

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzyl 3-(10-oxo-9,10-dihydrophenanthren-9-vlidene)dithiocarbazate

Qiao-Ru Liu, Song-Mao Chu, Gan-Qing Zhao,* Li-Hua Chen and Yong-Jun Han

School of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China Correspondence e-mail: zgq1118@163.com

Received 24 September 2009; accepted 17 October 2009

Key indicators: single-crystal X-ray study: T = 296 K: mean σ (C–C) = 0.003 Å: R factor = 0.036; wR factor = 0.098; data-to-parameter ratio = 13.6.

In the title compound, $C_{22}H_{16}N_2OS_2$, the phenanthrene ring is nearly perpendicular to the phenyl ring, making a dihedral angle of 87.2 (2)°. Intramolecular $N-H \cdots O$ interactions are present. In the crystal structure, the molecules are linked through intermolecular C-H···O interactions. The crystal structure is also stabilized by $C-H \cdot \cdot \pi$ interactions and weak π - π contacts [centroid-centroid distance = 3.36 (6) Å].

Related literature

For the biological properties of Schiff bases, see: Bhandari et al. (2008). Recently, some Schiff bases derived from the reaction of S-benzyldithiocarbazate with aldehydes or ketones have been reported, see: Ali et al. (2003a,b); How et al. (2007); Tarafder et al. (2008); Zhou et al. (2002). For the synthesis of Sbenzyldithiocarbazate, see: Chew et al. (2004). For the synthesis of the title compound, see: Ali et al. (2004).

Experimental

Crystal data

C22H16N2OS2 $M_{\rm m} = 388.49$ Monoclinic, $P2_1/c$ a = 14.4945 (19) Å b = 5.6978 (7) Å c = 22.816 (3) Å $\beta = 93.610 \ (2)^{\circ}$

V = 1880.6 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.30 \times 0.20 \ \text{mm}$ 9220 measured reflections

 $R_{\rm int} = 0.022$

3316 independent reflections

2638 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.916, T_{\max} = 0.943$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	244 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
3316 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N2-H2\cdots O1\\ C12-H12\cdots O1^{i} \end{array}}$	0.86 0.93	1.89 2.42	2.560 (2) 3.239 (2)	134 147
$C5-H5\cdots Cg1^{ii}$	0.93	2.76	3.559 (2)	144

Symmetry codes: (i) -x, -y + 3, -z; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Cg1 is the centroid of the C2-C7 ring

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This research was supported by the National Sciences Foundation of China (No. 20877036) and the Top-class Foundation of Pingdingshan University (No. 2006045 and 2009001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2573).

References

- Ali, M. A., Mirza, A. H., Nazimuddin, M., Ahmed, R., Gahan, L. R. & Bernhardt, P. V. (2003a). Polyhedron, 22, 1471-1479.
- Ali, M. A., Mirza, A. H., Ravoof, T. B. S. A. & Bernhardt, P. V. (2004). Polyhedron, 23, 2031-2036.
- Ali, M. A., Mirza, A. H., Voo, C. W., Tan, A. L. & Bernhardt, P. V. (2003b). Polyhedron, 22, 3433-3438.
- Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.
- Bruker (2008). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.
- Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.
- How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007). Acta Cryst. E63. o3023-o3024.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.
- Zhou, J. H., Wang, Y. X., Chen, X. T., Song, Y. L., Weng, L. H. & You, X. Z. (2002). Chin. J. Inorg. Chem. 5, 533-536.

supporting information

Acta Cryst. (2009). E65, o2853 [https://doi.org/10.1107/S160053680904272X]

Benzyl 3-(10-oxo-9,10-dihydrophenanthren-9-ylidene)dithiocarbazate

Qiao-Ru Liu, Song-Mao Chu, Gan-Qing Zhao, Li-Hua Chen and Yong-Jun Han

S1. Comment

Schiff bases are versatile compounds which possess excellent biologically properties (Bhandari *et al.*,2008). Recently, some Schiff bases derived from the reaction of *S*-benzyldithiocarbazate with aldehydes or ketones have been reported (Zhou *et al.*, 2002; Ali *et al.*, 2003*a*,b; How *et al.*, 2007; Tarafder *et al.*, 2008). We synthesized the title compound ((Fig. 1)) and report herein its crystal structure.

