Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-[3-(2-methylbenzoyl)thioureido]benzoate

Aamer Saeed,^a* Hummera Rafigue,^a Amara Mumtaz^a and Michael Bolte^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan., and ^bInstitut für Anorganische Chemie. I. W. Goethe-Universität Frankfurt. Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany. Correspondence e-mail: aamersaeed@yahoo.com

Received 20 September 2009; accepted 13 October 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.037; wR factor = 0.100; data-to-parameter ratio = 18.9.

The molecular conformation of the title compound, $C_{18}H_{18}N_2O_3S$, is stabilized by an intramolecular $N-H\cdots O$ hydrogen bond. The crystal packing shows centrosymmetric dimers connected by N-H···S hydrogen bonds. The terminal ethoxy substituents are statistically disordered [occupancy ratio 0.527 (5):0.473 (5)].

Related literature

For the use of thiourea derivatives in organic synthesis and analysis, see: Evnde & Watte (2003); Fu et al. (1999); Rashdan et al. (2006); Maryanoff et al. (1986); Wang et al. (2005); Saeed et al. (2008); Koch, (2001). For their bioactivity and pharmaceutical applications, see: Upadhyaya & Srivastava (1982); Ramadas et al. (1998); Blum & Haves (1979); DeBeer et al. (1936). For related structures, see: Saeed & Flörke (2007*a*,*b*); Saeed et al. (2009).

b = 7.6311 (4) Å

c = 15.2468 (8) Å

 $\alpha = 96.456$ (4)

 $\beta = 103.860 \ (5)^{\circ}$

Experimental

Crystal data

$C_{18}H_{18}N_2O_3S$
$M_r = 342.40$
Triclinic, P1
a = 7.4555 (3) Å

$\gamma = 92.908 \ (4)^{\circ}$
$V = 834.13 (7) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection ____

Stoe IPDS II two-circle-	22798 measured reflections
diffractometer	4659 independent reflection
Absorption correction: multi-scan	4311 reflections with $I > 2c$
(MULABS; Spek, 2009; Blessing,	$R_{\rm int} = 0.057$
1995)	
$T_{\rm min} = 0.933, T_{\rm max} = 0.943$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.037 \\ wR(F^2) = 0.100 \end{array}$ 246 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^-$ S = 1.04 $\Delta \rho_{\rm min} = -0.37$ e Å⁻³ 4659 reflections

 $\mu = 0.21 \text{ mm}^{-1}$ T = 173 K

 $0.33 \times 0.32 \times 0.28 \text{ mm}$

4659 independent reflections 4311 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdots O1$ $N2-H2\cdots S1^{i}$	0.80 0.89	2.01 2.67	2.669 (1) 3.5551 (9)	139 170

Symmetry code: (i) -x + 2, -y, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2145).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blum, J. J. & Hayes, A. (1979). J. Supramol. Struct. 12, 23-34.
- DeBeer, E. J., Buck, J. S., Ide, W. S. & Hjort, A. M. (1936). J. Pharmacol. 57, 19 - 33
- Eynde, J. J. V. & Watte, O. (2003). Arkivoc, iv, 93-101.
- Fu, M., Fernandez, M., Smith, M. L. & Flygae, J. A. (1999). Org. Lett. 1, 1351-1353
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
- Maryanoff, C. A., Stanzione, R. C., Plampin, J. N. & Mills, J. E. (1986). J. Org. Chem 51 1882-1884
- Ramadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52 145-151
- Rashdan, S., Light, M. E. & Kilburn, J. D. (2006). Chem. Commun. pp. 4578-4580
- Saeed, A. & Flörke, U. (2007a). Acta Cryst. E63, 04259.
- Saeed, A. & Flörke, U. (2007b). Acta Cryst. E63, 04614.
- Saeed, A., Khera, R. A., Simpson, J. & Stanley, R. G. (2009). Acta Cryst. E65, 01735-01736.
- Saeed, A., Zaman, S. & Bolte, M. (2008). Synth. Commun. 38, 2185-2199.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Upadhyaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc. 59, 767-769.
- Wang, X.-C., Wang, F., Quan, Z.-J., Wang, M.-G. & Li, Z. (2005). J. Chem. Res. 61. 689-690.

