Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl pyrazine-2-carboxylate

Chang-Hua Zhang, ${ }^{\text {a }}$ Xue-Jie Tan ${ }^{\text {b }}$ * and Dian-Xiang Xing ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry and Chemical Industry, Binzhou University, Binzhou, Shandong Province 256600, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemical Industry, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
Correspondence e-mail: tanxuejie@163.com

Received 7 October 2009; accepted 21 October 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.066 ; \omega R$ factor $=0.153$; data-to-parameter ratio $=8.3$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$, is approximately planar [r.m.s. deviation $=0.0488$ (3) A]. In the crystal, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions join the molecules into an infinite three-dimensional network.

Related literature

For the synthetic procedure, see: Kim et al. (2004). For reduction of heteroaromatic esters, see: Boechat et al. (2005). For a description of weak hydrogen bonds, see: Desiraju \& Steiner (1999).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=138.13$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.865(2) \AA$
$b=6.690(4) \AA$
$c=24.92(2) \AA$
$V=644.4(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.32 \times 0.12 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.980, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066 \quad 91$ parameters
$w R\left(F^{2}\right)=0.153 \quad \mathrm{H}$-atom parameters constrained
$S=1.05$
757 reflections
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.35	$3.205(3)$	153
$\mathrm{C} 6-\mathrm{H} 4 \cdots 1^{1 i}$	0.96	2.62	$3.582(3)$	177

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the Shandong Distinguished MiddleAged and Young Scientist Encouragement and the Reward Fund (No. 2006BS04006) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2150).

References

Boechat, N., Costa, J. C. S., Mendonca, J. S., Paes, K. C., Fernandes, E. L., Oliveira, P. S. M., Vasconcelos, T. R. A. \& Souza, M. V. N. (2005). Synth. Commun. 35, 3187-3190.
Bruker (2000). SMART), SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.
Kim, J. W., Choi, K. D., Lim, J. W., Lee, K. H. \& Lee, S. H. (2004). PCT Int. Appl. WO 2004048369.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2902 [https://doi.org/10.1107/S1600536809043451]
Methyl pyrazine-2-carboxylate

Chang-Hua Zhang, Xue-Jie Tan and Dian-Xiang Xing

S1. Comment

Heteroaromatic esters are more easily reduced than the corresponding free acids (Boechat et al. 2005). The title compound, (I) (Fig. 1), [$\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right]$, was obtained as an intermediate in the synthesis of another pyrazine-based compound.
All non-hydrogen atoms of (I) are coplanar. The maximum deviation from the mean plane is 0.1249 (4) \AA for O 2 and the mean deviation is only 0.0488 (3) \AA. The almost perfect planarity of the molecule reflects its efficient π-conjugation.
There are no classical hydrogen bonds present in the crystal structure (Spek, 2009). Nevertheless, there are weak C$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1, Desiraju \& Steiner, 1999) linking the molecules into an infinite threedimensional network [Fig. 2].

S2. Experimental

Compound (I) was prepared following a procedure published by Kim et al. (2004), but the product is not "pale brown" but colorless. Elemental analysis Calcd: C 52.17, H 4.38, N 20.28\%. Found: C 51.87, H 4.02, N 20.14\%.

S3. Refinement

Since the compound itself is achiral and in the absence of significant anomalous dispersion effects, Friedel pairs were averaged. All H atoms were fixed geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH groups of the pyrazine ring and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl group.

Figure 1
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2
The packing of (I), viewed down the a axis, showing one layer of molecules connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines).

Methyl pyrazine-2-carboxylate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=138.13$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=3.865(2) \AA$
$b=6.690(4) \AA$
$c=24.92(2) \AA$
$V=644.4(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
π and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.980, T_{\text {max }}=0.994$

$$
\begin{aligned}
& F(000)=288 \\
& D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 378 \text { reflections } \\
& \theta=1.6-25.5^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Needle, colourless } \\
& 0.32 \times 0.12 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

3378 measured reflections
757 independent reflections
505 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-4 \rightarrow 4$
$k=-7 \rightarrow 8$
$l=-30 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.153$
$S=1.05$
757 reflections
91 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.2013(5)$	$0.6623(3)$	$0.93604(7)$	$0.0546(6)$
H1	0.0959	0.7714	0.9524	0.065^{*}
C2	$0.2602(4)$	$0.6690(2)$	$0.88246(6)$	$0.0371(5)$
C3	$0.5035(6)$	$0.3674(2)$	$0.88599(7)$	$0.0561(6)$
H2	0.6133	0.2594	0.8698	0.067^{*}

