organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Phenyl­sulfan­yl)pyridine-3-carboxylic acid

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bMaterials Chemistry laboratory, Department of Chemistry, GC University, Lahore, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 19 September 2009; accepted 23 September 2009; online 7 October 2009)

The title compound, C12H9NO2S, belongs to the nitro­gen-containing group of heterocyclic organic compounds and crystallized with two mol­ecules per asymmetric unit. In the crystal, both molecules form inversion dimers linked by pairs of O—H—O hydrogen bonds. Weak symmetry-related C—H—O inter­actions link the carboxyl dimers along b axis. The dihedral angle between the two aromatic rings in the two mol­ecules are 55.75 (14) and 58.33 (13)°.

Related literature

For the pharmacological effects of heteroaromatic anti­tumor compounds: Denny et al. (1982[Denny, W. A., Cain, B. F., Atwell, G. J., Hansch, C., Panthananickal, A. & Leo, A. (1982). J. Med. Chem. 25, 276-315.]); Fujiwara (1997[Fujiwara, H. (1997). Heterocycles, 45, 119-127.]); Antonini & Martelli (1992[Antonini, I. & Martelli, S. (1992). J. Heterocycl. Chem. 29, 471-473.]); Cholody et al. (1992[Cholody, W. M., Martelli, S. & Konopa, J. (1992). J. Med. Chem. 25, 276-315.]). For the title compound as an inter­mediate for heterocycles, see: Khan et al. (2008a[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.],b[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.]). For the synthesis, see: Mann & Reid (1952[Mann, F. G. & Reid, J. A. (1952). J. Chem. Soc. pp. 2057-2062.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO2S

  • Mr = 231.26

  • Triclinic, [P \overline 1]

  • a = 7.2201 (4) Å

  • b = 7.6653 (4) Å

  • c = 19.9537 (11) Å

  • α = 97.895 (3)°

  • β = 98.520 (3)°

  • γ = 91.661 (3)°

  • V = 1080.41 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.21 × 0.09 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.983

  • 23200 measured reflections

  • 5397 independent reflections

  • 2766 reflections with I > 2/s(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.224

  • S = 1.09

  • 5397 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.82 2.624 (2) 167 (1)
O4—H4o⋯O1i 0.82 1.83 2.642 (2) 170 (1)
C3—H3⋯O4ii 0.93 2.50 3.264 (5) 139
C4—H4⋯O1iii 0.93 2.55 3.458 (5) 164
C15—H15⋯O2ii 0.93 2.54 3.294 (5) 138
C16—H16⋯O3iii 0.93 2.58 3.467 (5) 160
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our studies on pyridine-containing heterocyclic compounds, the title compond was synthesized. It is an intermediate for our previously reported crystal structures of 7-nitro-5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008a) and 5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008b). Pyridine containing compounds are widely distributed in nature. Heteroaromatic antitumor compounds have been prepared in recent years with the hope of increasing pharmacological effects (Denny et al., 1982), (Fujiwara, 1997), (Antonini & Martelli, 1992) (Cholody et al., 1992).

The title compound was crystallized with two independent molecules in the asymmetric unit (Fig 1). The dihedral angles between the two aromatic rings in molecule A and molecule B are 55.75 (14)° and 58.33 (13)° respectively. The carboxylic group present in each molecule forms dimers which are linked through weak C–H—O type interaction along the b axis to stabilize the structure Table. 1 & Fig. 2.

Related literature top

For the pharmacological effects of heteroaromatic antitumor compounds: Denny et al. (1982); Fujiwara (1997); Antonini & Martelli (1992); Cholody et al. (1992). For the title compound as an intermediate for heterocycles, see: Khan et al. (2008a,b). For the synthesis, see: Mann & Reid (1952).

Experimental top

A mixture of 2-chloronicotinic acid (1.57 g, 10 mmol) and thiophenol (2 ml) was heated under reflux for two hours to produce 2-(Phenylsulfanyl)pyridine-3-carboxylic acid (Mann & Reid, 1952). Suitable crystals for X-ray diffractions were obtained on cooling the saturated solution of (I) in ethanol.

Refinement top

The H-atoms for aromatic carbons and carboxylic O atoms were refined geometrically and treated as riding atoms: C—H = 0.93Å with Uiso(H) = 1.2 and O—H = 0.82 with Uiso(H) = 1.5.