supporting information

Acta Cryst. (2009). E65, o2774 [https://doi.org/10.1107/S160053680904183X]

Ethyl 4-[3-(2-methylbenzoyl)thioureido]benzoate

Aamer Saeed, Hummera Rafique, Amara Mumtaz and Michael Bolte

S1. Comment

The background of this study has been described in our earlier paper concerning the crystal structure of 1-(2-Chloro-5nitrophenyl)-3-(2,2-dimethylpropionyl)thiourea (Saeed *et al.*, 2009). As part of our work on the structure of thioureas, we report here the structure of the title derivative, I, Fig 1.

The molecular conformation of the title compound, $C_{18}H_{18}N_2O_3S$, is stabilized by intramolecular N—H···O hydrogen bonds. The crystal packing shows centrosymmetric dimers connected by N—H···S hydrogen bonds (Table 1). Terminal ethoxy substituents are statistically disordered.

S2. Experimental

A solution of 2-methylbenzoyl chloride (10 mmol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (10 mmol) in acetone (30 ml) and the reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 4-aminobenzoic acid ethyl ester (10 mmol) in acetone (10 ml) was added and the resulting mixture refluxed for 3 h. The reaction mixture was poured into cold water and the precipitated thiourea was recrystallized from aqueous ethanol. Anal. calcd. for $C_{18}H_{18}N_2O_3S$: C, 63.14; H, 5.30; N, 8.18; S, 9.36% found: C, 63.26; H, 5.34; N, 8.21; S, 9.27%;

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C,N) \text{ or } U(H) = 1.5 U_{eq}(C_{methyl})]$ using a riding model with C—H(aromatic) = 0.95 Å, C—H(methyl) = 0.98 Å, or C—H(methylene) = 0.99 Å, respectively. H atoms bonded to N were set to the position where they were found in the difference map. The ethoxy group is disordered over two positions with a site occupation factor of 0.527 (5) for the major occupied site.

Perspective view of the title compound. The disordered atoms of the minor occupied site have been omitted for clarity. Displacement ellipsoids are shown at the 50 % probability level.

Figure 2

Packing diagram of the title compound. Hydrogen bonds shown as dashed lines. The minor occupied sites are omitted for clarity.

Ethyl 4-[3-(2-methylbenzoyl)thioureido]benzoate

Crystal data

 $C_{18}H_{18}N_2O_3S$ $M_r = 342.40$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.4555 (3) Å b = 7.6311 (4) Å c = 15.2468 (8) Å $\alpha = 96.456 (4)^{\circ}$ $\beta = 103.860 (5)^{\circ}$ $\gamma = 92.908 (4)^{\circ}$ $V = 834.13 (7) Å^{3}$ Z = 2 F(000) = 360 $D_{x} = 1.363 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 Å$ Cell parameters from 42517 reflections $\theta = 3.4-29.9^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$

T = 173 KBlock, colourless

Data collection

Stoe IPDS II two-circle- diffractometer	22798 measured reflections 4659 independent reflections
Radiation source: fine-focus sealed tube	4311 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.057$
ωscans	$\theta_{\rm max} = 29.6^\circ, \theta_{\rm min} = 3.4^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(MULABS; Spek, 2009; Blessing, 1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.933, \ T_{\max} = 0.943$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.04	H-atom parameters constrained

 $0.33 \times 0.32 \times 0.28 \text{ mm}$

S = 1.04H-atom parameters constrained4659 reflections $w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 0.2098P]$ 246 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.002$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.37$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