C4	$0.4367(6)$	$0.3607(3)$	$0.93986(7)$	$0.0604(6)$
H3	0.4999	0.2470	0.9589	0.072^{*}
C5	$0.1459(4)$	$0.8493(2)$	$0.85163(6)$	$0.0395(5)$
C6	$0.1405(5)$	$1.0165(2)$	$0.76991(8)$	$0.0642(7)$
H4	0.2569	1.0139	0.7359	0.096^{*}
H5	0.1955	1.1385	0.7883	0.096^{*}
H6	-0.1049	1.0089	0.7643	0.096^{*}
N1	$0.4157(4)$	$0.52391(19)$	$0.85628(6)$	$0.0479(5)$
N2	$0.2869(5)$	$0.5082(2)$	$0.96584(6)$	$0.0665(6)$
O1	$0.2516(3)$	$0.84861(17)$	$0.80180(4)$	$0.0514(4)$
O2	$-0.0298(4)$	$0.97530(17)$	$0.87108(5)$	$0.0690(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0681(13)$	$0.0448(11)$	$0.0508(10)$	$0.0017(11)$	$0.0019(11)$	$0.0020(10)$
C2	$0.0335(8)$	$0.0284(8)$	$0.0494(10)$	$0.0006(8)$	$0.0029(9)$	$0.0011(8)$
C3	$0.0621(12)$	$0.0330(9)$	$0.0733(12)$	$0.0112(11)$	$-0.0098(11)$	$0.0040(10)$
C4	$0.0677(13)$	$0.0406(10)$	$0.0728(12)$	$0.0014(11)$	$-0.0187(12)$	$0.0199(10)$
C5	$0.0409(10)$	$0.0302(8)$	$0.0475(10)$	$-0.0001(9)$	$0.0019(9)$	$0.0023(9)$
C6	$0.0719(15)$	$0.0541(11)$	$0.0666(13)$	$0.0086(12)$	$-0.0045(11)$	$0.0180(11)$
N1	$0.0535(9)$	$0.0344(7)$	$0.0559(9)$	$0.0089(8)$	$-0.0002(8)$	$-0.0017(8)$
N2	$0.0891(12)$	$0.0549(10)$	$0.0554(10)$	$0.0024(11)$	$-0.0065(10)$	$0.0083(9)$
O1	$0.0664(8)$	$0.0412(6)$	$0.0465(7)$	$0.0105(7)$	$0.0004(7)$	$0.0083(6)$
O2	$0.0935(10)$	$0.0428(7)$	$0.0705(9)$	$0.0264(8)$	$0.0187(8)$	$-0.0033(7)$

Geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 2$	$1.312(2)$	$\mathrm{C} 4-\mathrm{N} 2$	$1.315(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.355(2)$	$\mathrm{C} 4-\mathrm{H} 3$	0.9300
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 5-\mathrm{O} 2$	$1.186(2)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.315(2)$	$\mathrm{C} 5-\mathrm{O} 1$	$1.307(2)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.497(2)$	$\mathrm{C} 6-\mathrm{O} 1$	$1.441(2)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.327(2)$	$\mathrm{C} 6-\mathrm{H} 4$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.368(3)$	$\mathrm{C} 6-\mathrm{H} 5$	0.9600
$\mathrm{C} 3-\mathrm{H} 2$	0.9300	$\mathrm{C} 6-\mathrm{H} 6$	0.9600
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 2$	$122.76(17)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$124.72(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	118.6	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 2$	$122.14(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.6	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 2$	$113.11(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$122.77(15)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 4$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 5$	$118.36(15)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 5$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$118.87(15)$	$\mathrm{H} 4-\mathrm{C} 6-\mathrm{H} 5$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 4$	$121.68(17)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 6$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 2$	119.2	$\mathrm{H} 4-\mathrm{C} 6-\mathrm{H} 6$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 2$	119.2	$\mathrm{H} 5-\mathrm{C} 6-\mathrm{H} 6$	109.5
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 3$	$122.83(17)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$114.99(15)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 3$	118.6	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$114.94(16)$

supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 3 \quad 118.6 \quad \mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6 \quad 115.33$ (14)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.35	$3.205(3)$	153
$\mathrm{C} 6 — \mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.96	2.62	$3.582(3)$	177

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+1, y+1 / 2,-z+3 / 2$.