Structure description top

In continuation of our studies on pyridine-containing heterocyclic compounds, the title compond was synthesized. It is an intermediate for our previously reported crystal structures of 7-nitro-5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008a) and 5H-thiochromeno[2,3-b]pyridin-5-one (Khan et al., 2008b). Pyridine containing compounds are widely distributed in nature. Heteroaromatic antitumor compounds have been prepared in recent years with the hope of increasing pharmacological effects (Denny et al., 1982), (Fujiwara, 1997), (Antonini & Martelli, 1992) (Cholody et al., 1992).

The title compound was crystallized with two independent molecules in the asymmetric unit (Fig 1). The dihedral angles between the two aromatic rings in molecule A and molecule B are 55.75 (14)° and 58.33 (13)° respectively. The carboxylic group present in each molecule forms dimers which are linked through weak C–H—O type interaction along the b axis to stabilize the structure Table. 1 & Fig. 2.

For the pharmacological effects of heteroaromatic antitumor compounds: Denny et al. (1982); Fujiwara (1997); Antonini & Martelli (1992); Cholody et al. (1992). For the title compound as an intermediate for heterocycles, see: Khan et al. (2008a,b). For the synthesis, see: Mann & Reid (1952).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure diagram of the title compound showing the atom labels. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing diagram showing the intermolecular hydrogen bonding using dashed lines. The hydrogen atoms not involved in hydrogen bonding have been omitted.
2-(Phenylsulfanyl)pyridine-3-carboxylic acid top
Crystal data top
C12H9NO2SZ = 4
Mr = 231.26F(000) = 480
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2201 (4) ÅCell parameters from 3133 reflections
b = 7.6653 (4) Åθ = 2.9–23.8°
c = 19.9537 (11) ŵ = 0.28 mm1
α = 97.895 (3)°T = 296 K
β = 98.520 (3)°Needle, white
γ = 91.661 (3)°0.21 × 0.09 × 0.06 mm
V = 1080.41 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5397 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.911, Tmax = 0.983k = 1010
23200 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1023P)2 + 0.1581P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5397 reflectionsΔρmax = 0.59 e Å3
292 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (5)
Crystal data top
C12H9NO2Sγ = 91.661 (3)°
Mr = 231.26V = 1080.41 (10) Å3
Triclinic, P1Z = 4
a = 7.2201 (4) ÅMo Kα radiation
b = 7.6653 (4) ŵ = 0.28 mm1
c = 19.9537 (11) ÅT = 296 K
α = 97.895 (3)°0.21 × 0.09 × 0.06 mm
β = 98.520 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5397 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2766 reflections with I > 2/s(I)
Tmin = 0.911, Tmax = 0.983Rint = 0.063
23200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.09Δρmax = 0.59 e Å3
5397 reflectionsΔρmin = 0.53 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15013 (14)0.12613 (12)0.21464 (5)0.0407 (3)
S20.70162 (15)0.36894 (12)0.22267 (5)0.0447 (3)