-					
	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	1.09603 (4)	0.22920 (4)	0.599200 (16)	0.02926 (8)	
01	0.54635 (11)	0.37544 (11)	0.42973 (5)	0.03282 (18)	
O2	1.1748 (4)	1.1151 (2)	0.86115 (13)	0.0302 (5)	0.527 (5)
O2A	1.0912 (4)	1.1206 (2)	0.88161 (14)	0.0309 (6)	0.473 (5)
03	1.23261 (17)	0.91072 (12)	0.96012 (6)	0.0521 (3)	
N1	0.82261 (12)	0.44800 (11)	0.57980 (5)	0.02358 (17)	
H1	0.7282	0.4728	0.5478	0.028*	
N2	0.77873 (12)	0.19546 (11)	0.47488 (6)	0.02420 (17)	
H2	0.8242	0.0956	0.4570	0.029*	
C1	0.89035 (13)	0.29850 (13)	0.55169 (6)	0.02227 (18)	
C2	0.61524 (13)	0.23496 (13)	0.41838 (6)	0.02368 (18)	
C11	0.90732 (12)	0.57062 (12)	0.65792 (6)	0.02124 (17)	
C12	0.98398 (14)	0.51635 (13)	0.74226 (7)	0.02457 (19)	
H12	0.9840	0.3941	0.7490	0.029*	

