Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### (4-Hydroxy-2,5-dimethylphenyl)phenylmethanone

#### Rodolfo Moreno-Fuquen,<sup>a</sup>\* Leidy J. Valencia,<sup>a</sup> Alan R. Kennedy,<sup>b</sup> Denise Gilmore<sup>b</sup> and R. H. De Almeida Santos<sup>c</sup>

<sup>a</sup>Departamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, <sup>b</sup>WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and <sup>c</sup>Instituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil

Correspondence e-mail: rodimo26@yahoo.es

Received 16 September 2009; accepted 28 September 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.058; data-to-parameter ratio = 13.0.

The title compound, C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>, was obtained by Friedel-Crafts acylation between 2,5-dimethylphenol and benzoyl chloride in the presence of aluminium chloride as a catalyst. The dihedral angle between the benzene rings is  $61.95 (4)^{\circ}$ . In the crystal,  $O-H \cdots O$  hydrogen bonding and  $C-H \cdots O$  weak interactions lead to polymeric C(6), C(8) and C(11) chains along the *a*, *b* and *c*-axis directions, respectively.

#### **Related literature**

For background information on the anti-fungal and antiinflamatory biological activity of benzophenones, see: Naldoni et al. (2009); Selvi et al. (2003); Naveen et al. (2006). For 104 benzophenone molecules, see: Cox et al. (2008). For hydrogenbond motifs, see: Etter (1990).



#### **Experimental**

Crystal data

C15H14O2  $M_r = 226.26$ Orthorhombic, Pbca a = 12.1392 (10) Åb = 8.1386 (7) Å c = 23.665 (2) Å

V = 2338.0 (3) Å<sup>3</sup> Z = 8Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 123 K $0.25\,\times\,0.12\,\times\,0.05$  mm



#### Data collection

| Oxford Diffraction Gemini S          |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (CrysAlis CCD; Oxford                |
| Diffraction, 2009)                   |
| $T_{\min} = 0.904, T_{\max} = 1.000$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.032$ | 158 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.058$               | H-atom parameters constrained                              |
| S = 0.73                        | $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$    |
| 2059 reflections                | $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ |

9067 measured reflections

 $R_{\rm int} = 0.061$ 

2059 independent reflections 1061 reflections with  $I > 2\sigma(I)$ 

| Table 1 |
|---------|
|---------|

Hydrogen-bond geometry (Å, °).

|                          |      |      | DI          | $D = 11 \cdots 11$ |
|--------------------------|------|------|-------------|--------------------|
| $O2-H2\cdots O1^i$       | 0.84 | 1.92 | 2.6973 (15) | 154                |
| $C15-H15B\cdots O1^{ii}$ | 0.98 | 2.62 | 3.352 (2)   | 132                |
| $C4-H4\cdots O2^{iii}$   | 0.95 | 2.67 | 3.454 (2)   | 140                |

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to

prepare material for publication: PARST95 (Nardelli, 1995).

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, Brazil, for partial financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2568).

#### References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206-216.

- Etter, M. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Naldoni, F. J., Claudino, A. L. R., Cruz, J. W., Chavasco, J. K., Faria e Silva, P. M., Veloso, M. P. & Dos Santos, M. H. (2009). J. Med. Food, 12, 403-407. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Naveen, S., Khanum, S. A., Devaiah, V. T., Shashikanth, S., Anandalwar, S. M. & Prasad, S. (2006). Anal. Sci. 22, 183-184.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England,

Selvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol. 20, 455-460.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

### supporting information

Acta Cryst. (2009). E65, o2614 [https://doi.org/10.1107/S1600536809039488]