O10.1649 (4)0.2094 (3)0.07364 (13)0.0508 (7)
O20.2377 (6)0.0151 (4)0.00790 (14)0.0709 (10)
H20.26530.10430.01550.106*
O30.7077 (5)0.2844 (3)0.08218 (13)0.0568 (8)
O40.7667 (5)0.4795 (4)0.01516 (15)0.0689 (10)
H4O0.79580.39110.00830.103*
N10.1813 (5)0.2239 (4)0.23401 (15)0.0422 (8)
N20.6430 (4)0.7119 (4)0.23511 (15)0.0414 (8)
C10.1727 (5)0.0818 (4)0.18659 (17)0.0341 (8)
C20.1832 (5)0.0971 (5)0.11768 (18)0.0382 (8)
C30.1939 (6)0.2639 (5)0.1002 (2)0.0496 (10)
H30.20050.27830.05510.059*
C40.1951 (6)0.4099 (5)0.1488 (2)0.0521 (11)
H40.19780.52340.13720.062*
C50.1921 (6)0.3809 (5)0.2150 (2)0.0485 (10)
H50.19810.47870.24860.058*
C60.1937 (6)0.0559 (5)0.06520 (18)0.0413 (9)
C70.1766 (5)0.0719 (5)0.30494 (18)0.0380 (8)
C80.3176 (6)0.1484 (5)0.34292 (19)0.0490 (10)
H80.40020.21900.32140.059*
C90.3357 (7)0.1189 (7)0.4143 (2)0.0656 (13)
H90.43060.17090.44030.079*
C100.2159 (8)0.0149 (7)0.4461 (2)0.0738 (15)
H100.22900.00480.49360.089*
C110.0762 (7)0.0605 (6)0.4077 (2)0.0665 (14)
H110.00530.13200.42950.080*
C120.0542 (6)0.0326 (5)0.3379 (2)0.0509 (10)
H120.04260.08360.31250.061*
C130.6743 (5)0.5728 (5)0.19104 (18)0.0357 (8)
C140.6895 (5)0.5891 (5)0.12249 (18)0.0373 (8)
C150.6724 (6)0.7539 (5)0.1026 (2)0.0457 (10)
H150.68180.76860.05770.055*
C160.6416 (6)0.8959 (5)0.1483 (2)0.0463 (10)
H160.63171.00810.13580.056*
C170.6261 (5)0.8659 (5)0.2134 (2)0.0442 (9)
H170.60170.96120.24440.053*
C180.7230 (6)0.4371 (5)0.07237 (18)0.0416 (9)
C190.7107 (5)0.4283 (5)0.31237 (18)0.0380 (8)
C200.5879 (6)0.3405 (6)0.3442 (2)0.0492 (10)
H200.49680.26040.31840.059*
C210.5999 (7)0.3716 (7)0.4149 (2)0.0658 (13)
H210.51610.31280.43630.079*
C220.7329 (8)0.4871 (7)0.4529 (2)0.0717 (14)
H220.74150.50660.50040.086*
C230.8545 (7)0.5748 (6)0.4213 (2)0.0683 (14)
H230.94450.65520.44760.082*
C240.8463 (6)0.5467 (6)0.3516 (2)0.0528 (11)
H240.93080.60640.33080.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0630 (7)0.0289 (5)0.0303 (5)0.0032 (4)0.0088 (4)0.0027 (4)
S20.0728 (7)0.0313 (5)0.0326 (5)0.0075 (5)0.0147 (5)0.0060 (4)
O10.092 (2)0.0293 (15)0.0329 (15)0.0027 (13)0.0166 (14)0.0041 (12)
O20.148 (3)0.0337 (16)0.0387 (17)0.0088 (18)0.0413 (19)0.0042 (13)
O30.111 (2)0.0291 (15)0.0366 (16)0.0060 (14)0.0284 (15)0.0063 (12)
O40.137 (3)0.0358 (16)0.0428 (18)0.0118 (18)0.0420 (19)0.0057 (13)
N10.062 (2)0.0298 (17)0.0348 (18)0.0000 (14)0.0090 (15)0.0022 (14)
N20.056 (2)0.0325 (17)0.0378 (18)0.0111 (14)0.0137 (15)0.0047 (14)
C10.041 (2)0.0320 (19)0.0291 (19)0.0071 (15)0.0034 (15)0.0037 (15)
C20.054 (2)0.0300 (19)0.0309 (19)0.0066 (16)0.0075 (16)0.0034 (15)
C30.078 (3)0.034 (2)0.040 (2)0.0069 (19)0.016 (2)0.0065 (18)
C40.084 (3)0.028 (2)0.048 (3)0.0085 (19)0.016 (2)0.0099 (18)
C50.068 (3)0.029 (2)0.046 (2)0.0008 (18)0.013 (2)0.0059 (18)
C60.065 (3)0.032 (2)0.029 (2)0.0089 (17)0.0106 (17)0.0056 (16)
C70.053 (2)0.0293 (19)0.031 (2)0.0026 (16)0.0100 (17)0.0019 (15)
C80.063 (3)0.048 (2)0.038 (2)0.005 (2)0.0113 (19)0.0104 (19)
C90.077 (3)0.080 (3)0.041 (3)0.003 (3)0.003 (2)0.021 (2)