C13	1.06022 (14)	0.64342 (13)	0.81625 (7)	0.02587 (19)	
H13	1.1131	0.6075	0.8739	0.031*	
C14	1.06025 (15)	0.82288 (13)	0.80705 (7)	0.0273 (2)	
C15	0.97895 (15)	0.87601 (13)	0.72331 (7)	0.0286 (2)	
H15	0.9755	0.9983	0.7170	0.034*	
C16	0.90262 (14)	0.74958 (13)	0.64881 (6)	0.02458 (19)	
H16	0.8471	0.7856	0.5915	0.029*	
C17	1.1522 (2)	0.95152 (16)	0.88788 (9)	0.0456 (3)	
C18	1.2785 (4)	1.2514 (3)	0.93166 (16)	0.0336 (6)	0.527 (5)
H18A	1.3222	1.3504	0.9033	0.040*	0.527 (5)
H18B	1.3886	1.2024	0.9681	0.040*	0.527 (5)
C19	1.1602 (4)	1.3183 (4)	0.9924 (2)	0.0404 (6)	0.527 (5)
H19A	1.2319	1.4107	1.0394	0.061*	0.527 (5)
H19B	1.1193	1.2206	1.0215	0.061*	0.527 (5)
H19C	1.0518	1.3673	0.9564	0.061*	0.527 (5)
C18A	1.1603 (4)	1.2562 (4)	0.9587 (2)	0.0324 (6)	0.473 (5)
H18C	1.1639	1.2048	1.0158	0.039*	0.473 (5)
H18D	1.0751	1.3519	0.9553	0.039*	0.473 (5)
C19A	1.3507 (5)	1.3318 (4)	0.9602 (2)	0.0419 (8)	0.473 (5)
H19D	1.3942	1.4226	1.0131	0.063*	0.473 (5)
H19E	1.3469	1.3849	0.9043	0.063*	0.473 (5)
H19F	1.4356	1.2375	0.9644	0.063*	0.473 (5)
C21	0.53091 (13)	0.08983 (13)	0.34332 (7)	0.02406 (19)	
C22	0.50526 (15)	-0.08026 (14)	0.36571 (8)	0.0294 (2)	
H22	0.5425	-0.1013	0.4275	0.035*	
C23	0.42550 (17)	-0.21929 (16)	0.29831 (9)	0.0373 (3)	
H23	0.4064	-0.3349	0.3136	0.045*	
C24	0.37444 (18)	-0.18683 (18)	0.20872 (9)	0.0419 (3)	
H24	0.3212	-0.2812	0.1621	0.050*	
C25	0.40002 (17)	-0.01808 (17)	0.18616 (8)	0.0369 (3)	
H25	0.3647	0.0011	0.1241	0.044*	
C26	0.47678 (14)	0.12474 (15)	0.25293 (7)	0.0277 (2)	
C27	0.49622 (18)	0.30658 (17)	0.22573 (8)	0.0363 (2)	
H27A	0.3852	0.3678	0.2291	0.054*	
H27B	0.5109	0.2969	0.1632	0.054*	
H27C	0.6053	0.3737	0.2671	0.054*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.02783 (13)	0.03461 (14)	0.02109 (12)	0.01339 (10)	-0.00154 (9)	-0.00282 (9)
0.0292 (4)	0.0317 (4)	0.0296 (4)	0.0119 (3)	-0.0037 (3)	-0.0098 (3)
0.0369 (11)	0.0226 (7)	0.0255 (8)	-0.0031 (6)	0.0009 (7)	-0.0036 (6)
0.0409 (14)	0.0227 (8)	0.0229 (8)	0.0024 (7)	-0.0005 (8)	-0.0048 (6)
0.0761 (7)	0.0317 (4)	0.0293 (4)	-0.0019 (4)	-0.0204 (4)	-0.0010 (3)
0.0232 (4)	0.0242 (4)	0.0187 (3)	0.0062 (3)	-0.0018 (3)	-0.0032 (3)
0.0249 (4)	0.0245 (4)	0.0195 (4)	0.0070 (3)	0.0007 (3)	-0.0045 (3)
0.0242 (4)	0.0250 (4)	0.0161 (4)	0.0044 (3)	0.0029 (3)	-0.0004 (3)
	U ¹¹ 0.02783 (13) 0.0292 (4) 0.0369 (11) 0.0409 (14) 0.0761 (7) 0.0232 (4) 0.0249 (4) 0.0242 (4)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.02783 \ (13) & 0.03461 \ (14) \\ \hline 0.0292 \ (4) & 0.0317 \ (4) \\ \hline 0.0369 \ (11) & 0.0226 \ (7) \\ \hline 0.0409 \ (14) & 0.0227 \ (8) \\ \hline 0.0761 \ (7) & 0.0317 \ (4) \\ \hline 0.0232 \ (4) & 0.0242 \ (4) \\ \hline 0.0249 \ (4) & 0.0245 \ (4) \\ \hline 0.0242 \ (4) & 0.0250 \ (4) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C2	0.0224 (4)	0.0264 (4)	0.0199 (4)	0.0046 (3)	0.0031 (3)	-0.0032 (3)
C11	0.0198 (4)	0.0235 (4)	0.0180 (4)	0.0019 (3)	0.0021 (3)	-0.0020 (3)
C12	0.0290 (4)	0.0217 (4)	0.0205 (4)	0.0023 (3)	0.0022 (3)	0.0007 (3)
C13	0.0305 (5)	0.0248 (4)	0.0188 (4)	0.0020 (4)	-0.0003 (3)	0.0017 (3)
C14	0.0304 (5)	0.0234 (4)	0.0219 (4)	-0.0016 (4)	-0.0035 (4)	-0.0004 (3)
C15	0.0337 (5)	0.0215 (4)	0.0252 (5)	-0.0009(4)	-0.0020 (4)	0.0024 (3)
C16	0.0262 (4)	0.0253 (4)	0.0193 (4)	0.0023 (3)	0.0002 (3)	0.0025 (3)
C17	0.0634 (8)	0.0239 (5)	0.0322 (6)	-0.0038 (5)	-0.0185 (6)	-0.0001 (4)
C18	0.0361 (12)	0.0261 (11)	0.0317 (11)	-0.0045 (10)	0.0014 (9)	-0.0073 (9)
C19	0.0509 (14)	0.0331 (13)	0.0341 (14)	0.0081 (11)	0.0081 (11)	-0.0053 (11)
C18A	0.0436 (14)	0.0228 (12)	0.0262 (13)	0.0009 (10)	0.0060 (10)	-0.0101 (10)
C19A	0.0430 (15)	0.0352 (15)	0.0415 (15)	-0.0034 (13)	0.0032 (12)	-0.0028 (12)
C21	0.0200 (4)	0.0269 (4)	0.0222 (4)	0.0034 (3)	0.0035 (3)	-0.0065 (3)
C22	0.0272 (5)	0.0292 (5)	0.0310 (5)	0.0026 (4)	0.0085 (4)	-0.0031 (4)
C23	0.0334 (5)	0.0283 (5)	0.0479 (7)	-0.0032 (4)	0.0129 (5)	-0.0090 (5)
C24	0.0357 (6)	0.0405 (6)	0.0406 (6)	-0.0035 (5)	0.0054 (5)	-0.0208 (5)
C25	0.0342 (5)	0.0455 (6)	0.0244 (5)	0.0044 (5)	0.0018 (4)	-0.0121 (4)
C26	0.0243 (4)	0.0336 (5)	0.0222 (4)	0.0049 (4)	0.0036 (3)	-0.0053 (4)
C27	0.0398 (6)	0.0395 (6)	0.0283 (5)	0.0073 (5)	0.0056 (4)	0.0034 (4)

