reflections Radiation source: sealed tube 2851 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.041$ Detector resolution: 28.5714 pixels mm⁻¹ $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.8^\circ$ $h = -8 \rightarrow 8$ ω scans Absorption correction: multi-scan $k = -13 \rightarrow 13$ $l = -11 \rightarrow 15$ (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.706, \ T_{\rm max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.16	H-atom parameters constrained
3375 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.3826P]$
281 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7958 (3)	0.80500 (15)	0.34215 (15)	0.0306 (4)
H1o	0.8071	0.7262	0.3706	0.046*
O2	0.7021 (3)	0.76264 (15)	0.20917 (14)	0.0300 (4)
O3	0.6914 (2)	1.13445 (15)	-0.10317 (14)	0.0250 (4)
O4	0.6382 (2)	-0.34079 (15)	0.69099 (15)	0.0295 (4)
H4o	0.6741	-0.2635	0.6605	0.044*
O5	0.3864 (2)	-0.27410 (15)	0.78866 (14)	0.0278 (4)
O6	0.0822 (2)	-0.65238 (15)	1.10646 (14)	0.0263 (4)
N1	0.6307 (3)	1.00631 (18)	0.09308 (17)	0.0239 (5)
H1N	0.5362	0.9583	0.1002	0.027 (7)*
N2	0.2248 (3)	-0.51418 (18)	0.91661 (17)	0.0233 (5)
H2N	0.1380	-0.4596	0.9022	0.028 (7)*
N3	0.8270 (3)	0.56170 (18)	0.42251 (18)	0.0266 (5)
N4	0.7503 (3)	-0.10455 (18)	0.60996 (17)	0.0247 (5)
C1	0.7328 (3)	0.8368 (2)	0.24872 (19)	0.0217 (5)
C2	0.7041 (3)	0.9777 (2)	0.19365 (19)	0.0215 (5)
H2	0.6154	1.0033	0.2536	0.026*
C3	0.7237 (3)	1.1014 (2)	-0.0062 (2)	0.0218 (5)
C4	0.8716 (3)	1.1608 (2)	0.02102 (19)	0.0228 (5)
H4A	0.8325	1.2423	0.0263	0.027*
H4B	0.9921	1.1764	-0.0406	0.027*
C5	0.8887 (3)	1.0625 (2)	0.1407 (2)	0.0225 (5)
H5A	0.9011	1.1045	0.1924	0.027*
H5B	0.9984	1.0116	0.1302	0.027*
C6	0.4717 (3)	-0.3581 (2)	0.76693 (19)	0.0219 (5)