### (4-Hydroxy-2,5-dimethylphenyl)phenylmethanone

# Rodolfo Moreno-Fuquen, Leidy J. Valencia, Alan R. Kennedy, Denise Gilmour and R. H. De Almeida Santos

#### S1. Comment

The title compound,  $C_{15}H_{14}O_2$ , (4-Hydroxy-2,5-dimethyl-phenyl)-phenyl-methanone), (I), is part of a series of studies on benzophenone, which have been made in our research group. Benzophenone analogue systems show various anti-fungal and anti-inflamatory biological activities (Naldoni et al., 2009 and Selvi et al., 2003). The presence of various substituents in the benzophenone nucleus is essential to determining the quantitative structure-activity relationships of these systems. Some studies were carried out to show that methyl-substituted benzophenones exhibit anti-fungal properties (Naveen et al., 2006). In order to present the molecular conformation of (I), to analyse the type of hydrogenbonds formed in (I) and to study its supramolecular behavior, the title compound was synthesized. The molecular structure of the title compound is shown in Fig. 1. The bond lengths and bond angles of (I) are in good agreement with the standard values and correspond to those observed in (4-Hydroxy-3-methylphenyl)(4- methylphenyl)methanone (Naveen et al., 2006). The two aromatic rings in the title structure form a dihedral angle of 61.95 (4)°. This value is greater than the value presented in the stable, orthorhombic form of unsubstituted benzophenone ( $54^{\circ}$ ) and follows the standard behavior of the majority of benzophenone molecules [104 benzophenone molecules, Cox et al., 2008]. The title molecule is characterized by the formation of O—H···O hydrogen-bonds and other C—H···O weak interactions (Table 1, Nardelli, 1995). The strongest hydrogen bond O—H…O interaction is responsible for crystal growth in [100] direction. Indeed, in a first substructure, atom O2 in the molecule at (x, y, z) acts as hydrogen bond donor to carbonyl O1 atom in the molecule at (x - 1/2, -y + 1/2, -z + 1). The propagation of this interaction forms a C(8) (Etter, 1990) chain running along [100] direction (Fig. 2). In a second substructure, atom C15 in the molecule at (x, y, z) links with weak interaction to carbonyl O1 atom in the molecule at (-x + 3/2, y - 1/2, z). The propagation of this interaction forms C(6) continuous chains via C15—H15B···O1 and running along [010] direction (Fig. 3). Finally in a third sub-structure, atom C4 in the molecule at (x, y, z) links with weak interaction to hydroxyl O2 atom in the molecule at (x, -y + 3/2, z - 1/2). The propagation of this interaction forms C(11) continuous chains and running along [001] direction. All of these interactions in [100], [010] and [001] directions define the bulk structure of the crystal.

#### **S2. Experimental**

2,5-dimethylphenol (0.50 g, 4.10 mmol) was added to a solution of anhydrous aluminium chloride (0.40 g, 3.00 mmol) in dry dichloromethane (25 ml). The resulting solution was cooled and then a benzoyl chloride (0.80 g, 5.70 mmol) was slowly added at  $0-5^{\circ}$  C. After complete addition, the mixture was allowed to stir at room temperature for 0.5 h, and then it was heated up to 50° C for 1 h. The reaction mixture was poured onto ice (100 g) and conc. HCl (10 ml). The crude product was isolated by extraction with dichloromethane. The combined organic layers were washed with 10% aqueous NaOH, water, and then the solution was dried over Na<sub>2</sub>SO<sub>4</sub> and it was evaporated at room temperature.

#### **S3. Refinement**

All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and  $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ .



#### Figure 1

An *ORTEP-3* (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.



Figure 2

Part of the crystal structure of (I), showing the formation of C(8) chains running along [100] direction. Symmetry code: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1/2, -y + 1/2, -z + 1



#### Figure 3

Part of the crystal structure of (I), showing the formation of C(6) chain running along [010]. Symmetry code: (i) -x + 3/2, y - 1/2, z; (ii) -x + 3/2, y + 1/2, z.