Geometric parameters (Å, °)

S1—C1	1.6709 (10)	C18—H18A	0.9900
O1—C2	1.2247 (12)	C18—H18B	0.9900
O2—C17	1.370 (2)	C19—H19A	0.9800
O2—C18	1.451 (3)	C19—H19B	0.9800
O2A—C17	1.395 (2)	C19—H19C	0.9800
O2A—C18A	1.449 (4)	C18A—C19A	1.499 (4)
O3—C17	1.2038 (15)	C18A—H18C	0.9900
N1-C1	1.3388 (12)	C18A—H18D	0.9900
N1-C11	1.4220 (11)	C19A—H19D	0.9800
N1—H1	0.7998	C19A—H19E	0.9800
N2—C2	1.3824 (12)	C19A—H19F	0.9800
N2—C1	1.3936 (12)	C21—C22	1.3941 (15)
N2—H2	0.8911	C21—C26	1.4001 (14)
C2—C21	1.4937 (13)	C22—C23	1.3904 (15)
C11—C16	1.3895 (13)	C22—H22	0.9500
C11—C12	1.3941 (13)	C23—C24	1.382 (2)
C12—C13	1.3881 (13)	С23—Н23	0.9500
C12—H12	0.9500	C24—C25	1.385 (2)
C13—C14	1.3923 (14)	C24—H24	0.9500
С13—Н13	0.9500	C25—C26	1.4000 (14)
C14—C15	1.3900 (14)	C25—H25	0.9500
C14—C17	1.4858 (14)	C26—C27	1.5021 (17)
C15—C16	1.3904 (13)	С27—Н27А	0.9800
С15—Н15	0.9500	C27—H27B	0.9800
С16—Н16	0.9500	C27—H27C	0.9800
C18—C19	1.493 (4)		

C17—O2—C18	115.67 (16)	C18—C19—H19A	109.5
C17—O2A—C18A	118.32 (17)	C18—C19—H19B	109.5
C1—N1—C11	126.33 (8)	H19A—C19—H19B	109.5
C1—N1—H1	116.3	C18—C19—H19C	109.5
C11—N1—H1	117.2	H19A—C19—H19C	109.5
C2—N2—C1	128.53 (8)	H19B—C19—H19C	109.5
C2—N2—H2	115.7	O2A—C18A—C19A	111.2 (4)
C1—N2—H2	115.5	O2A—C18A—H18C	109.4
N1—C1—N2	116.03 (8)	C19A—C18A—H18C	109.4
N1—C1—S1	125.74 (7)	O2A—C18A—H18D	109.4
N2-C1-S1	118.21 (7)	C19A—C18A—H18D	109.4
O1—C2—N2	122.79 (9)	H18C—C18A—H18D	108.0
O1—C2—C21	123.60 (9)	C18A—C19A—H19D	109.5
N2—C2—C21	113.61 (8)	C18A—C19A—H19E	109.5
C16—C11—C12	120.35 (8)	H19D—C19A—H19E	109.5
C16—C11—N1	117.45 (8)	C18A—C19A—H19F	109.5
C12—C11—N1	122.11 (9)	H19D—C19A—H19F	109.5
C13—C12—C11	119.08 (9)	H19E—C19A—H19F	109.5
C13—C12—H12	120.5	C22—C21—C26	120.98 (9)
С11—С12—Н12	120.5	C22—C21—C2	118.37 (9)
C12—C13—C14	120.85 (9)	C26—C21—C2	120.65 (9)
С12—С13—Н13	119.6	C23—C22—C21	120.47 (11)
C14—C13—H13	119.6	C23—C22—H22	119.8
C15—C14—C13	119.70 (9)	C21—C22—H22	119.8
C15—C14—C17	122.23 (10)	C24—C23—C22	119.01 (12)
C13—C14—C17	118.05 (9)	C24—C23—H23	120.5
C14—C15—C16	119.80 (9)	C22—C23—H23	120.5
C14—C15—H15	120.1	C23—C24—C25	120.70 (10)
С16—С15—Н15	120.1	C23—C24—H24	119.7
C11—C16—C15	120.18 (9)	C25—C24—H24	119.7
С11—С16—Н16	119.9	C24—C25—C26	121.39 (11)
С15—С16—Н16	119.9	C24—C25—H25	119.3
O3—C17—O2	124.17 (12)	C26—C25—H25	119.3
O3—C17—O2A	120.61 (13)	C25—C26—C21	117.44 (11)
O3—C17—C14	124.28 (11)	C25—C26—C27	119.59 (10)
O2—C17—C14	109.38 (11)	C21—C26—C27	122.97 (9)
O2A—C17—C14	112.60 (11)	C26—C27—H27A	109.5
O2—C18—C19	110.5 (3)	C26—C27—H27B	109.5
O2—C18—H18A	109.6	H27A—C27—H27B	109.5
C19—C18—H18A	109.6	C26—C27—H27C	109.5
O2—C18—H18B	109.6	H27A—C27—H27C	109.5
C19—C18—H18B	109.6	H27B—C27—H27C	109.5
H18A—C18—H18B	108.1		
C11—N1—C1—N2	177.55 (9)	C15—C14—C17—O3	-175.89 (16)
C11—N1—C1—S1	-3.80 (15)	C13—C14—C17—O3	2.8 (2)
C2—N2—C1—N1	6.94 (15)	C15—C14—C17—O2	-12.1 (2)