C100.101 (4)0.087 (4)0.032 (2)0.020 (3)0.020 (3)0.000 (3)
C110.087 (4)0.060 (3)0.054 (3)0.001 (3)0.035 (3)0.010 (2)
C120.063 (3)0.048 (2)0.045 (2)0.004 (2)0.020 (2)0.0043 (19)
C130.044 (2)0.0323 (19)0.0295 (19)0.0029 (15)0.0065 (15)0.0008 (15)
C140.052 (2)0.0310 (19)0.0305 (19)0.0016 (16)0.0122 (16)0.0042 (15)
C150.067 (3)0.032 (2)0.041 (2)0.0050 (18)0.0151 (19)0.0080 (17)
C160.064 (3)0.032 (2)0.048 (2)0.0099 (18)0.016 (2)0.0126 (18)
C170.060 (2)0.030 (2)0.043 (2)0.0088 (17)0.0143 (18)0.0001 (17)
C180.063 (3)0.032 (2)0.032 (2)0.0039 (17)0.0154 (18)0.0047 (17)
C190.052 (2)0.033 (2)0.0301 (19)0.0079 (16)0.0102 (16)0.0056 (16)
C200.056 (3)0.053 (3)0.039 (2)0.001 (2)0.0074 (19)0.0115 (19)
C210.074 (3)0.087 (4)0.044 (3)0.006 (3)0.023 (2)0.024 (3)
C220.093 (4)0.090 (4)0.033 (2)0.012 (3)0.014 (3)0.005 (3)
C230.079 (3)0.072 (3)0.046 (3)0.004 (3)0.008 (2)0.001 (2)
C240.064 (3)0.053 (3)0.042 (2)0.004 (2)0.009 (2)0.009 (2)
Geometric parameters (Å, º) top
S1—C11.771 (4)C9—C101.360 (7)
S1—C71.773 (4)C9—H90.9300
S2—C131.769 (4)C10—C111.365 (7)
S2—C191.776 (4)C10—H100.9300
O1—C61.228 (4)C11—C121.365 (6)
O2—C61.306 (4)C11—H110.9300
O2—H20.8200C12—H120.9300
O3—C181.218 (4)C13—C141.411 (5)
O4—C181.308 (4)C14—C151.379 (5)
O4—H4O0.8200C14—C181.478 (5)
N1—C51.315 (5)C15—C161.367 (5)
N1—C11.334 (4)C15—H150.9300
N2—C171.315 (5)C16—C171.369 (5)
N2—C131.333 (4)C16—H160.9300
C1—C21.409 (5)C17—H170.9300
C2—C31.374 (5)C19—C201.376 (5)
C2—C61.472 (5)C19—C241.386 (5)
C3—C41.374 (5)C20—C211.386 (5)
C3—H30.9300C20—H200.9300
C4—C51.372 (5)C21—C221.354 (7)
C4—H40.9300C21—H210.9300
C5—H50.9300C22—C231.366 (7)
C7—C81.372 (5)C22—H220.9300
C7—C121.387 (5)C23—C241.371 (6)
C8—C91.397 (5)C23—H230.9300
C8—H80.9300C24—H240.9300
C1—S1—C7103.18 (16)C11—C12—C7119.9 (4)
C13—S2—C19103.20 (16)C11—C12—H12120.1
C6—O2—H2109.5C7—C12—H12120.1
C18—O4—H4O109.5N2—C13—C14121.1 (3)
C5—N1—C1118.8 (3)N2—C13—S2117.3 (3)
C17—N2—C13118.6 (3)C14—C13—S2121.6 (3)
N1—C1—C2121.4 (3)C15—C14—C13117.9 (3)
N1—C1—S1116.8 (3)C15—C14—C18119.8 (3)
C2—C1—S1121.8 (3)C13—C14—C18122.3 (3)
C3—C2—C1117.6 (3)C16—C15—C14120.5 (4)
C3—C2—C6119.1 (3)C16—C15—H15119.8
C1—C2—C6123.1 (3)C14—C15—H15119.8
C2—C3—C4120.7 (4)C15—C16—C17117.2 (3)
C2—C3—H3119.6C15—C16—H16121.4
C4—C3—H3119.6C17—C16—H16121.4
C5—C4—C3117.1 (4)N2—C17—C16124.7 (3)
C5—C4—H4121.5N2—C17—H17117.6
C3—C4—H4121.5C16—C17—H17117.6
N1—C5—C4124.3 (3)O3—C18—O4122.1 (3)
N1—C5—H5117.8O3—C18—C14123.5 (3)
C4—C5—H5117.8O4—C18—C14114.3 (3)
O1—C6—O2121.9 (3)C20—C19—C24119.4 (4)
O1—C6—C2123.8 (3)C20—C19—S2117.8 (3)
O2—C6—C2114.2 (3)C24—C19—S2122.5 (3)
C8—C7—C12119.6 (4)C19—C20—C21120.0 (4)
C8—C7—S1117.3 (3)C19—C20—H20120.0
C12—C7—S1122.9 (3)C21—C20—H20120.0
C7—C8—C9119.3 (4)C22—C21—C20120.4 (4)
C7—C8—H8120.3C22—C21—H21119.8
C9—C8—H8120.3C20—C21—H21119.8
C10—C9—C8120.6 (5)C21—C22—C23119.7 (4)
C10—C9—H9119.7C21—C22—H22120.2
C8—C9—H9119.7C23—C22—H22120.2
C9—C10—C11119.6 (4)C22—C23—C24121.3 (4)
C9—C10—H10120.2C22—C23—H23119.3
C11—C10—H10120.2C24—C23—H23119.3
C10—C11—C12121.1 (4)C23—C24—C19119.3 (4)