In the title compound, the bond lengths and angles are comparable to the values in the similar Schiff bases (Zhou *et al.*, 2002). The phenanthrene ring (C1…C14) and dithiocarbazate (N1/N2/S1/S2/C15) fragments lie essentially in the same plane, with a mean deviation from the least-squares plane of 0.0385 Å. The phenanthrene ring (C1…C14) is nearly perpendicular to the phenyl ring (C17…C22) with a dihedral angle of 87.2°.

In the crystal structure, there are intramolecular N—H···O type hydrogen bonds (Table 1). The crystal structure is consolidated by intermolecular C—H···O [3.239 Å] (Fig. 2). It is also stabilized by C—H···Π interactions such as C5—H5···Π (3.642 Å) and C9—H9···Π (3.643 Å) involving phenanthrene ring and phenyl ring of the adjacent molecules respectively. In addition, π - π interactions between the adjacent phenanthrene rings (centroid-centroid distance = 3.36 (6) Å) may also stabilize the crystal packing.

S2. Experimental

S-benzyldithiocarbazate was synthesized as described in the literature (Chew *et al.*, 2004). The title compound was synthesized as described in the literature (Ali *et al.*, 2004). To 9,10-phenanthrenequinone in 60 ml of absolute ethyl alcohol was added a solution of *S*-benzyldithiocarbazate (1.00 mmol) in 20 ml of absolute ethyl alcohol dropwise. The red-brown solution was refluxed for 5.0 h at 353 K. The resultant solution was filtered and left in air for a few days, yielding brown block-like crystals.

S3. Refinement

In (I), All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 Å (CH₂) and $U_{iso}(H) = 1.2U_{eq}(C)$, and with N—H = 0.86 Å (NH) and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A view of the crystal packing along the *b* axis. Intermolecular Hydrogen bonds are shown as dashed lines.

Benzyl 3-(10-oxo-9,10-dihydrophenanthren-9-ylidene)dithiocarbazate

Crystal data	
$C_{22}H_{16}N_2OS_2$	F(000) = 808
$M_r = 388.49$	$D_{\rm x} = 1.372 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3545 reflections
a = 14.4945 (19) Å	$\theta = 2.2 - 27.1^{\circ}$
b = 5.6978 (7) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 22.816 (3) Å	T = 296 K
$\beta = 93.610 \ (2)^{\circ}$	Block, brown
$V = 1880.6 (4) Å^3$	$0.30 \times 0.30 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.916, T_{max} = 0.943$ <i>Refinement</i>	9220 measured reflections 3316 independent reflections 2638 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -17 \rightarrow 12$ $k = -6 \rightarrow 6$ $l = -27 \rightarrow 27$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.06	H-atom parameters constrained
3316 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.4502P]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.12004 (12)	0.9543 (3)	0.10487 (7)	0.0410 (4)	
C2	0.07744 (12)	0.7660 (3)	0.13826 (7)	0.0404 (4)	
C3	0.13280 (14)	0.6058 (3)	0.17087 (8)	0.0505 (5)	
H3	0.1968	0.6203	0.1718	0.061*	
C4	0.09428 (15)	0.4277 (3)	0.20145 (8)	0.0570 (5)	
H4	0.1320	0.3226	0.2230	0.068*	
C5	-0.00057 (15)	0.4045 (3)	0.20025 (8)	0.0551 (5)	
H5	-0.0269	0.2837	0.2209	0.066*	
C6	-0.05593 (14)	0.5600 (3)	0.16850(7)	0.0496 (5)	
H6	-0.1198	0.5422	0.1679	0.060*	
C7	-0.01904 (12)	0.7447 (3)	0.13706 (7)	0.0413 (4)	
C8	-0.07862 (12)	0.9126 (3)	0.10288 (7)	0.0428 (4)	
C9	-0.17451 (14)	0.8986 (4)	0.10096 (9)	0.0601 (5)	
H9	-0.2023	0.7801	0.1217	0.072*	
C10	-0.22943 (14)	1.0568 (4)	0.06899 (10)	0.0663 (6)	
H10	-0.2934	1.0431	0.0684	0.080*	

C11	-0.19058 (14)	1.2346 (4)	0.03787 (9)	0.0594 (5)
H11	-0.2279	1.3411	0.0165	0.071*
C12	-0.09620 (13)	1.2524 (3)	0.03891 (8)	0.0496 (5)
H12	-0.0693	1.3716	0.0179	0.059*
C13	-0.04017 (12)	1.0942 (3)	0.07096 (7)	0.0407 (4)
C14	0.06035 (12)	1.1237 (3)	0.07105 (7)	0.0427 (4)
C15	0.34732 (13)	1.1176 (4)	0.07602 (8)	0.0513 (5)
C16	0.51902 (14)	0.9484 (5)	0.11012 (11)	0.0836 (8)
H16A	0.5363	0.9037	0.0713	0.100*
H16B	0.5310	1.1148	0.1154	0.100*
C17	0.57478 (13)	0.8104 (4)	0.15607 (10)	0.0635 (6)
C18	0.61629 (15)	0.6028 (5)	0.14199 (11)	0.0716 (6)
H18	0.6081	0.5433	0.1041	0.086*
C19	0.67014 (17)	0.4821 (5)	0.18405 (14)	0.0816 (7)
H19	0.6984	0.3422	0.1743	0.098*
C20	0.68202 (17)	0.5671 (6)	0.23965 (13)	0.0863 (8)
H20	0.7184	0.4851	0.2677	0.104*
C21	0.64071 (19)	0.7725 (6)	0.25452 (12)	0.0867 (8)
H21	0.6489	0.8302	0.2926	0.104*
C22	0.58678 (16)	0.8938 (5)	0.21272 (12)	0.0777 (7)
H22	0.5583	1.0329	0.2229	0.093*
N1	0.20996 (10)	0.9575 (3)	0.10711 (6)	0.0466 (4)
N2	0.25374 (10)	1.1215 (3)	0.07714 (7)	0.0524 (4)
H2	0.2225	1.2296	0.0586	0.063*
01	0.09460 (9)	1.2850 (2)	0.04354 (6)	0.0577 (4)
S1	0.39768 (3)	0.88888 (10)	0.11712 (2)	0.06204 (18)
S2	0.39996 (4)	1.31825 (12)	0.03859 (3)	0.0741 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0420 (10)	0.0423 (10)	0.0385 (9)	-0.0001 (8)	0.0004 (7)	-0.0020 (7)
C2	0.0478 (10)	0.0376 (10)	0.0356 (8)	0.0010 (8)	0.0018 (7)	-0.0025 (7)
C3	0.0527 (11)	0.0492 (11)	0.0495 (10)	0.0071 (9)	0.0025 (8)	0.0036 (9)
C4	0.0754 (15)	0.0458 (12)	0.0496 (11)	0.0112 (10)	0.0018 (10)	0.0057 (9)
C5	0.0771 (15)	0.0438 (11)	0.0445 (10)	-0.0062 (10)	0.0052 (10)	0.0042 (8)
C6	0.0570 (11)	0.0479 (11)	0.0439 (10)	-0.0082 (9)	0.0034 (8)	-0.0003 (8)
C7	0.0492 (11)	0.0387 (10)	0.0360 (8)	-0.0024 (8)	0.0016 (7)	-0.0041 (7)
C8	0.0434 (10)	0.0463 (11)	0.0386 (9)	-0.0028 (8)	0.0016 (7)	-0.0045 (8)
C9	0.0489 (12)	0.0670 (14)	0.0646 (12)	-0.0066 (10)	0.0040 (10)	0.0138 (11)
C10	0.0422 (11)	0.0809 (16)	0.0754 (14)	0.0002 (11)	0.0008 (10)	0.0102 (12)
C11	0.0511 (12)	0.0635 (13)	0.0625 (12)	0.0100 (10)	-0.0056 (9)	0.0059 (10)
C12	0.0516 (11)	0.0474 (11)	0.0491 (10)	0.0019 (9)	-0.0015 (8)	0.0040 (9)
C13	0.0439 (10)	0.0404 (10)	0.0374 (9)	-0.0004 (8)	-0.0002 (7)	-0.0031 (7)
C14	0.0489 (10)	0.0405 (10)	0.0384 (9)	-0.0010 (8)	0.0000 (7)	0.0014 (8)
C15	0.0449 (11)	0.0611 (12)	0.0479 (10)	-0.0051 (9)	0.0027 (8)	0.0007 (9)
C16	0.0429 (12)	0.112 (2)	0.0963 (17)	0.0000 (13)	0.0097 (12)	0.0408 (16)
C17	0.0373 (11)	0.0768 (16)	0.0769 (15)	-0.0056 (11)	0.0074 (10)	0.0214 (12)