C2—N2—C1—S1	-171.82 (9)	C13—C14—C17—O2	166.59 (17)
C1—N2—C2—O1	0.83 (17)	C15—C14—C17—O2A	22.0 (2)
C1—N2—C2—C21	-178.64 (9)	C13—C14—C17—O2A	-159.3 (2)
C1-N1-C11-C16	137.72 (11)	C17—O2—C18—C19	-77.4 (3)
C1—N1—C11—C12	-45.70 (15)	C17—O2A—C18A—C19A	79.8 (3)
C16—C11—C12—C13	-1.85 (15)	O1—C2—C21—C22	-128.25 (12)
N1-C11-C12-C13	-178.34 (9)	N2-C2-C21-C22	51.21 (12)
C11—C12—C13—C14	0.19 (16)	O1—C2—C21—C26	50.88 (15)
C12—C13—C14—C15	1.59 (17)	N2-C2-C21-C26	-129.66 (10)
C12—C13—C14—C17	-177.10 (12)	C26—C21—C22—C23	0.19 (16)
C13—C14—C15—C16	-1.71 (17)	C2-C21-C22-C23	179.32 (9)
C17—C14—C15—C16	176.93 (12)	C21—C22—C23—C24	0.89 (17)
C12—C11—C16—C15	1.74 (15)	C22—C23—C24—C25	-0.76 (19)
N1-C11-C16-C15	178.39 (9)	C23—C24—C25—C26	-0.44 (19)
C14-C15-C16-C11	0.06 (17)	C24—C25—C26—C21	1.48 (17)
C18—O2—C17—O3	-10.6 (4)	C24—C25—C26—C27	-177.99 (11)
C18—O2—C17—O2A	83.6 (3)	C22—C21—C26—C25	-1.35 (15)
C18—O2—C17—C14	-174.5 (2)	C2-C21-C26-C25	179.54 (9)
C18A—O2A—C17—O3	13.0 (4)	C22—C21—C26—C27	178.11 (10)
C18A—O2A—C17—O2	-93.5 (4)	C2-C21-C26-C27	-1.00 (15)
C18A—O2A—C17—C14	175.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O1	0.80	2.01	2.669(1)	139
N2— $H2$ ···S1 ⁱ	0.89	2.67	3.5551 (9)	170

Symmetry code: (i) -x+2, -y, -z+1.