#### Figure 4

Part of the crystal structure of (I), showing the formation of C(11) chain running along [001]. Symmetry code: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 3/2, z + 1/2

(4-Hydroxy-2,5-dimethylphenyl)phenylmethanone

Crystal data  $C_{15}H_{14}O_2$  $D_{\rm x} = 1.286 {\rm Mg} {\rm m}^{-3}$  $M_r = 226.26$ Melting point: 443.0(10) K Orthorhombic, Pbca Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Hall symbol: -P 2ac 2ab Cell parameters from 1709 reflections  $\theta = 2.5 - 30.7^{\circ}$ *a* = 12.1392 (10) Å *b* = 8.1386 (7) Å  $\mu = 0.08 \text{ mm}^{-1}$ T = 123 Kc = 23.665 (2) Å $V = 2338.0(3) \text{ Å}^3$ Shard, colourless Z = 8 $0.25 \times 0.12 \times 0.05 \text{ mm}$ F(000) = 960

Data collection

| Oxford Diffraction Gemini S<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis CCD</i> ; Oxford Diffraction, 2009)<br>$T_{\min} = 0.904, T_{\max} = 1.000$<br>Refinement                       | 9067 measured reflections<br>2059 independent reflections<br>1061 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.061$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$<br>$h = -12 \rightarrow 14$<br>$k = -9 \rightarrow 9$<br>$l = -28 \rightarrow 26$                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.032$<br>$wR(F^2) = 0.058$<br>S = 0.73<br>2059 reflections<br>158 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods<br>Secondary atom site location: difference Fourier<br>map | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.15$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.14$ e Å <sup>-3</sup><br>Extinction correction: <i>SHELXL97</i> (Sheldrick,<br>2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}<br>Extinction coefficient: 0.0019 (2) |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|-------------|-----------------------------|--|
| 01  | 0.83004 (8)  | 0.77322 (14) | 0.37654 (5) | 0.0301 (3)                  |  |
| O2  | 0.51698 (9)  | 0.86337 (14) | 0.58360 (5) | 0.0261 (3)                  |  |
| H2  | 0.4559       | 0.8151       | 0.5849      | 0.039*                      |  |
| C1  | 0.67652 (14) | 0.8006 (2)   | 0.31719 (7) | 0.0211 (4)                  |  |
| C2  | 0.73020 (14) | 0.7315 (2)   | 0.27099 (7) | 0.0291 (5)                  |  |
| H2A | 0.7986       | 0.6768       | 0.2761      | 0.035*                      |  |
| C3  | 0.68450 (16) | 0.7422 (2)   | 0.21789 (7) | 0.0370 (5)                  |  |
| H3  | 0.7213       | 0.6946       | 0.1865      | 0.044*                      |  |
| C4  | 0.58475 (16) | 0.8226 (2)   | 0.21010 (8) | 0.0363 (5)                  |  |
| H4  | 0.5527       | 0.8278       | 0.1735      | 0.044*                      |  |
| C5  | 0.53206 (15) | 0.8948 (2)   | 0.25549 (7) | 0.0306 (5)                  |  |
| H5  | 0.4649       | 0.9524       | 0.2499      | 0.037*                      |  |
| C6  | 0.57691 (14) | 0.8834 (2)   | 0.30907 (7) | 0.0248 (5)                  |  |
| H6  | 0.5400       | 0.9317       | 0.3403      | 0.030*                      |  |
| C7  | 0.72879 (13) | 0.78937 (19) | 0.37381 (7) | 0.0210 (4)                  |  |
|     |              |              |             |                             |  |