supporting information

C18	0.0517 (13)	0.0797 (17)	0.0837 (16)	-0.0092 (12)	0.0081 (11)	0.0086 (13)
C19	0.0622 (15)	0.0702 (16)	0.114 (2)	0.0016 (13)	0.0165 (15)	0.0235 (16)
C20	0.0586 (15)	0.099 (2)	0.100 (2)	-0.0074 (15)	-0.0065 (14)	0.0410 (18)
C21	0.0824 (18)	0.098 (2)	0.0784 (17)	-0.0195 (17)	-0.0051 (14)	0.0110 (16)
C22	0.0680 (16)	0.0705 (16)	0.0959 (19)	-0.0032 (13)	0.0151 (14)	0.0108 (14)
N1	0.0442 (9)	0.0510 (9)	0.0446 (8)	-0.0017 (7)	0.0026 (7)	0.0025 (7)
N2	0.0441 (9)	0.0563 (10)	0.0567 (9)	-0.0018 (8)	0.0021 (7)	0.0118 (8)
01	0.0509 (8)	0.0552 (8)	0.0664 (8)	-0.0035 (7)	0.0000 (6)	0.0211 (7)
S1	0.0432 (3)	0.0684 (4)	0.0752 (4)	0.0020 (3)	0.0088 (2)	0.0171 (3)
S2	0.0586 (4)	0.0827 (4)	0.0809 (4)	-0.0146 (3)	0.0027 (3)	0.0257 (3)

Geometric parameters (Å, °)