supporting information

C7	0.3977 (3)	-0.4950 (2)	0.82374 (19)	0.0213 (5)
H7	0.3747	-0.5203	0.7624	0.026*
C8	0.2141 (3)	-0.6187 (2)	1.0153 (2)	0.0214 (5)
C9	0.3900 (3)	-0.6883 (2)	0.9955 (2)	0.0236 (5)
H9A	0.3657	-0.7619	0.9788	0.028*
H9B	0.4397	-0.7187	1.0655	0.028*
C10	0.5264 (3)	-0.5884 (2)	0.8884 (2)	0.0248 (5)
H10A	0.6061	-0.6274	0.8373	0.030*
H10B	0.6074	-0.5452	0.9133	0.030*
C11	0.9039 (3)	0.5073 (2)	0.3470 (2)	0.0268 (6)
H11	0.9653	0.5605	0.2674	0.032*
C12	0.8973 (3)	0.3770 (2)	0.3805 (2)	0.0243 (5)
H12	0.9549	0.3417	0.3251	0.029*
C13	0.8049 (3)	0.2985 (2)	0.4965 (2)	0.0223 (5)
C14	0.7272 (3)	0.3554 (2)	0.5749 (2)	0.0253 (5)
H14	0.6659	0.3047	0.6552	0.030*
C15	0.7406 (3)	0.4857 (2)	0.5344 (2)	0.0273 (6)
H15	0.6860	0.5234	0.5883	0.033*
C16	0.7879 (3)	0.1585 (2)	0.5364 (2)	0.0208 (5)
C17	0.7629 (3)	0.1045 (2)	0.4611 (2)	0.0254 (5)
H17	0.7590	0.1570	0.3829	0.030*
C18	0.7440 (3)	-0.0258 (2)	0.5017 (2)	0.0259 (6)
H18	0.7256	-0.0613	0.4500	0.031*
C19	0.7758 (3)	-0.0528 (2)	0.6826 (2)	0.0258 (5)
H19	0.7810	-0.1079	0.7600	0.031*
C20	0.7947 (3)	0.0765 (2)	0.6494 (2)	0.0242 (5)
H20	0.8121	0.1093	0.7032	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0477 (12)	0.0234 (9)	0.0292 (9)	0.0069 (8)	-0.0215 (9)	-0.0126 (8)
O2	0.0405 (11)	0.0279 (9)	0.0303 (9)	0.0029 (8)	-0.0146 (9)	-0.0173 (8)
03	0.0261 (9)	0.0300 (9)	0.0229 (9)	0.0051 (7)	-0.0089 (8)	-0.0135 (7)
O4	0.0262 (10)	0.0242 (8)	0.0340 (10)	-0.0013 (7)	0.0038 (8)	-0.0151 (8)
05	0.0265 (9)	0.0257 (9)	0.0310 (10)	0.0063 (7)	-0.0029 (8)	-0.0150 (8)
06	0.0241 (9)	0.0280 (9)	0.0226 (9)	0.0027 (7)	-0.0015 (8)	-0.0093 (7)
N1	0.0239 (11)	0.0249 (11)	0.0243 (11)	0.0001 (9)	-0.0090 (9)	-0.0097 (9)
N2	0.0205 (11)	0.0244 (10)	0.0229 (10)	0.0061 (9)	-0.0055 (9)	-0.0085 (9)
N3	0.0288 (12)	0.0268 (11)	0.0284 (11)	0.0040 (9)	-0.0116 (10)	-0.0133 (9)
N4	0.0194 (11)	0.0269 (10)	0.0277 (11)	0.0034 (9)	-0.0023 (9)	-0.0140 (9)
C1	0.0185 (12)	0.0278 (12)	0.0203 (12)	0.0007 (10)	-0.0030 (10)	-0.0126 (10)
C2	0.0211 (12)	0.0266 (12)	0.0209 (12)	0.0036 (10)	-0.0052 (10)	-0.0144 (10)
C3	0.0222 (13)	0.0230 (12)	0.0252 (13)	0.0081 (10)	-0.0071 (11)	-0.0151 (10)
C4	0.0209 (12)	0.0264 (12)	0.0218 (12)	0.0016 (10)	-0.0013 (10)	-0.0134 (10)
C5	0.0219 (13)	0.0240 (12)	0.0260 (12)	0.0047 (10)	-0.0090 (11)	-0.0132 (10)
C6	0.0229 (13)	0.0264 (12)	0.0183 (12)	0.0031 (10)	-0.0053 (10)	-0.0113 (10)
C7	0.0229 (12)	0.0238 (12)	0.0188 (11)	0.0026 (10)	-0.0045 (10)	-0.0110 (10)
C6 C7	0.0229 (13) 0.0229 (12)	0.0204 (12) 0.0238 (12)	0.0185 (12)	0.0031 (10) 0.0026 (10)	-0.0055(10) -0.0045(10)	-0.0113(10) -0.0110(10)

supporting information

C8	0.0246 (13)	0.0197 (11)	0.0231 (12)	-0.0007 (10)	-0.0072 (11)	-0.0111 (10)
C9	0.0258 (13)	0.0245 (12)	0.0230 (12)	0.0025 (10)	-0.0072 (11)	-0.0120 (10)
C10	0.0252 (13)	0.0263 (12)	0.0255 (12)	0.0031 (10)	-0.0064 (11)	-0.0134 (11)
C11	0.0287 (14)	0.0302 (13)	0.0220 (12)	0.0026 (11)	-0.0090 (11)	-0.0097 (11)
C12	0.0231 (13)	0.0297 (12)	0.0235 (12)	0.0064 (10)	-0.0076 (11)	-0.0140 (11)
C13	0.0198 (12)	0.0268 (12)	0.0250 (12)	0.0032 (10)	-0.0085 (10)	-0.0139 (10)
C14	0.0240 (13)	0.0301 (13)	0.0231 (12)	0.0006 (10)	-0.0040 (11)	-0.0136 (11)
C15	0.0270 (14)	0.0303 (13)	0.0308 (14)	0.0025 (11)	-0.0077 (12)	-0.0189 (12)
C16	0.0164 (12)	0.0250 (12)	0.0219 (12)	0.0019 (9)	-0.0041 (10)	-0.0113 (10)
C17	0.0289 (13)	0.0267 (12)	0.0213 (12)	0.0035 (11)	-0.0056 (11)	-0.0115 (10)
C18	0.0268 (14)	0.0297 (13)	0.0272 (13)	0.0036 (11)	-0.0063 (11)	-0.0183 (11)
C19	0.0246 (13)	0.0293 (13)	0.0220 (12)	0.0001 (11)	-0.0037 (11)	-0.0103 (11)
C20	0.0204 (12)	0.0307 (13)	0.0239 (12)	0.0002 (10)	-0.0038 (11)	-0.0148 (11)