C10—C11—H11119.5C23—C24—H24120.4
C12—C11—H11119.5C19—C24—H24120.4
C5—N1—C1—C22.8 (5)C17—N2—C13—C140.1 (5)
C5—N1—C1—S1177.9 (3)C17—N2—C13—S2178.6 (3)
C7—S1—C1—N17.2 (3)C19—S2—C13—N28.3 (3)
C7—S1—C1—C2172.1 (3)C19—S2—C13—C14170.2 (3)
N1—C1—C2—C32.9 (6)N2—C13—C14—C150.4 (6)
S1—C1—C2—C3177.8 (3)S2—C13—C14—C15177.9 (3)
N1—C1—C2—C6173.5 (3)N2—C13—C14—C18179.6 (3)
S1—C1—C2—C65.8 (5)S2—C13—C14—C182.0 (5)
C1—C2—C3—C40.2 (6)C13—C14—C15—C160.0 (6)
C6—C2—C3—C4176.3 (4)C18—C14—C15—C16179.9 (4)
C2—C3—C4—C52.4 (6)C14—C15—C16—C171.0 (6)
C1—N1—C5—C40.1 (6)C13—N2—C17—C161.3 (6)
C3—C4—C5—N12.6 (7)C15—C16—C17—N21.7 (6)
C3—C2—C6—O1171.7 (4)C15—C14—C18—O3166.9 (4)
C1—C2—C6—O112.0 (6)C13—C14—C18—O313.2 (6)
C3—C2—C6—O28.6 (6)C15—C14—C18—O411.6 (6)
C1—C2—C6—O2167.8 (4)C13—C14—C18—O4168.3 (4)
C1—S1—C7—C8122.4 (3)C13—S2—C19—C20126.3 (3)
C1—S1—C7—C1262.3 (4)C13—S2—C19—C2459.6 (4)
C12—C7—C8—C90.2 (6)C24—C19—C20—C210.3 (6)
S1—C7—C8—C9175.7 (3)S2—C19—C20—C21174.6 (3)
C7—C8—C9—C100.3 (7)C19—C20—C21—C220.5 (7)
C8—C9—C10—C110.3 (8)C20—C21—C22—C230.7 (8)
C9—C10—C11—C120.3 (8)C21—C22—C23—C240.8 (8)
C10—C11—C12—C70.8 (7)C22—C23—C24—C190.7 (7)
C8—C7—C12—C110.8 (6)C20—C19—C24—C230.4 (6)
S1—C7—C12—C11176.0 (3)S2—C19—C24—C23174.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.822.624 (2)168 (1)
O4—H4o···O1i0.821.832.642 (2)170 (1)
C3—H3···O4ii0.932.503.264 (5)139
C4—H4···O1iii0.932.553.458 (5)164
C15—H15···O2ii0.932.543.294 (5)138
C16—H16···O3iii0.932.583.467 (5)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H9NO2S
Mr231.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2201 (4), 7.6653 (4), 19.9537 (11)
α, β, γ (°)97.895 (3), 98.520 (3), 91.661 (3)
V3)1080.41 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.21 × 0.09 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.911, 0.983
No. of measured, independent and
observed [I > 2/s(I)] reflections
23200, 5397, 2766
Rint0.063
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.224, 1.09
No. of reflections5397
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.820002.624 (2)167.48 (18)
O4—H4o···O1i0.8201.830002.642 (2)169.62 (19)
C3—H3···O4ii0.932.503.264 (5)139
C4—H4···O1iii0.932.553.458 (5)164
C15—H15···O2ii0.932.543.294 (5)138
C16—H16···O3iii0.932.583.467 (5)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Footnotes

Applied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationAntonini, I. & Martelli, S. (1992). J. Heterocycl. Chem. 29, 471-473.  CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCholody, W. M., Martelli, S. & Konopa, J. (1992). J. Med. Chem. 25, 276–315.  Google Scholar
First citationDenny, W. A., Cain, B. F., Atwell, G. J., Hansch, C., Panthananickal, A. & Leo, A. (1982). J. Med. Chem. 25, 276–315.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujiwara, H. (1997). Heterocycles, 45, 119–127.  CrossRef CAS Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMann, F. G. & Reid, J. A. (1952). J. Chem. Soc. pp. 2057–2062.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds