Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chloridotetrakis(pyridine-4-carbalde-hyde- κN)copper(II) chloride

Xiu-Jin Meng, ${ }^{\text {a }}$ Shu-Hua Zhang, ${ }^{\text {b }}$ Ge-Ge Yang, ${ }^{\text {a }}$ Xue-Ren Huang ${ }^{\mathrm{a}}$ and Yi-Min Jiang ${ }^{\text {a,b* }}$

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and ${ }^{\text {b }}$ Key Laboratory of New Processing Technology for Nonferrous Metals \& Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004, People's Republic of China
Correspondence e-mail: mengxiujin@163.com

Received 17 August 2009; accepted 13 October 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.033 ; w R$ factor $=0.114 ;$ data-to-parameter ratio $=13.7$.

In the molecular structure of the title compound, $\left[\mathrm{CuCl}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.\right.$ $\left.\mathrm{NO})_{4}\right] \mathrm{Cl}$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by four N atoms of four pyridine-4-carboxaldehyde ligands and one chloride anion in a slightly distorted square-pyramidal coordination geometry. There is also a non-coordinating Cl^{-}anion in the crystal structure. The $\mathrm{Cu}^{\mathrm{II}}$ atom and both Cl atoms are situated on fourfold rotation axes. A weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction is also present.

Related literature

For other compounds with pyridine-4-carbaldehyde ligands, see: Rivera \& Sheldrick (1977); Choi \& Wong (1999); Briand et al. (2007); Sie et al. (2008).

Experimental

Crystal data
$\left[\mathrm{CuCl}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}\right)_{4}\right] \mathrm{Cl}$
$M_{r}=562.88$
Tetragonal, $P 4 / n$.
$Z=2$
Mo $K \alpha$ radiation
$a=10.5035$ (3) \AA
$\mu=1.12 \mathrm{~mm}^{-1}$
$c=11.3751$ (6) Å
$T=296 \mathrm{~K}$
$V=1254.94$ (8) \AA^{3}
$0.38 \times 0.21 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.675, T_{\text {max }}=0.825$
9150 measured reflections 1126 independent reflections 1083 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 13$ restraints
$w R\left(F^{2}\right)=0.114$
$S=1.03$
1126 reflections
82 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 2$	0.93	2.84	$3.732(2)$	160

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

Supplementary data and figures for this paper are available from the

IUCr electronic archives (Reference: IM2137).

References

Briand, G. G., Smith, A. D., Schatte, G., Rossini, A. J. \& Schurko, R. W. (2007). Inorg. Chem. 46, 8625-8637.
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, Y.-Y. \& Wong, W.-T. (1999). J. Organomet. Chem. 573, 189-201.
Rivera, A. V. \& Sheldrick, G. M. (1977). Acta Cryst. B33, 154-155.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sie, W.-S., Lee, G.-H., Tsai, K. Y.-D., Chang, I.-J. \& Shiu, K. B. (2008). J. Mol. Struct. 890, 198-202.

supporting information

Chloridotetrakis(pyridine-4-carbaldehyde- κ N) copper(II) chloride

Xiu-Jin Meng, Shu-Hua Zhang, Ge-Ge Yang, Xue-Ren Huang and Yi-Min Jiang

S1. Comment

Only one structurally characterized coordination compound with pyridine-4- carboxaldehyde acting as the ligand has been reported up to now. In that article, pyridine-4-carboxaldehyde and CoBr_{2} form $\left[\mathrm{CoBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CHO}\right)_{4}\right]$ (Rivera et al. 1977). This compound is highly related to the title compound. In addition, three crystal structures with pyridine-4carboxaldehyde acting as independent components were reported (Choi et al. 1999; Briand et al. 2007; Sie et al. 2008). In the cation of the title compound $\left[\mathrm{CuCl}\left(\mathrm{OCHC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{4}\right] \mathrm{Cl}$, the $\mathrm{Cu}^{\text {II }}$ centre is coordinated to four N atoms from four pyridine-4-carboxaldehyde ligands and one chloro ligand. Cu exhibits a slightly distorted square-pyramidal coordination geometry. Another non-coordinating chloride anion is observed in the crystal structure. The $\left[\mathrm{CuCl}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CHO}\right)_{4}\right]^{+}$ion has a perfect C_{4} symmetry with the direction of the C_{4} axis being collinear with the $\mathrm{Cu} 1-\mathrm{Cl1}$ direction. $\mathrm{Cu} 1, \mathrm{Cl} 1$ and Cl 2 are all situated on the same crystallographic 4-fold rotoinversion axis. In the cation therefore all $\mathrm{Cu}-\mathrm{N}$ bond lengths and angles are equivalent.
Several donor CH functions and the chloride acceptor groups participate in the observed hydrogen bonding pattern forming a two-dimensional network in the $a b$ plane (Fig. 2)