Geometric parameters (Å, °)

01—C1	1.314 (3)	C6—C7	1.506 (3)
01—H10	0.8400	C7—C10	1.538 (3)
O2—C1	1.213 (3)	С7—Н7	1.0000
O3—C3	1.235 (3)	C8—C9	1.514 (3)
O4—C6	1.319 (3)	C9—C10	1.529 (3)
O4—H4o	0.8400	С9—Н9А	0.9900
O5—C6	1.213 (3)	С9—Н9В	0.9900
O6—C8	1.239 (3)	C10—H10A	0.9900
N1—C3	1.335 (3)	C10—H10B	0.9900
N1C2	1.449 (3)	C11—C12	1.383 (3)
N1—H1N	0.8800	C11—H11	0.9500
N2—C8	1.338 (3)	C12—C13	1.391 (3)
N2—C7	1.453 (3)	C12—H12	0.9500
N2—H2N	0.8800	C13—C14	1.397 (3)
N3—C15	1.338 (3)	C13—C16	1.482 (3)
N3—C11	1.345 (3)	C14—C15	1.374 (3)
N4—C18	1.332 (3)	C14—H14	0.9500
N4—C19	1.349 (3)	C15—H15	0.9500
C1—C2	1.517 (3)	C16—C20	1.390 (3)
C2—C5	1.550 (3)	C16—C17	1.396 (3)
C2—H2	1.0000	C17—C18	1.377 (3)
C3—C4	1.511 (3)	C17—H17	0.9500
C4—C5	1.533 (3)	C18—H18	0.9500
C4—H4A	0.9900	C19—C20	1.376 (3)
C4—H4B	0.9900	C19—H19	0.9500
С5—Н5А	0.9900	C20—H20	0.9500
С5—Н5В	0.9900		
C1	109.5	O6—C8—C9	126.3 (2)
C6—O4—H4o	109.5	N2—C8—C9	108.0 (2)
C3—N1—C2	115.02 (18)	C8—C9—C10	104.03 (18)
C3—N1—H1N	125.7	С8—С9—Н9А	111.0