| C8   | 0.66409 (13) | 0.80471 (19) | 0.42695 (7) | 0.0186 (4) |  |
|------|--------------|--------------|-------------|------------|--|
| C9   | 0.71040 (13) | 0.9034 (2)   | 0.46920 (7) | 0.0209 (4) |  |
| H9   | 0.7782       | 0.9572       | 0.4616      | 0.025*     |  |
| C10  | 0.66178 (13) | 0.9261 (2)   | 0.52152 (7) | 0.0185 (4) |  |
| C11  | 0.56262 (13) | 0.8428 (2)   | 0.53126 (7) | 0.0195 (4) |  |
| C12  | 0.51675 (13) | 0.74203 (19) | 0.49063 (7) | 0.0210 (4) |  |
| H12  | 0.4505       | 0.6849       | 0.4990      | 0.025*     |  |
| C13  | 0.56518 (13) | 0.7218 (2)   | 0.43752 (7) | 0.0189 (4) |  |
| C14  | 0.71190 (13) | 1.0335 (2)   | 0.56630(7)  | 0.0270 (5) |  |
| H14A | 0.7342       | 0.9656       | 0.5986      | 0.040*     |  |
| H14B | 0.6577       | 1.1150       | 0.5787      | 0.040*     |  |
| H14C | 0.7766       | 1.0898       | 0.5509      | 0.040*     |  |
| C15  | 0.51105 (14) | 0.6050(2)    | 0.39635 (7) | 0.0266 (5) |  |
| H15A | 0.4730       | 0.5180       | 0.4173      | 0.040*     |  |
| H15B | 0.5673       | 0.5560       | 0.3719      | 0.040*     |  |
| H15C | 0.4577       | 0.6653       | 0.3732      | 0.040*     |  |
|      |              |              |             |            |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| 01  | 0.0175 (6)  | 0.0449 (8)  | 0.0279 (7)  | 0.0032 (7)  | -0.0010 (6)  | 0.0015 (7)  |
| O2  | 0.0221 (7)  | 0.0330 (8)  | 0.0231 (7)  | -0.0020 (6) | 0.0038 (6)   | 0.0001 (6)  |
| C1  | 0.0213 (10) | 0.0219 (10) | 0.0200 (10) | -0.0005 (9) | -0.0006 (9)  | 0.0020 (9)  |
| C2  | 0.0321 (10) | 0.0282 (12) | 0.0269 (11) | 0.0059 (9)  | 0.0025 (10)  | 0.0014 (9)  |
| C3  | 0.0531 (13) | 0.0374 (13) | 0.0206 (11) | 0.0084 (11) | 0.0015 (11)  | -0.0035 (9) |
| C4  | 0.0521 (14) | 0.0336 (13) | 0.0231 (12) | 0.0027 (11) | -0.0110 (11) | 0.0034 (10) |
| C5  | 0.0343 (12) | 0.0256 (12) | 0.0318 (12) | 0.0013 (9)  | -0.0102 (10) | 0.0043 (10) |
| C6  | 0.0256 (10) | 0.0246 (11) | 0.0241 (11) | -0.0005 (9) | 0.0002 (10)  | -0.0013 (9) |
| C7  | 0.0231 (9)  | 0.0179 (10) | 0.0219 (10) | 0.0001 (8)  | -0.0003 (9)  | 0.0007 (9)  |
| C8  | 0.0176 (9)  | 0.0187 (10) | 0.0196 (10) | 0.0029 (8)  | -0.0009 (9)  | 0.0019 (9)  |
| С9  | 0.0172 (9)  | 0.0203 (10) | 0.0253 (11) | -0.0006 (8) | -0.0015 (9)  | 0.0069 (9)  |
| C10 | 0.0199 (10) | 0.0173 (10) | 0.0185 (10) | 0.0035 (8)  | -0.0030 (9)  | 0.0021 (8)  |
| C11 | 0.0204 (10) | 0.0207 (10) | 0.0173 (10) | 0.0063 (8)  | 0.0026 (9)   | 0.0037 (9)  |
| C12 | 0.0170 (9)  | 0.0206 (11) | 0.0253 (10) | -0.0004 (9) | 0.0004 (8)   | 0.0049 (9)  |
| C13 | 0.0173 (9)  | 0.0181 (10) | 0.0215 (10) | 0.0023 (8)  | -0.0029 (8)  | 0.0006 (8)  |
| C14 | 0.0252 (10) | 0.0274 (11) | 0.0283 (11) | -0.0007 (9) | 0.0004 (9)   | 0.0027 (9)  |
| C15 | 0.0267 (10) | 0.0248 (11) | 0.0283 (11) | -0.0032 (9) | -0.0006 (9)  | -0.0002 (9) |
|     |             |             |             |             |              |             |