S2. Experimental

For the preparation of the title compound, a solution of $\mathrm{CuCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}(0.08524 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was slowly added over a period of 2 h to a solution of L-Cysteic acid ($0.094 \mathrm{~g}, 0.5 \mathrm{mmol}$), $\mathrm{KOH}(0.056 \mathrm{~g}, 1 \mathrm{mmol})$, pyridine-4carboxaldehyde $(0.06 \mathrm{ml}, 0.6 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.03028 \mathrm{~g}, 0.8 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ resulting in a blue solution that was stirred for another 4 h at 298 K . Then, the solution was left to evaporate slowly at room temperature. After ten days, blue block crystals of the title compoound were obtained with a yield of 70%.

S3. Refinement

H atom bonded to C atom were positioned geometrically with the $\mathrm{C}-\mathrm{H}$ distance of $0.9303 \AA$, and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supporting information

Figure 1
Ellipsoid plot (30% probability) of the title compound showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: $1 \#-x+1 / 2, y+1 / 2, z$.

Figure 2
2-D network, as viewed down the c axis. Dashed lines indicate hydrogen bonds.

Chloridotetrakis(pyridine-4-carbaldehyde- $\kappa \mathrm{N}$)copper(II) chloride

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}\right) 4\right] \mathrm{Cl}$
$M_{r}=562.88$
Tetragonal, $P 4 / n$
Hall symbol: -P 4a
$a=10.5035$ (3) \AA
$c=11.3751$ (6) \AA
$V=1254.94(8) \AA^{3}$
$Z=2$
$F(000)=574$

$$
\begin{aligned}
& D_{\mathrm{x}}=1.490 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1162 \text { reflections } \\
& \theta=2.6-25.1^{\circ} \\
& \mu=1.12 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.38 \times 0.21 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.675, T_{\text {max }}=0.825$