C2—N1—H1N	119.2	С10—С9—Н9А	111.0
C8—N2—C7	114.5 (2)	С8—С9—Н9В	111.0
C8—N2—H2N	127.0	С10—С9—Н9В	111.0
C7—N2—H2N	118.5	Н9А—С9—Н9В	109.0
C15—N3—C11	118.1 (2)	C9-C10-C7	103.70 (19)
C18 - N4 - C19	117 74 (19)	C9-C10-H10A	111.0
$0^{2}-C^{1}-0^{1}$	1243(2)	C7-C10-H10A	111.0
02 - C1 - C2	121.3(2) 1230(2)	C_{P} C_{10} H_{10B}	111.0
01 - C1 - C2	123.0(2) 112 71 (18)	C7_C10_H10B	111.0
$N_1 = C_2 = C_1$	112.71(10) 110.12(18)		100.0
N1 = C2 = C1	10.12(10) 102.77(17)	$N_2 = C_{11} = C_{12}$	109.0 122.7(2)
N1 - C2 - C3	103.77(17) 112.27(10)	$N_{2} = C_{11} = U_{12}$	122.7(2)
C1 - C2 - C3	115.57 (19)		118.0
N1 - C2 - H2	109.8		118.6
C1 = C2 = H2	109.8		119.0 (2)
С5—С2—Н2	109.8	C11—C12—H12	120.5
O3—C3—N1	124.9 (2)	C13—C12—H12	120.5
O3—C3—C4	126.5 (2)	C12—C13—C14	118.0 (2)
N1—C3—C4	108.55 (19)	C12—C13—C16	121.4 (2)
C3—C4—C5	104.45 (18)	C14—C13—C16	120.6 (2)
C3—C4—H4A	110.9	C15—C14—C13	119.3 (2)
C5—C4—H4A	110.9	C15—C14—H14	120.4
C3—C4—H4B	110.9	C13—C14—H14	120.4
C5—C4—H4B	110.9	N3—C15—C14	122.9 (2)
H4A—C4—H4B	108.9	N3—C15—H15	118.5
C4—C5—C2	104.29 (17)	C14—C15—H15	118.5
C4—C5—H5A	110.9	C20—C16—C17	117.6 (2)
С2—С5—Н5А	110.9	C20—C16—C13	121.71 (19)
C4—C5—H5B	110.9	C17—C16—C13	120.7 (2)
C2—C5—H5B	110.9	C18 - C17 - C16	1192(2)
H_{5A} C_{5} H_{5B}	108.9	C18 - C17 - H17	120.4
05	1244(2)	$C_{16} - C_{17} - H_{17}$	120.1
05 C6 C7	127.7(2)	N_{4} C18 C17	120.7 123.2(2)
03 - 00 - 07	123.4(2) 112.18(10)	$N_{-} = C_{10} = C_{17}$	123.2 (2)
N2 C7 C6	112.10(19) 111.00(10)	1110	118.4
$N_2 = C_7 = C_10$	111.09(19) 102.22(19)	C1/-C10-C10	110.4
$N_2 - C_1 - C_1 O$	105.22(18)	N4 - C19 - C20	122.7 (2)
C_{0}	114.16 (19)	N4-C19-H19	118.6
N2-C/-H/	109.4	C20—C19—H19	118.6
C6—C/—H/	109.4	C19 - C20 - C16	119.5 (2)
С10—С7—Н7	109.4	С19—С20—Н20	120.3
06—C8—N2	125.7 (2)	C16—C20—H20	120.3
C3—N1—C2—C1	-128.8 (2)	C8—C9—C10—C7	-24.8 (2)
C3—N1—C2—C5	-7.2 (3)	N2-C7-C10-C9	23.4 (2)
O2—C1—C2—N1	2.0 (3)	C6—C7—C10—C9	144.11 (19)
O1—C1—C2—N1	-178.66 (19)	C15—N3—C11—C12	-0.1 (3)
O2—C1—C2—C5	-113.8 (2)	N3—C11—C12—C13	1.1 (3)
O1—C1—C2—C5	65.6 (3)	C11—C12—C13—C14	-1.8(3)
C2—N1—C3—O3	174.8 (2)	C11—C12—C13—C16	178.0 (2)

C2—N1—C3—C4	-5.7 (3)	C12-C13-C14-C15	1.6 (3)
O3—C3—C4—C5	-164.3 (2)	C16—C13—C14—C15	-178.1 (2)
N1—C3—C4—C5	16.1 (2)	C11—N3—C15—C14	0.0 (3)
C3—C4—C5—C2	-19.6 (2)	C13—C14—C15—N3	-0.7 (4)
N1-C2-C5-C4	16.5 (2)	C12-C13-C16-C20	144.2 (2)
C1-C2-C5-C4	135.96 (19)	C14—C13—C16—C20	-36.0 (3)
C8—N2—C7—C6	-136.67 (19)	C12—C13—C16—C17	-36.3 (3)
C8—N2—C7—C10	-13.9 (2)	C14—C13—C16—C17	143.4 (2)
O5—C6—C7—N2	-7.0 (3)	C20-C16-C17-C18	0.8 (3)
O4—C6—C7—N2	173.39 (18)	C13—C16—C17—C18	-178.7 (2)
O5—C6—C7—C10	-123.2 (2)	C19—N4—C18—C17	0.2 (4)
O4—C6—C7—C10	57.2 (3)	C16—C17—C18—N4	-0.7 (4)
C7—N2—C8—O6	178.2 (2)	C18—N4—C19—C20	0.2 (4)
C7—N2—C8—C9	-2.1 (2)	N4—C19—C20—C16	-0.2 (4)
O6-C8-C9-C10	-163.0 (2)	C17—C16—C20—C19	-0.3 (3)
N2-C8-C9-C10	17.4 (2)	C13-C16-C20-C19	179.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
01—H1 <i>o</i> ···N3	0.84	1.75	2.588 (3)	177
O4—H4 <i>o</i> …N4	0.84	1.75	2.582 (3)	175
N1—H1n···O3 ⁱ	0.88	2.03	2.911 (3)	174
N2—H2n···O6 ⁱⁱ	0.88	2.03	2.903 (3)	172
C15—H15…O4 ⁱⁱⁱ	0.95	2.38	3.294 (3)	162
C18—H18…O1 ^{iv}	0.95	2.41	3.293 (3)	155

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*-1, -*z*+2; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*-1, *z*.