C1—N1	1.301 (2)	С12—Н12	0.9300
C1—C2	1.474 (2)	C13—C14	1.467 (2)
C1-C14	1.480 (2)	C14—O1	1.235 (2)
C2—C3	1.398 (2)	C15—N2	1.358 (2)
C2—C7	1.402 (2)	C15—S2	1.6432 (19)
C3—C4	1.370 (3)	C15—S1	1.739 (2)
С3—Н3	0.9300	C16—C17	1.505 (3)
C4—C5	1.380 (3)	C16—S1	1.808 (2)
C4—H4	0.9300	C16—H16A	0.9700
C5—C6	1.371 (3)	C16—H16B	0.9700
С5—Н5	0.9300	C17—C18	1.374 (3)
C6—C7	1.399 (2)	C17—C22	1.378 (3)
С6—Н6	0.9300	C18—C19	1.382 (3)
C7—C8	1.478 (2)	C18—H18	0.9300
C8—C9	1.390 (3)	C19—C20	1.359 (4)
C8—C13	1.401 (2)	C19—H19	0.9300
C9—C10	1.380 (3)	C20—C21	1.367 (4)
С9—Н9	0.9300	C20—H20	0.9300
C10—C11	1.378 (3)	C21—C22	1.380 (3)
C10—H10	0.9300	C21—H21	0.9300
C11—C12	1.371 (3)	C22—H22	0.9300
C11—H11	0.9300	N1—N2	1.341 (2)
C12—C13	1.390 (2)	N2—H2	0.8600
N1—C1—C2	116.18 (15)	C12—C13—C14	118.28 (16)
N1-C1-C14	124.21 (16)	C8—C13—C14	120.78 (15)
C2-C1-C14	119.60 (15)	O1—C14—C13	121.05 (16)
C3—C2—C7	119.49 (16)	O1—C14—C1	120.66 (16)
C3—C2—C1	120.34 (16)	C13—C14—C1	118.29 (15)
C7—C2—C1	120.17 (15)	N2—C15—S2	119.68 (15)
C4—C3—C2	121.05 (18)	N2-C15-S1	112.82 (14)
С4—С3—Н3	119.5	S2—C15—S1	127.49 (12)
С2—С3—Н3	119.5	C17—C16—S1	108.87 (15)
C3—C4—C5	119.87 (18)	C17—C16—H16A	109.9
C3—C4—H4	120.1	S1—C16—H16A	109.9

C5—C4—H4	120.1	C17—C16—H16B	109.9
C6—C5—C4	119.87 (18)	S1—C16—H16B	109.9
С6—С5—Н5	120.1	H16A—C16—H16B	108.3
С4—С5—Н5	120.1	C18—C17—C22	119.0 (2)
C5—C6—C7	121.82 (18)	C18—C17—C16	120.7 (2)
С5—С6—Н6	119.1	C22—C17—C16	120.3 (2)
С7—С6—Н6	119.1	C17—C18—C19	120.2 (2)
C6—C7—C2	117.90 (16)	C17—C18—H18	119.9
C6—C7—C8	121.88 (16)	C19—C18—H18	119.9
C2—C7—C8	120.22 (15)	C20—C19—C18	120.3 (3)
C9—C8—C13	117.11 (17)	С20—С19—Н19	119.9
C9—C8—C7	121.96 (17)	C18—C19—H19	119.9
C13—C8—C7	120.92 (15)	C19—C20—C21	120.3 (3)
С10—С9—С8	121.44 (19)	С19—С20—Н20	119.8
С10—С9—Н9	119.3	С21—С20—Н20	119.8
С8—С9—Н9	119.3	C20—C21—C22	119.7 (3)
C11—C10—C9	120.78 (19)	C20—C21—H21	120.2
C11—C10—H10	119.6	C22—C21—H21	120.2
С9—С10—Н10	119.6	C17—C22—C21	120.5 (3)
C12-C11-C10	119.03 (19)	С17—С22—Н22	119.7
C12—C11—H11	120.5	C21—C22—H22	119.7
C10-C11-H11	120.5	C1—N1—N2	119.66 (15)
C11—C12—C13	120.71 (18)	N1—N2—C15	120.22 (16)
C11—C12—H12	119.6	N1—N2—H2	119.9
C13—C12—H12	119.6	C15—N2—H2	119.9
C12—C13—C8	120.93 (16)	C15—S1—C16	100.92 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
N2—H2…O1	0.86	1.89	2.560 (2)	134
C12—H12···O1 ⁱ	0.93	2.42	3.239 (2)	147
C5—H5····Cg1 ⁱⁱ	0.93	2.76	3.559 (2)	144

Symmetry codes: (i) -*x*, -*y*+3, -*z*; (ii) -*x*, *y*-1/2, -*z*+1/2.