> 9150 measured reflections
> 1126 independent reflections
> 1083 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.017$
> $\theta_{\max }=25.1^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-12 \rightarrow 12$
> $l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.114$
$S=1.03$
1126 reflections
82 parameters
13 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu1	0.7500	0.7500	$0.81702(4)$	$0.0289(3)$
C11	0.7500	0.7500	$1.03833(9)$	$0.0373(3)$
C1	$0.8616(2)$	$0.5010(2)$	$0.8824(2)$	$0.0376(5)$
H1	0.8631	0.5372	0.9570	0.045^{*}
C2	$0.9093(3)$	$0.3791(2)$	$0.8675(2)$	$0.0418(6)$
H2	0.9404	0.3342	0.9319	0.050^{*}
C3	$0.9109(2)$	$0.3241(2)$	$0.7569(2)$	$0.0342(5)$
C4	$0.8612(3)$	$0.3938(2)$	$0.6653(2)$	$0.0411(6)$
H4	0.8601	0.3603	0.5896	0.049^{*}
C5	$0.8132(3)$	$0.5140(3)$	$0.6867(2)$	$0.0422(6)$
H5	0.7790	0.5593	0.6240	0.051^{*}
C6	$0.9662(3)$	$0.1930(2)$	$0.7405(3)$	$0.0466(6)$
H6	0.9939	0.1428	0.8027	0.056^{*}
N1	$0.81319(18)$	$0.56845(17)$	$0.79272(17)$	$0.0320(4)$
O1	$0.9721(2)$	$0.1535(2)$	$0.6224(2)$	$0.0598(6)$
C12	0.7500	0.7500	$0.44844(12)$	$0.0562(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0261(3)$	$0.0261(3)$	$0.0344(4)$	0.000	0.000	0.000
C 11	$0.0410(4)$	$0.0410(4)$	$0.0299(5)$	0.000	0.000	0.000
C 1	$0.0418(13)$	$0.0357(12)$	$0.0354(11)$	$0.0033(10)$	$-0.0029(10)$	$-0.0013(9)$
C 2	$0.0487(15)$	$0.0378(13)$	$0.0390(13)$	$0.0075(11)$	$-0.0068(10)$	$0.0066(10)$
C 3	$0.0288(11)$	$0.0306(11)$	$0.0434(12)$	$-0.0011(8)$	$0.0001(9)$	$0.0016(9)$
C 4	$0.0485(15)$	$0.0372(13)$	$0.0377(11)$	$0.0062(11)$	$-0.0016(10)$	$-0.0031(10)$
C 5	$0.0527(16)$	$0.0355(13)$	$0.0385(13)$	$0.0079(11)$	$-0.0074(10)$	$0.0039(9)$
C 6	$0.0514(15)$	$0.0348(13)$	$0.0536(15)$	$0.0105(11)$	$-0.0040(12)$	$-0.0009(11)$
N 1	$0.0314(10)$	$0.0282(9)$	$0.0364(9)$	$0.0000(7)$	$-0.0003(8)$	$0.0025(8)$
O 1	$0.0654(14)$	$0.0500(12)$	$0.0642(13)$	$0.0141(10)$	$-0.0063(10)$	$-0.0171(10)$
C 2	$0.0619(6)$	$0.0619(6)$	$0.0448(7)$	0.000	0.000	0.000

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	2.0380 (19)	C2-H2	0.9300
$\mathrm{Cu} 1-\mathrm{N} 1$	2.0380 (19)	C3-C4	1.377 (3)
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	2.0380 (19)	C3-C6	1.506 (3)
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	2.0380 (19)	C4-C5	1.381 (4)
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.5175 (11)	C4-H4	0.9300
C1-N1	1.342 (3)	C5-N1	1.335 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.385 (4)	C5-H5	0.9300
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	C6-O1	1.407 (4)
C2-C3	1.384 (4)	C6-H6	0.9300
N1-Cu1-N1	88.946 (16)	C4-C3-C2	117.5 (2)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	164.41 (11)	C4-C3-C6	122.6 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{1 i}$	88.946 (16)	C2-C3-C6	119.9 (2)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	88.946 (15)	C3-C4-C5	119.4 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	164.41 (11)	C3-C4-H4	120.3
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cu} 1-\mathrm{N} 1^{\text {iii }}$	88.946 (16)	C5-C4-H4	120.3
$\mathrm{N} 1-\mathrm{Cul}-\mathrm{Cl} 1$	97.79 (6)	N1-C5-C4	123.4 (2)
N1-Cu1-Cl1	97.79 (6)	N1-C5-H5	118.3
$\mathrm{N} 1{ }^{\text {ii- }} \mathrm{Cu} 1-\mathrm{Cl} 1$	97.79 (6)	C4-C5-H5	118.3
$\mathrm{N} 1 \mathrm{iii}-\mathrm{Cu} 1-\mathrm{Cl} 1$	97.79 (6)	O1-C6-C3	113.9 (2)
N1-C1-C2	122.2 (2)	O1-C6-H6	123.0
N1-C1-H1	118.9	C3-C6-H6	123.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.9	C5-N1-C1	117.4 (2)
C3-C2-C1	120.1 (2)	C5-N1-Cu1	121.56 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	120.97 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0		

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{Cl} 2$	0.93	2.84	$3.732(2)$	160

[^0]: Symmetry codes: (i) $y,-x+3 / 2, z$; (ii) $-y+3 / 2, x, z$; (iii) $-x+3 / 2,-y+3 / 2, z$.