Geometric parameters (Å, °)

| 01—C7  | 1.2377 (17) | C8—C13  | 1.400 (2) |  |
|--------|-------------|---------|-----------|--|
| O2—C11 | 1.3674 (18) | C8—C9   | 1.400 (2) |  |
| O2—H2  | 0.8400      | C9—C10  | 1.384 (2) |  |
| C1—C2  | 1.391 (2)   | С9—Н9   | 0.9500    |  |
| C1—C6  | 1.397 (2)   | C10—C11 | 1.401 (2) |  |
| C1—C7  | 1.486 (2)   | C10—C14 | 1.503 (2) |  |
| С2—С3  | 1.376 (2)   | C11—C12 | 1.381 (2) |  |
| C2—H2A | 0.9500      | C12—C13 | 1.397 (2) |  |
|        |             |         |           |  |

# supporting information

| C3—C4                                                | 1.388 (2)                | С12—Н12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                    |
|------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| C3—H3                                                | 0.9500                   | C13—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.511 (2)                 |
| C4—C5                                                | 1 381 (2)                | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
| C4—H4                                                | 0.9500                   | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
| C5—C6                                                | 1.383 (2)                | C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
| C5—H5                                                | 0.9500                   | C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
| C6—H6                                                | 0.9500                   | C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
| C7—C8                                                | 1 488 (2)                | C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                    |
|                                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 012000                    |
| С11—О2—Н2                                            | 109.5                    | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.5                     |
| $C_{2}-C_{1}-C_{6}$                                  | 119.48 (15)              | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.5                     |
| C2-C1-C7                                             | 118.93 (15)              | C9-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.70 (16)               |
| C6—C1—C7                                             | 121.56 (15)              | C9-C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.40 (15)               |
| $C_{3}$ $-C_{2}$ $-C_{1}$                            | 120.20 (16)              | C11—C10—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.90(15)                |
| C3-C2-H2A                                            | 119.9                    | 02-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.69(15)                |
| C1 - C2 - H2A                                        | 119.9                    | 02 - C11 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115.98 (15)               |
| $C^2 - C^3 - C^4$                                    | 120 17 (17)              | C12 - C11 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121 29 (16)               |
| C2—C3—H3                                             | 119.9                    | $C_{11} - C_{12} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.29 (16)               |
| C4-C3-H3                                             | 119.9                    | C11 - C12 - H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.1                     |
| $C_{5}$ $C_{4}$ $C_{3}$                              | 120.07 (17)              | C13 - C12 - H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.1                     |
| $C_{2} = C_{4} = C_{2}$                              | 120.07 (17)              | $C_{12}$ $C_{12}$ $C_{13}$ $C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.69 (15)               |
| $C_3 - C_4 - H_4$                                    | 120.0                    | $C_{12} = C_{13} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 11 (15)               |
| C4 - C5 - C6                                         | 120.0                    | C8-C13-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124 11 (14)               |
| C4 - C5 - H5                                         | 110.0                    | $C_{10}$ $C_{14}$ $H_{14A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109 5                     |
| C6 C5 H5                                             | 119.9                    | C10 C14 H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                     |
| $C_{0}$                                              | 119.9                    | $H_{14}$ $C_{14}$ $H_{14}$ $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |
| $C_{5}$                                              | 119.95 (10)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                     |
| $C_{1}$ $C_{6}$ $H_{6}$                              | 120.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                     |
| $C_1 = C_0 = H_0$                                    | 120.0                    | H14A - C14 - H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                     |
| 01 - 07 - 01                                         | 110.34(10)<br>110.27(16) | 114D - C14 - 114C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                     |
| 01 - 07 - 08                                         | 119.27(10)<br>122.12(14) | С12 С15 Ц15Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                     |
| $C1 = C^{2} = C^{2}$                                 | 122.12(14)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                     |
| C13 - C8 - C7                                        | 119.30(13)<br>124.28(15) | HI3A—CI3—HI3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                     |
| $C_{13} = C_{8} = C_{7}$                             | 124.28(15)               | LIS-CIS-HISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                     |
| $C_{9} = C_{8} = C_{7}$                              | 110.08 (15)              | HISA—CIS—HISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                     |
| C10-C9-C8                                            | 122.95 (16)              | HISB-CIS-HISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                     |
| C6 C1 C2 C3                                          | -11(3)                   | C13 C8 C9 C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -12(2)                    |
| $C_0 = C_1 = C_2 = C_3$                              | -170.02(16)              | $C_{13} = C_{3} = C_{10} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2(2)                    |
| $C_1 = C_2 = C_3$                                    | 1/9.02(10)               | $C_{1}^{2} = C_{1}^{2} = C_{1$ | 1/8.13(13)                |
| $C_1 = C_2 = C_3 = C_4$                              | 0.2(3)                   | $C_{8} = C_{9} = C_{10} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -170.48(16)               |
| $C_2 = C_3 = C_4 = C_5$                              | 1.3(3)<br>-1.8(3)        | $C_{0} = C_{10} = C_{11} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1/9.46(10)<br>178 50(14) |
| $C_{3} - C_{4} - C_{5} - C_{6}$                      | -1.8(3)                  | $C_{9}$ $C_{10}$ $C_{11}$ $C_{2}$ $C_{14}$ $C_{10}$ $C_{11}$ $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/8.30(14)                |
| C4 - C3 - C0 - C1                                    | 0.9(3)                   | $C_{14} = C_{10} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.2(2)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.3(3)                   | $C_{14} = C_{10} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0(2)                    |
| $C_1 = C_1 = C_2 = C_1$                              | 1/0.40(10)               | $C_{14} = C_{10} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1/9.08(13)               |
| $C_{2} - C_{1} - C_{1} - C_{1}$                      | 24.8(2)<br>-152(00(16)   | 02-011-012-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1/9.51(14)<br>-1.8(2)    |
| $C_0 - C_1 - C_7 - C_1^0$                            | -133.09 (16)             | $C_{10}$ $-C_{11}$ $-C_{12}$ $-C_{13}$ $C_{12}$ $C_{12}$ $C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.8(2)                   |
| $U_2 - U_1 - U_1 - U_8$                              | -158.14(16)              | C11 - C12 - C13 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4 (2)                   |
| Co-CI-C/-C8                                          | 24.0 (2)                 | C11—C12—C13—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/8.17 (14)               |

## supporting information

| O1—C7—C8—C13 | -135.69 (17) | C9—C8—C13—C12 | 0.0 (2)      |
|--------------|--------------|---------------|--------------|
| C1—C7—C8—C13 | 47.3 (2)     | C7—C8—C13—C12 | 176.75 (15)  |
| O1—C7—C8—C9  | 41.1 (2)     | C9—C8—C13—C15 | -176.54 (15) |
| C1—C7—C8—C9  | -135.91 (16) | C7—C8—C13—C15 | 0.2 (2)      |

Hydrogen-bond geometry (Å, °)

| D—H···A                               | D—H  | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|---------------------------------------|------|-------|-------------|-------------------------|
| O2—H2···O1 <sup>i</sup>               | 0.84 | 1.92  | 2.6973 (15) | 154                     |
| C15—H15 <i>B</i> ····O1 <sup>ii</sup> | 0.98 | 2.62  | 3.352 (2)   | 132                     |
| C4—H4····O2 <sup>iii</sup>            | 0.95 | 2.67  | 3.454 (2)   | 140                     |

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) -x+3/2, y-1/2, z; (iii) x, -y+3/2, z-1/2.